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Abstract  
Purpose The loss of synaptic vesicle glycoprotein 2A (SV2A) is well established as the major correlate of epileptogenesis 
in focal cortical dysplasia type II (FCD II), but this has not been directly tested in vivo. In this positron emission tomography 
(PET) study with the new tracer 18F-SynVesT-1, we evaluated SV2A abnormalities in patients with FCD II and compared 
the pattern to 18F-fluorodeoxyglucose (18F-FDG).
Methods Sixteen patients with proven FCD II and 16 healthy controls were recruited. All FCD II patients underwent mag-
netic resonance imaging (MRI) and static PET imaging with both 18F-SynVesT-1 and 18F-FDG, while the controls under-
went MRI and PET with only 18F-SynVesT-1. Visual assessment of PET images was undertaken. The standardized uptake 
values (SUVs) of 18F-SynVesT-1 were computed for regions of interest (ROIs), along with SUV ratio (SUVr) between ROI 
and centrum semiovale (white matter). Asymmetry indices (AIs) were analyzed between the lesion and the contralateral 
hemisphere for intersubject comparisons.
Results Lesions in the brains of FCD II patients had significantly reduced 18F-SynVesT-1 uptake compared with contralateral 
regions, and brains of the controls. 18F-SynVesT-1 PET indicated low lesion uptake in 14 patients (87.5%), corresponding 
to hypometabolism detected by 18F-FDG PET, with higher accuracy for lesion localization than MRI (43.8%) (P < 0.05). AI 
analyses demonstrated that in the lesions, SUVr for each of the radiotracers were not significantly different (P > 0.05), and 
18F-SynVesT-1 SUVr correlated with that of 18F-FDG across subjects (R2 = 0.41, P = 0.008). Subsequent visual ratings indi-
cated that 18F-SynVesT-1 uptake had a more restricted pattern of reduction than 18F-FDG uptake in FCD II lesions (P < 0.05).
Conclusion SV2A PET with 18F-SynVesT-1 shows a higher accuracy for the localization of FCD II lesions than MRI and a 
more restricted pattern of abnormality than 18F-FDG PET.
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Introduction

Focal cortical dysplasia type II (FCD II) constitutes the most 
common cause of seizures in patients who undergo surgery 
before the age of 18 years [1]. Epilepsy in FCD II is com-
monly pharmacoresistant and thus particularly challenging 
for antiepileptic treatment [2]. Surgical resection of FCD 
II lesions may prevent seizures and improve quality of life 
[3]. It has been well established that the main predictor of 
favorable surgical outcomes is the complete removal of the 
dysplastic cortex.

FCD II is predominantly located in extratemporal areas, 
in particular the eloquent cortex [3]. Magnetic resonance 
imaging (MRI) features in FCD II have been widely 
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described [4], but so-called negative MRI has been reported 
in 17–34% of patients and is associated with poor surgical 
outcomes [5]. Positron emission tomography (PET) imag-
ing with 18F-fluorodeoxyglucose (18F-FDG) has significantly 
improved the positive detection rate of lesions. However, 
maximal hypometabolic areas correspond to both the lesion 
and seizure onset zone [6]. The accuracy of 18F-FDG PET in 
identifying FCD II is limited by hypometabolism frequently 
extending beyond the lesion. Therefore, for FCD II patients, 
PET imaging with additional radioligands that can be used 
to guide more accurate demarcation of the lesion would be 
of great clinical value.

Observations from a rat model of epilepsy and dys-
plastic cortical tissue suggested that the loss of synaptic 
vesicle glycoprotein 2A (SV2A) may lead to alterations in 
neurotransmission [7]. SV2A loss can cause impairments 
in γ-aminobutyric acid (GABA)ergic function [8–10]. 
11C-UCB-J, a specific radioligand for SV2A, has been used 
in the investigation of several neuropsychiatric diseases 
[10–13]. Compared to 11C-UCB-J, the newly reported SV2A 
radioligand 18F-SynVesT-1 has a longer half-life and supe-
rior signal-to-noise ratio [14, 15]. In a preliminary study 
using static 18F-SynVesT-1 PET, we demonstrated lower 
SV2A levels in the epileptogenic zone (EZ) of patients with 
FCD II [16]. In the present study, we included more FCD II 
patients with neuropathology data and controls. The FCD II 
patients were also evaluated with 18F-FDG PET and high-
resolution MRI to allow for direct comparisons.

Materials and methods

Participants

Sixteen FCD II patients and 16 controls were included in 
the present study. Localization of the EZ was determined 
by at least 2 experienced epileptologists based on all avail-
able clinical, video-electroencephalographic (EEG), inter-
ictal EEG, neuroimaging, and invasive stereo-EEG (SEEG) 
monitoring data if indicated. Sixteen consecutive patients 
underwent surgery for intractable epilepsy and histologically 
proven FCD II (FCD type II includes two subgroups based 
on the absence (IIa) or presence (IIb) of balloon cells) [17]. 
The exclusion criteria included any current or past clinically 
significant medical or neurological illness (other than FCD) 
that could have affected the study outcome. Some antiepi-
leptic drugs (AEDs) are known to decrease cerebral blood 
flow and metabolism [18, 19], and levetiracetam and bri-
varacetam bind to SV2A [20, 21]. Patients were excluded if 
they were taking levetiracetam or brivaracetam. Those who 
could discontinue AED were instructed to withhold their 
medication so that their last dose was at least 24 h before the 
scheduled 18F-SynVesT-1 injection time. Other patients who 

could not discontinue AED administration because of sei-
zures that were too frequent were excluded from the study. 
All patients were closely monitored by a neurologist during 
MRI and PET imaging, and no clinical seizures were noted.

The study protocol was approved by the Human Investiga-
tion Committee and Radiation Safety Committee at Xiangya 
Hospital, Central South University. All participants provided 
written informed consent prior to participating in the study.

MRI

All participants underwent a structural MRI scan using the 
3-T Siemens MAGNETOM Trio, a Tim system. A high-
resolution, 3D magnetization-prepared rapid acquisition 
with gradient echo (MPRAGE)  T1-weighted sequence was 
used to identify structural abnormalities and for coregistra-
tion with PET images (repetition time = 2300.0 ms, echo 
time = 3.0 ms, field of view (FOV) = 256 × 256 mm, slice 
thickness = 1.0-mm thick contiguous slices, 176 sagittal 
slices, voxel size = 1.0 × 1.0 × 1.0 mm).

PET imaging

18F-SynVesT-1 was synthesized using previously described 
methods [22]. Participants discontinued all AEDs for at least 
24 h before PET scans and fasted for at least 6 h before 18F-
FDG injection. Patients were monitored and confirmed to 
have had no clinically visible seizures within 24 h before 
PET examinations. Continuous EEG recording was started 
2 h before radioligand injection to ensure the lack of seizure 
and that the radioligands were not administered in a postictal 
situation [23]. All patients were scanned first with 18F-FDG 
and then with 18F-SynVesT-1 at the same time on the fol-
lowing day, while controls had only an 18F-SynVesT-1 PET 
scan. Static PET images were acquired in three dimensions 
for 5 min, starting at ~ 60 min after intravenous injection of 
the radioligands. PET/computed tomography (CT) images 
were acquired by a Discovery Elite PET/CT scanner (GE 
Healthcare, Waukesha, USA). The scanning protocol was 
the same as described previously [24].

Visual assessment of MRI and PET images

Visual MRI analysis was performed by two experienced 
neuroradiologists blinded to the clinical data. MRI was 
classified as positive if the images demonstrated FCD II 
features [4] and nonspecific or negative in the remaining 
cases. PET images were visually evaluated by two nuclear 
medicine specialists who were unaware of the clinical, EEG, 
and MRI findings. These visual assessments were performed 
to compare the accuracy of these images in locating the 
lesion. The 5-min frame of PET images was used to calcu-
late the standardized uptake value (SUV) for 18F-FDG and 
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18F-SynVesT-1. Nuclear medicine physicians were asked to 
identify abnormal areas in the PET images to localize the 
EZ to 1 of 8 sites (left or right; frontal, temporal, parietal, 
or occipital) or classify them as nonlocalized. Then, PET 
images were coregistered to the participant’s  T1-weighted 
MR image using SPM12. Individual PET/MRI images were 
then analyzed by comparing the localization consistency and 
extent of the uptake abnormalities in the lesion between PET 
images with the two radiotracers.

Semiquantitative analysis of PET/MRI images

Semiquantitative analysis was performed for all PET data. 
SUV was calculated for all regions of interest (ROIs), and 
SUV ratio (SUVr) with the centrum semiovale (CS) as 
reference region was calculated for interpatient compari-
sons, as the CS has been reported to be free of SV2A and 
thus can be used as a reference region [10]. The asymme-
try index (AI) was determined to evaluate the intensity of 
regional abnormalities in metabolism or 18F-SynVesT-1 
uptake. ROIs for the lesion and contralateral region were 
delineated manually on both PET/MRI images by a single 
operator in combination with the visual assessment and 
pathology results [25]. AIs were calculated in control sub-
jects as 200% × ([left − right]/[left + right]) and in patients 
as 100% × ([contralateral − ipsilateral]/[contralateral + ipsi-
lateral]). The SUVr and AI for 8 major nonlesioned brain 
regions (left and right; frontal, temporal, parietal, or occipi-
tal) were also calculated for both patients and controls.

Visual ratings (18F‑FDG PET versus 18F‑SynVesT‑1 
PET)

In subsequent visual ratings, two experienced nuclear medi-
cine specialists reviewed the PET images with knowledge 
of clinical data and lesion localization. The reviewers were 
asked to grade the extent of the abnormalities in 18F-Syn-
VesT-1 and 18F-FDG PET images by using the PET/MRI 
coregistered image as a reference for anatomical delinea-
tion. All lesions with abnormal 18F-FDG or 18F-SynVesT-1 
uptake were scored as follows: mild, 1 = involving the 
focal gyrus; moderate, 2 = involving a single gyrus; severe, 
3 = involving several gyri in the same lobe or several lobes 
and regions, similar to that described previously for the 
grading of 18F-flumazenil (FMZ) and 18F-FDG PET imag-
ing results in patients with temporal lobe epilepsy [9], except 
that intensity was not factored in the rating. A score of 0 was 
given to normal uptake in the lesion.

Statistical analysis

Values are reported as the mean ± standard deviation (SD). 
Clinical characteristics of the patients were compared using 

Student’s t-test or analysis of variance. Statistical analyses 
with unpaired or paired 2-tailed t-tests or Pearson’s correla-
tion coefficients were conducted. Based on the results from 
our preliminary study [16] and using the normal approxi-
mation algorithm of the Pearson chi-square test, the normal 
approximation algorithm of the Farrington-Manning test, 
and the Walters approximation algorithm of the Fisher exact 
probability method, the sample size result was obtained 
through reverse deduction and multiple loop calculations 
[26], with N = 6, nt = 3, nc = 3, and power = 0.8102. AIs 
between groups were performed using the Mann–Whitney 
U-test or Kruskal–Wallis test, followed by a post hoc test 
if required. Data were analyzed using SPSS (version 18.0; 
SPSS, Chicago, IL, USA). P < 0.05 was considered statisti-
cally significant.

Results

Participants

Sixteen patients (7.56 ± 4.28 years old; range: 2–16 years) 
participated in the study. We collected the clinical and fol-
low-up data of all patients, including seizure history, semei-
ology, interictal EEG, SEEG (if indicated), neuroimaging, 
surgical area, and postoperative pathology. Pathological tis-
sue confirmed FCD II, with FCD IIb in 14 patients (87.5%) 
and FCD IIa in 2 patients (12.5%). Lesions were localized to 
the frontal area in 5 patients, parietal area in 5 patients, the 
temporal area in 4 patients, the occipital area in 1 patient, 
and frontoparietal area in 1 patient.

The patients included in the present study were children 
or adolescents. Therefore, it was not possible to recruit 
age-matched controls. The best effort was made to recruit 
young adults as controls, and PET imaging data were 
used in a comparative analysis of parametric AI between 
the patients and controls. In total, 16 healthy individuals 
(23.80 ± 3.54 years old) were included. The demographic 
and clinical characteristics of the participants are summa-
rized in Tables 1 and 2.

Injection parameters

The radiochemical purity of 18F-SynVesT-1 was greater than 
99% (Supplemental Fig. S1). The injected activity dose of 
18F-SynVesT-1 was 109 ± 52 MBq (range: 48–170 MBq) 
for the patients and 213 ± 23 MBq (range: 151–244 MBq) 
for the controls. The injected radioactivity of 18F-FDG was 
109 ± 52 MBq for the patients. 18F-SynVesT-1 injections 
were well tolerated, with no subjective or objective adverse 
effects detected.
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Visual assessment of MRI and PET images

Visual assessment results are shown in Table 3. On review 
of the MRI images, lesions in 7 of 16 patients (43.8%) were 
correctly localized. 18F-FDG PET detected hypometabolism 
in 15 of 16 patients (93.8%). 18F-SynVesT-1 PET images 
showed low uptake in the FCD lesions compared with con-
trol images and nonlesioned areas of patients, with lesions 
correctly localized in 14 of 16 patients (87.5%) (Fig. 1). The 
localization rates were not significantly different between 
18F-FDG and 18F-SynVesT-1 PET, and both were higher 
than the localization rate with MRI (P < 0.05). 18F-Syn-
VesT-1 PET SUV images showed false localization in 2 
patients. One patient was found to have hypometabolism, 

but SV2A binding in the lesion was not significantly lower. 
The lesion was not localized by either SV2A or FDG PET/
MRI images in only 1 patient (Fig. 2). Two patients were 
pathologically confirmed to have FCD IIa.

CS as a reference region

To ensure no between-group differences in nondisplaceable 
uptake for 18F-SynVesT-1, CS SUVs were compared and 
found to be nearly identical between controls (1.38 ± 0.35) 
and FCD II patients (1.36 ± 0.50) (P = 0.910), despite the age 
difference between the groups. Therefore, the CS appeared 
to be an appropriate reference region for the calculation of 
18F-SynVesT-1 SUVr.

Asymmetry in 18F‑SynVesT‑1 and 18F‑FDG SUVr

Table 4 shows the results from the semiquantitative analyses 
of the PET data. The 18F-SynVesT-1 SUVr in the lesions in 
FCD II patients was significantly lower than the SUVr in the 
contralateral lobe (2.58 ± 0.97 vs. 3.67 ± 1.44, respectively, 
P < 0.05), while the SUVr difference between the nonle-
sioned ipsilateral and contralateral lobes was not significant 
(3.27 ± 1.25 vs. 3.50 ± 1.01, respectively, P = 0.58). The 
AI value with the SUVr was greater in the FCD II patients 
(27.14% ± 10.11%) than in the controls (2.4% ± 2.60%, 
P = 0.000). The AI values in the nonlesioned lobes showed 
no intersubject variability in either the FCD patients or con-
trols (Table 5).

18F-FDG uptake in the FCD II lesions was lower (SUVr of 
2.82 ± 1.13) than that of the contralateral side (3.85 ± 1.33, 
P = 0.02). A significantly higher AI was observed in the 

Table 1  Clinical demographics of FCD II patients and controls

Variable FCD II 
patients 
(n = 16)

Control subjects 
(n = 16)

P

Age, years 7.56 ± 4.28 23.80 ± 3.54 0.00
Male, N (%) 7 (43.7) 10 (62.5) 0.289
Right handedness, N 

(%)
15 (93.8) 16 (100) 0.326

18F-SynVesT-1 SUV 
of centrum semio-
vale (ml/cm3)

1.35 ± 0.52 1.38 ± 0.35 0.918

Age of seizure onset, 
years

3.93 ± 2.78 - -

Duration of epilepsy, 
years

2.88 ± 3.34 - -

Number of antiepilep-
tic drugs, N (range)

1.8 (1–3) - -

Table 2  Clinical and 
neuropathological information 
of FCD II patients

Patient Age (years)/sex Age at onset 
(years)

Duration (years) Pathology Location

1 10/F 2 8 FCD IIb Right parietal lobe
2 2/F 1 0.5 FCD IIb Right parietal lobe
3 6/M 6 0.33 FCD IIb Left frontal lobe
4 10/M 8 2 FCD IIa Left frontal lobe
5 2/M 1 1 FCD IIb Left temporal lobe
6 5/F 2 3 FCD IIb Left temporal lobe
7 16/M 6 10 FCD IIb Left frontoparietal
8 4/M 1 3 FCD IIb Right frontal lobe
9 11/F 1 10 FCD IIa Right occipital lobe
10 3/F 3 0.1 FCD IIb Left temporal lobe
11 9/M 8 1 FCD IIb Left temporal lobe
12 15/F 13 2 FCD IIb Left parietal lobe
13 8/F 7 0.25 FCD IIb Left parietal lobe
14 10/F 8 2 FCD IIb Left parietal lobe
15 5/F 3 2 FCD IIb Left frontal lobe
16 5/M 4 1 FCD IIb Left frontal lobe
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patient group (27.08% ± 9.89%) than in the nonlesioned 
lobes (5.06% ± 3.00%, P < 0.05).

Comparison of lesion asymmetry between 18F‑FDG 
and 18F‑SynVesT‑1

As shown in Table 3, MRI was negative for lesion locali-
zation in 8 patients. After coregistration of 18F-FDG PET 
and MRI, the guided second reading changed the MRI 
report to a “subtle lesion” in 7 patients. The lesion AI based 
on 18F-SynVesT-1 uptake was not significantly different 
from that based on 18F-FDG uptake (27.14% ± 10.11% vs. 
27.08% ± 9.89%, P = 0.841). There was a significant cor-
relation (R2 = 0.41, P = 0.008) between the lesion AIs for 
18F-SynVesT-1 SUVr and 18F-FDG SUVr in FCD patients 
(Supplemental Fig. S2).

Visual ratings (18F‑FDG PET versus 18F‑SynVesT‑1 
PET)

In the initial visual assessment and semiquantitative analy-
sis, we found no statistically significant difference between 

Table 3  Results of the visual assessments

FCD II patients Control subjects

MRI
  Positive 7/16 (43.8%) 0/16
  Negative 9/16 (56.2%) 16/16 (100%)

18F-SynVesT-1 PET
  Positive 14/16 (87.5%) 0/16
  Negative 2/16 (12.5%) 16/16 (100%)

18F-FDG PET
  Positive 15/16 (93.8%) 0/16
  Negative 1/16 (6.2%) 16/16 (100%)

18F-SynVesT-1 PET/MRI
  Positive 15/16 (93.8%) 0/16
  Negative 1/16 (6.2%) 16/16 (100%)

18F-FDG PET/MRI
  Positive 15/16 (93.8%) 0/16
  Negative 1/16 (6.2%) 16/16 (100%)

Fig. 1  MRI, 18F-FDG, and 18F-SynVesT-1 PET/MRI images used for 
localization of the FCD II lesion in patient 8. a MRI image showed 
the thickening of the right inferior frontal gyrus; 18F-FDG PET and 
18F-FDG PET/MRI images showed hypometabolism throughout the 
right inferior frontal gyrus and surrounding areas; 18F-SynVesT-1 
PET and 18F-SynVesT-1 PET/MRI showed a more restricted area 

of low uptake in the frontalis inferior region (red arrows). b Overall 
electrode placement view. c Ictal (1) and postictal (2) SEEG record-
ings showed that the abnormal discharge area originated from the 
inferior frontal gyrus (II and III). d Postoperative pathology showed 
FCD IIb
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18F-FDG and 18F-SynVesT-1 PET in the accuracy of lesion 
location and the AIs that reflected the intensity of decreased 
uptake in the lesion. In the subsequent visual rating of PET 
images, based on the extent of decreased lesion uptake, 

the pattern for 18F-SynVesT-1 was judged to be more 
restricted than that of 18F-FDG (score of 1.281 ± 0.581 vs. 
2.375 ± 0.832, respectively, P < 0.05) (Fig. 3). This is con-
sistent with the representative PET images shown in Fig. 1, 
where the area of decreased uptake for 18F-SynVesT-1 is 
narrower than that for 18F-FDG.

Discussion

In the present study, we detected, for the first time, sig-
nificantly lower SV2A binding in brain lesions of FCD II 
patients under the age of 18 using in vivo PET imaging with 
the novel SV2A radioligand 18F-SynVesT-1. Using visual 
and semiquantitative analyses of PET images coregistered 
with MRI images, we assessed the utility of 18F-SynVesT-1 
compared with 18F-FDG PET for lesion localization in FCD 
II. Our results indicated that static 18F-SynVesT-1 PET pro-
vided high-quality images and that visual and semiquan-
titative analyses without arterial blood sampling enabled 
the identification of lesions in FCD II patients with accu-
racy comparable to the current standard static 18F-FDG 
PET. Furthermore, we demonstrated that the range of low 
SV2A binding in the lesions was more restricted than that 

Fig. 2  MRI, 18F-FDG, and 18F-SynVesT-1 PET/MRI images of the 2 
FCD IIa patients. FCD IIa in two patients could not be detected by 
the initial visual assessment on 18F-SynVesT-1 PET. a The lesion in 
patient 4 was detected after superimposition of 18F-SynVesT-1 and 
18F-FDG PET to MRI images, with the lesion located in the left fron-
tal lobe (which displayed a small AI, 11.00%) (red arrows). b The 

lesion in patient 9 was not localized by the three neuroimaging meth-
ods. It was finally confirmed that the lesion was located in the right 
occipital lobe (white and black arrows). We assumed that FCD IIa 
might have a nonsignificant reduction in SV2A with 18F-SynVesT-1 
PET

Table 4  Asymmetry index (AI) and SUVr of 18F-FDG and 18F-Syn-
VesT-1 in the FCD lesion and nonlesioned lobes

Lesion Nonlesioned lobe P

FDG AI 27.08% ± 9.89% 5.06% ± 3.00% 0.00
SUVr 2.82 ± 1.13 3.85 ± 1.33 0.02

SynVesT-1 AI 27.14% ± 10.11% 4.4% ± 2.30% 0.00
SUVr 2.58 ± 0.97 3.67 ± 1.44 0.03

Table 5  Asymmetry indices for 18F-SynVesT-1 SUVr in the nonle-
sioned lobes of the patients and controls

FCD II patients Control subjects P

Frontal lobe 2.1% ± 1.8% 2.1% ± 1.1% 0.918
Temporal lobe 2.4% ± 2.7% 3.6% ± 2.4% 0.23
Occipital lobe 2.4% ± 2.2% 2.6% ± 2.4% 0.724
Parietal lobe 3.7% ± 6.7% 3.0% ± 2.5% 0.767
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of hypometabolism. The corresponding asymmetry in lesion 
uptake was highly correlated between the two radiotracers 
across subjects.

Lower SV2A in epileptic lesions has been repeatedly 
observed in brain tissue slices from animal models of epi-
lepsy and epileptic patients [7, 8, 27]. In this study, we 
found an AI based on lesion SUVr of 27.14% ± 10.15% in 
patients with FCD II, which was much higher than that in 
the controls. This magnitude of SV2A reduction is in line 
with the reported 28% decrease for SV2A in FCD lesions 
measured in vitro with tissues resected from intractable epi-
lepsy patients [10, 20]. Studies have suggested that the loss 
of SV2A may contribute to instability in neuronal networks 
[28]. Electrophysiological studies of spontaneous inhibitory 
neurotransmission revealed that the loss of SV2A led to an 
imbalance between glutamatergic and GABAergic neuro-
transmission [8, 29], thus implicating SV2A as a sensitive 
marker of FCD II, and PET imaging with SV2A-specific 
tracers as a potentially valuable tool for lesion identifica-
tion/localization in this disorder. The comparison of lesion 
AI with 18F-SynVesT-1 SUVr and 18F-FDG SUVr indicated 
a positive correlation. One study in temporal lobe epilepsy 
also found that hippocampal 18F-FDG uptake was correlated 
with 11C-UCB-J binding potential [10]. These findings sug-
gest that the hypometabolism in FCD II lesions may be 
related to the decrease in SV2A, and SV2A PET provides 
a complementary measure of the epileptogenic substrate.

We found that lesions in 2 FCD type IIa patients could 
not be detected by the initial visual assessment of 18F-Syn-
VesT-1 PET images. In one patient, the lesion could be 
located after coregistration with MRI (and there was a small 
AI, 11.00%, in this patient). We assumed that FCD IIa might 
have resulted in a nonsignificant reduction in SV2A that 

was not clearly visible in the 18F-SynVesT-1 PET images 
but was associated with the pathological findings. Although 
cytological differences have indicated biological differences 
between the 2 FCD subtypes, no associated differences in 
clinical or imaging findings have been consistently identi-
fied. A previous study in FCD IIa showed decreased neuropil 
expression for SV2A, but strong perikaryal SV2A immuno-
reactivity has been observed around cytomegalic neurons 
[30]. The cytomegalic neuron expressed strong SV2A, which 
could obscure the originally decreased neuropil expression 
of FCD, and PET cannot differentiate these changes at the 
cellular level.

The detection of FCD II by MRI remains a challenge, 
despite the use of best-practice MRI sequences, new high-
field MRI, and postprocessing software [5]. In the present 
study, MRI was negative in 56.2% of patients. 18F-FDG PET 
was reported to have a high sensitivity to detect FCD II in 
60–92% of patients [6], and our 18F-FDG PET data were 
concordant with the findings from these contemporary stud-
ies. We found the visual assessments of SV2A PET images 
to have 87.5% accuracy in lesion localization, and there were 
no statistically significant differences between 18F-FDG 
and 18F-SynVesT-1 PET in the accuracy of lesion location 
(93.8% vs. 87.5%, respectively) and AI (27.14% ± 10.11% 
vs. 27.08% ± 9.89%). 18F-SynVesT-1 PET coregistered with 
MRI increased detection accuracy and helped delineate FCD 
II in MRI-negative/doubtful patients, with 93.8% accuracy 
in FCD detection.

More importantly, we demonstrated that 18F-SynVesT-1 
PET images showed a more restricted pattern of reduced 
SV2A than the region of hypometabolism in FCD II 
patients. These findings may have practical importance, as 
in these cases, seizure freedom may be obtained by smaller 
resections that are precisely limited to the lesion. Hence, 
18F-SynVesT-1 PET might be helpful to guide the place-
ment of intracranial electrodes and presurgical planning. We 
assume that SEEG may remain indicated to limit the extent 
of resection, which is an important consideration when plan-
ning surgical resection in the eloquent cortex. However, such 
an invasive procedure may be progressively discontinued 
once multimodal imaging becomes capable of delineating 
the dysplastic cortex. Whether the more restricted pattern 
of reduced SV2A can become a real advantage for surgical 
planning of FCD patients requires more clinical research and 
data analysis in the future.

18F-SynVesT-1 has been shown to have excellent kinetic 
and in vivo binding properties in the human brain. SUVr 
from 60–90 min postinjection provided a good match with 
the one-tissue compartment binding potential of 18F-Syn-
VesT-1 and can serve as a surrogate quantitative measure-
ment of specific binding in a short scan time without inva-
sive arterial sampling [15]. As it is more difficult for younger 
patients with FCD to maintain the same posture for a long 

Fig. 3  Grading of abnormal lesion uptake by two nuclear medi-
cine specialists on the 18F-FDG and 18F-SynVesT-1 PET images. 
The abscissa represents the two nuclear medicine specialists and 
the two PET radioligands, the ordinate represents the score, and 
the same color points represent the same patient. On the 18F-Syn-
VesT-1 PET images, the extent of decreased uptake was judged to 
be more restricted (1.281 ± 0.581) than that of 18F-FDG PET images 
(2.375 ± 0.832, P < 0.05)
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time, the longer half-life of 18F coupled with a quantitative 
measurement in a short scan time with 18F-SynVesT-1 will 
facilitate its broad application in studies of SV2A in FCD 
and other neuropsychiatric populations.

There are several limitations that warrant mentioning. 
First, our sample size was modest, although it is well within 
the range for a PET study evaluating a new radiotracer in 
a new patient group such as FCD patients [6]. The limited 
sample size may have obscured possible correlations with 
clinical measures. Second, we used the CS as a reference 
region to adjust for nonspecific uptake in the brain. However, 
it may not be the optimal reference area because its tissue 
composition is different from gray matter, and the use of the 
CS as a reference region might lead to underestimation of 
the SUVr [31]. Last, the age difference between the patient 
and control groups might have had an effect on the study 
findings. We analyzed the SUVr of nonpathological brain 
regions for all participants to observe the trend in synaptic 
density changes (Supplemental Fig. S3), which was consist-
ent with results from previous molecular biology studies 
on synaptic pruning and synaptic density changes with age 
[32, 33]. The changes in myelination with age is another 
factor that needs to be considered [34]. Postmortem and neu-
roimaging studies have suggested a quadratic relationship 
between myelination status and age, which might impact 
synaptic changes [35, 36]. Due to the age difference between 
the two groups, objective analyses, such as statistical para-
metric mapping (SPM), could not be conducted. As a result, 
we performed only a relatively subjective visual assessment 
and semiquantitative analysis/comparison between the child 
patient group and young adult control group. Further analy-
sis will be conducted in future in-depth studies as we con-
tinue our investigation in this patient population.

Conclusions

To the best of our knowledge, this is the first in vivo study to 
investigate SV2A in the lesions of living people with FCD 
II by PET imaging with the radioligand 18F-SynVesT-1. 
18F-SynVesT-1 PET demonstrated a higher accuracy than 
MRI for the localization of FCD II lesions, with a more 
restricted pattern of SV2A abnormality than that of hypo-
metabolism detected by 18F-FDG PET. In conclusion, SV2A 
PET imaging may provide a more specific localization of 
lesions in FCD II, and in presurgical evaluation and plan-
ning, it can serve as a complementary measure of the epi-
leptogenic substrate in addition to the established clinical 
assessments.
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