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Abstract
Purpose Inter-subject covariance of regional 18F-fluorodeoxyglucose (FDG) PET measures  (FDGcov) as proxy of brain 
connectivity has been gaining an increasing acceptance in the community. Yet, it is still unclear to what extent  FDGcov is 
underlied by actual structural connectivity via white matter fiber tracts. In this study, we quantified the degree of spatial 
overlap between  FDGcov and structural connectivity networks.
Methods We retrospectively analyzed neuroimaging data from 303 subjects, both patients with suspected neurodegenerative 
disorders and healthy individuals. For each subject, structural magnetic resonance, diffusion tensor imaging, and FDG-PET 
data were available. The images were spatially normalized to a standard space and segmented into 62 anatomical regions 
using a probabilistic atlas. Sparse inverse covariance estimation was employed to estimate  FDGcov. Structural connectivity 
was measured by streamline tractography through fiber assignment by continuous tracking.
Results For the whole brain, 55% of detected connections were found to be convergent, i.e., present in both  FDGcov and 
structural networks. This metric for random networks was significantly lower, i.e., 12%. Convergent were 80% of intralobe 
connections and only 30% of interhemispheric interlobe connections.
Conclusion Structural connectivity via white matter fiber tracts is a relevant substrate of  FDGcov, underlying around a half 
of connections at the whole brain level. Short-range white matter tracts appear to be a major substrate of intralobe  FDGcov 
connections.
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Introduction

In the last decade, brain connectivity has evolved as a hot 
topic of neuroscience. Along with functional magnetic reso-
nance imaging (fMRI), positron emission tomography (PET) 

with 18F-fluorodeoxyglucose (FDG) represents a valuable 
tool for exploring neural function in vivo. Of note, FDG-
PET can also provide information on brain connectivity. The 
term metabolic connectivity refers to interrelations between 
metabolic (FDG) measurements in different brain regions 
[1]. This approach was shown to yield valuable knowledge 
on substrates of cognitive reserve [2, 3], working memory 
[4, 5], impulse control [6], as well as on pathophysiology This article is part of the Topical Collection on Neurology.
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and diagnosis of neurodegenerative [7–10] and non-neuro-
degenerative disorders [11, 12]. However, it is still unclear 
how MC is related to actual structural connectivity, i.e., con-
nectivity through white matter fiber tracts. The latter can be 
measured in the living human brain using diffusion tensor 
imaging (DTI). Notably, a few DTI studies have investigated 
structural substrates of functional connectivity from fMRI 
data. Measures of structural and functional connectivity 
were found to be interrelated, and structurally connected 
cortical regions exhibited a stronger and more consist-
ent functional connectivity than structurally unconnected 
regions [13]. The goal of the present study was to quantify 
the degree of spatial overlap between  FDGcov and structural 
connectivity networks. We now prefer the term  FDGcov, 
inter-subject covariance of regional FDG-PET measures, 
over the term metabolic connectivity to avoid a confusion 
with connectivity measures from dynamic/functional PET 
acquisitions [14]. To this end, we analyzed data from a large, 
heterogeneous pool of 303 subjects, both patients with sus-
pected neurodegenerative disorders and healthy individuals.

Material and methods

Subjects

We retrospectively analyzed a database of healthy indi-
viduals and subjects who were referred to our department 
as part of a diagnostic work-up for a suspected neurode-
generative disorder. In total, 303 subjects whose structural 
MRI (sMRI), DTI, and FDG-PET data were available were 
included. The cohort consisted mainly of patients with mild 
cognitive impairment [15] and dementia [16], as well as 
patients with another or unspecified syndrome diagnosis, 
and healthy individuals. Healthy subjects were recruited 
mainly via advertisements in local newspapers. They had 
no history and symptoms of psychiatric and neurologic dis-
orders, no complaints about cognitive impairment (n = 36) or 
complaints that were not confirmed on neuropsychological 
testing (n = 4). Demographic data of the cohort according to 
a syndrome diagnosis are summarized in Table 1.

The study was carried out in accordance with the latest 
version of the Declaration of Helsinki, after the consent pro-
cedures had been approved by the local ethics committee. 
Written informed consent was obtained from all subjects or 
their legal representatives.

Image data acquisition

Imaging data were acquired on a fully integrated Siemens 
Biograph mMR (Siemens Medical Solutions, Knoxville, 
USA) PET/MR system [17]. PET data were acquired in list 
mode over 15 min, 30 min after an intravenous injection 

of approximately 185 MBq 18F-FDG. A Dixon T1 MRI 
sequence was run in parallel with PET to ensure optimal 
temporal and regional correspondence between two modali-
ties for later attenuation correction. DTI data were acquired 
using a fast gradient echo-planar imaging sequence with a 
TE of 82 ms, a TR of 12,100 ms, and a flip angle of 90°. 
Per subject, 30 volumes with b = 800 s/mm2 and distinct 
diffusion-encoding directions and one volume with b = 0 s/
mm2 were acquired. Images had a field of view of 208 mm 
with 130 × 130 image matrix and 2 mm slice thickness. A 
high-resolution structural MRI sequence (T1-weighted 
MPRAGE) was acquired for anatomical correspondence. 
PET emission data were corrected for random coinci-
dences, dead time, scatter, and attenuation. Resulting sino-
grams were reconstructed using a filtered back-projection 
algorithm (FORE + FBP, Siemens syngo MR B18P) with a 
5-mm Hamming filter into 192 × 192 × 128 volumes at a field 
of view of 450 mm. The voxel size was 3.7 × 3.7 × 2.3  mm3.

Preprocessing of image data

The accuracy of the alignment between MRI and PET 
images was visually inspected in PMOD (PMOD Technolo-
gies LLC, CH). The MPRAGE images were then spatially 
normalized to the Montreal Neurological Institute space [18] 
using a simultaneous tissue segmentation/spatial normali-
zation tool in SPM12 (Wellcome Trust Centre for Neuro-
imaging, UCL, London). Resulting gray matter maps were 
thresholded with a probability value of 0.5. Transformation 
matrices were then applied to corresponding DTI and PET 
images. No smoothing was applied. The spatially normalized 
PET images were then parcellated into 62 non-overlapping 
regions (region volume ≥ 1  cm3) according to the Hammers 
atlas [19]. The PET images were corrected for partial-vol-
ume effects using a voxel-wise approach [20] implemented 
in PETPVC (Dept. of Nuclear Medicine, UCL). The regional 
values were scaled using proportional scaling to the mean 
value of the whole gray matter (segmented from T1 MRI). 
Although this approach is not optimal for univariate analyses 
[21–23], it may provide more stable results in multivariate 

Table 1  Demographic characteristics

Data on age and MMSE are given as mean ± standard deviation. MCI, 
mild cognitive impairment; MMSE, mini-mental state examination. 
*MMSE score was not available in 22 healthy subjects, 3 patients 
with MCI and in 40 patients with other diagnoses

Group N Female, % Age MMSE*

Healthy 40 42.5 58.7 ± 11.1 n.a
MCI 125 42.4 66.6 ± 9.5 26.7 ± 1.6
Dementia 89 56.2 67.1 ± 9.2 20.1 ± 4.9
Others 49 34.7 63.7 ± 12.4 n.a
Total 303 45.2 65.2 ± 10.5 –
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analyses as those utilized here ([24], own unpublished data). 
DTI volumes were corrected for eddy currents and head 
motion using FSL [25]. The general processing of the data 
was performed using Python programming language with 
the nipype library [26, 27].

FDGcov network

A sparse inverse covariance estimation (SICE) method 
established in our previous studies [5, 8] was employed 
to calculate  FDGcov. The FDG PET data are represented 
as X ∈ ℝ

n×m , where m denotes the number of anatomical 
regions and n is the number of scanned subjects. Thus, 
�i, 1 ≤ i ≤ n is a m-dimensional vector for subject i and 
is assumed to follow a multivariate Gaussian distribu-
tion �i ∼ N(�,�) [8], where � ∈ ℝ

m is a mean vector, and 
� ∈ ℝ

m×m is an underlying covariance matrix. A sample 
covariance matrix of the FDG data is �̂ , and the inverse 
covariance matrix is estimated as following:

where λ is a regularization parameter that regularizes the 
sparsity, and ‖‖1 is the L1 norm. This is a LASSO model 
[28] which keeps � sparse: the regularization parameter λ 
directly controls how many connections will be identified, 
i.e., how many entries will be nonzero. This estimated sparse 
inverse covariance matrix � is treated as  FDGcov network 
thereafter. Only positive entries in the sparse connectivity 
pattern were considered as connections, resulting in binary 
matrices [29].

Structural connectivity network

Camino [30] was employed to fit the diffusion tensors with 
logistic regression [31] and to perform streamline tractogra-
phy through fiber assignment by continuous tracking (FACT, 
[32]). The algorithm was seeded with all white-matter voxels 
and stopped when reaching a voxel with a fractional anisot-
ropy (FA) value of less than 0.2 or when the curvature of a 
tract exceeded 50° over 5 mm [33, 34]. From the tractogra-
phy results, the mean fractional anisotropy (FA) of a given 
fiber tract (between the ROIs above, if detected) across sub-
jects was implemented in structural connectivity matrices.

Network efficiency

Network efficiency (NE) analyses were conducted to 
define a reasonable number of connections for quantifica-
tion of the network overlap. NE characterizes information 
transfer in a network [35]. In particular, local efficiency 
(LE) describes a network’s resistance to failure on a small 
scale, e.g., when a node is removed. As compared to global 

max
�

(logdet� − tr�̂� − �‖�‖1)

efficiency, LE is not proportional to the number of connec-
tions [36], making it more suitable for the above purpose. 
The network was modeled as a simple graph of m vertices 
(node) and nconnected edges (connections). Herewith, a node 
in the network corresponds to a specific anatomical region. 
For two network nodes k and l , the shortest path length dkl 
is the number of edges on the shortest path. For each node 
i, a subnetwork Gi is defined as a neighborhood subgraph 
of this node. The efficiency of the subnetwork Gi is defined 
as average inverse of the shortest path lengths dkl in this 
subnetwork. The local efficiency Elocal then averages the 
efficiencies across the subnetworks of all nodes:

LE is a scaled measure ranging from 0 to 1, with a value 
of 1 indicating maximum LE in the network. Conceptually, 
a high LE represents an effective information transfer within 
their immediate local communities, enabling effective infor-
mation processing in the network. The LE of a comparable 
random network was employed as reference. Specifically, 
random connectivity matrices with the same number of con-
nections and degree of distribution were generated using a 
random rewiring method [35, 37]. Given that the LE from 
a random matrix increases with the number of connections 
[38], the genuine LE (gLE) was employed to eliminate the 
influence of random effects. It was defined by subtracting 
the expected LE of the randomly rewired networks (mean 
of bootstrapping results) from the original LE of the cor-
responding  FDGcov and structural networks. Following the 
theory of signal processing [39], we selected a cutoff value 
at half maximum of gLE to define a focus window for the 
number of connections (full-width at half maximum) for 
further analyses. To assess the stability of results across dif-
ferent sampling populations, 100 bootstrap samples were 
generated by random resampling with replacement.

Overlap between FDGcov and structural networks

Similar to previous studies, sparsity-based thresholding 
was employed to restrict the number of connections in both 
networks [35]. Networks with the same number of connec-
tions nconnected according to the NE analysis were generated 
for pattern comparison. A threshold at tract-averaged FA 
values was determined such that only the nconnected strong-
est structural connections were left. For  FDGcov, a scalar 
regularization parameter λ of SICE was chosen such that 
nconnected entries were nonzero above the diagonal of the 
resulting inverse covariance matrix [29]. Diagonal ele-
ments, representative of self-connections, were ignored 
to increase the robustness of the regularization.

LE(G) =
1

m

∑

i∈G

1

L(Gi)(L(Gi) − 1)

∑

k∈Gi

∑

k≠l∈Gi

1

dkl
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A convergence ratio (CR) is defined by dividing the 
number of the pairs which are connected in both networks 
( nconvergent ) by the number of present connections ( n

connected
),

This is equivalent to sensitivity in binary classification 
if the presence of a connection is treated as positive class 
and is also equivalent to so called Dice similarity coef-
ficient. For individual hemispheres, CR was calculated at 
an unequal number of connections in two networks, and 
it is adapted to the following expression:

where nmetabolic is the number of functional connections 
and nstructural is the number of structural connections. CR 
was analyzed as a function of the number of connections 
nconnected. As reference, randomly rewired matrices of the 
 FDGcov and structural networks with the same number 
of connections were generated 100 times. Figure  1 
summarizes the pipeline of the PET and DTI image 
analyses.

CR =
nconvergent

nconnected

CR =
2nconvergent

nmetabolic + nstructural

Results

Figure 2 shows LE of  FDGcov and structural networks at 
different numbers of connections. Both networks appeared 
to have a significantly higher LE compared to the randomly 
generated networks  (FDGcov network: p = 1.3 ×  10−178 
and structural network: p = 9.4 ×  10−201). The  FDGcov net-
work had a higher variation in the bootstrapped networks 
(p = 2.4 ×  10−174) as well as lower LE (p = 2.6 ×  10−158) than 
the structural network. In the range of 65–338 connections, 
both  FDGcov and structural networks had a gLE above the 
half of maximum, such that this range was used for visuali-
zation purposes (Fig. 3). A plateau (> 90% of the maximum) 
of the cumulative gLE of  FDGcov and structural connectivity 
corresponded to the range of connections 128–275 (Fig. 2C). 
Thus, we used this range in further quantitative analyses.

CR of the networks was significantly higher 
(p = 4.9 ×  10−321) than that by chance (Fig. 3). In the plateau 
window, i.e., at 128–275 connections, the average CR was 
0.54 ± 0.03 (0.47–0.57), while CR of the random networks 
was 0.11 ± 0.03 (0.01–0.21).. The results of bootstrapping 
did not perfectly overlap with the real data results. That is, 
in Fig. 3, the red line does not exactly follow the solid blue 
line, likely due to numerical instability of SICE in the pro-
cess of resampling. Figure 4 depicts matrices of  FDGcov and 
structural networks at nconnected = 215 , i.e., the maximum of 

Fig. 1  Pipeline of PET and DTI data analyses
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cumulative gLE (Fig. 2C). These networks are depicted in 
Fig. 5. The proportion of interhemispheric connections was 
23% (n = 49) and 15% (n = 32) in  FDGcov and structural net-
works, respectively. Among intrahemispheric connections, 
the proportion of intralobe connections was 50% (n = 83) 
and 45.9% (n = 84), respectively. Quantitative results for the 
spatial overlap are summarized in Table 2. CR for intralobe 

and interlobe connections was 0.80 and 0.37, respectively 
(p = 6 ×  10−16, Wilcoxon rank test). There was no remarkable 
difference between the hemispheres (Supplemental Table 2). 
CR values for random networks are summarized in Supple-
mental Table 3. For the whole brain CR was 0.12.

Discussion

The present study examined the degree of spatial overlap 
between  FDGcov and structural connectivity. The overlap 
appeared to be significantly higher for the  FDGcov and struc-
tural networks than for random ones. At the whole brain 
level CR was 55%. In other words, around a half of detected 
 FDGcov connections in the brain appear to be underlied by 
white matter tracts. Furthermore, 80% of intralobe  FDGcov 
connections that are supposed to reflect short-range con-
nections [40] were found to have a structural substrate. 
These results support  FDGcov as a sovereign index of brain 
connectivity.

While a few groups have studied the relationship 
between fMRI funct ional  and DTI st r uctural 
connectivity [13, 41, 42], there are still no quantitative 
data on their spatial overlap. Nevertheless, in line with 
our data, strong intrahemispheric [43] and weaker 
transmodal (e.g., interhemispheric) structure–function 
correlations [44] have been reported. Moreover, a 
so-called spatial proximity was suggested to be a 
major determinant of structure–function relationships 
in diffusion imaging and fMRI data [45]. We found 

Fig. 2  Network efficiency: Local efficiency for  FDGcov (A) and 
structural (B) connectivity; real data—red line, results of bootstrap-
ping—blue line, and results of randomly generated networks—black 
line. C Genuine local efficiency for  FDGcov—green line, structural 
connectivity—red line, and cumulative (summed)—black line. The 

range of half maximum of  FDGcov and structural connectivity  net-
works is illustrated as dashed lines in green and red, respectively. The 
black dashed line illustrates the 0.9 of maximum total genuine local 
efficiency, reflecting the optimal number of connections for both net-
works

Fig. 3  Results of similarity analysis of structural connectivity and 
 FDGcov. Values derived from the real data are indicated as red line; 
bootstrapping results—as blue line and metrics of randomly rewired 
networks—as black line
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Fig. 4  Matrix visualizations of connectivity between 62 regions with 
215 connections.  FDGcov (green), structural (red), and convergent 
(black) connections. Boxes capture anatomically related regions, i.e., 

within (from top to the bottom) the frontal, temporal, parietal, and 
occipital lobes, subcortical and limbic regions. For regional labels see 
Supplemental Table 1

Fig. 5  Visualization of  FDGcov 
(green), structural (red), and 
convergent (black) connections
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that the proportion of different types of  FDGcov 
connections followed the order of structural ones, 
i.e., intrahemispheric-intralobe > intrahemispheric-
interlobe > interhemispheric-interlobe. These results are 
in line with DTI studies. In fact, short-range connections 
were shown to by far outnumber long-range connections 
passing through corpus callosum [46, 47]. Further, 
structural connections within an anatomical region 
were found to be more common than those between 
regions, followed by interhemispheric connections [48]. 
However, we detected somewhat more interhemispheric 
connections in the PET than in the DTI data, i.e., 23% vs. 
15%. This is likely related to differences in connectivity 
modeling. While tractography captures connections 
underlying an anatomical network of axonal fibers 
[49],  FDGcov modeling “detects” indirect connections 
if two regions have a similar level of FDG uptake [29, 
50]. Given a relative symmetry in cerebral glucose 
metabolism [51, 52], there is a substantial likelihood 
that homotopic regions of two hemispheres appear 
to be connected in FDG-PET data, even though being 
unconnected anatomically. A similar observation was 
made by numerous fMRI studies, where strong functional 
connectivity was found between homotopic regions that 
are known to be unconnected anatomically (for a review, 
see Suárez et al. [53]).

While indirect connections in FDG-PET data may be con-
sidered as false positive, false negative connections are likely 
in DTI data. Specifically, deterministic tractography, as used 
in the present study, terminates streamlines in voxels with 
sub-threshold FA values. Hence, it was suggested that this 
tracking approach might miss particularly weak long-range 
connections (i.e., low FA value at a voxel level) [46, 54]. In 
the same vein, Sinke et al. reported a relatively high rate of 
false negative tractography reconstructions for long-range 
connected cortical areas, as validated against neuronal tracer 
connectivity measures in the rat [55]. Similarly, post-mortem 
invasive tracer studies in macaques found that false nega-
tives exhibited a significantly larger connection distance than 
false positives or true positives [56]. In the present study, the 
Euclidean distance between any couple of regions of inter-
est from the Hammers atlas negatively correlated with the 
number of streamlines between the same regions (data not 
shown), supporting the above notion. Although probabilistic 

tractography detects so-called kissing fibers in a more sensi-
tive fashion, it seems not advantageous regarding long-range 
connections [57]. Future tractography studies should test a 
range of FA thresholds [55].

As a major study limitation, we utilized a heterogene-
ous cohort that included both neurodegenerative and non-
neurodegenerative entities. An unverified assumption behind 
this pragmatic approach is that a disease equivalently affects 
 FDGcov and structural connectivity. Still, the overlap might 
differ in the healthy state and in a disease. Further studies 
should address the impact of data heterogeneity and sample 
size on estimates of  FDGcov in general and on the overlap 
between  FDGcov and structural connectivity in particular. 
Moreover, a differentiated analysis at the lobe level may pro-
duce novel insights into the structural substrates of  FDGcov.

Conclusion

Structural connectivity via white matter tracts is a relevant 
substrate of  FDGcov, underlying around a half of connections 
at the whole brain level. Short-range white matter tracts are 
a major substrate of intralobe  FDGcov connections. The pre-
sent study represents the first valuable reference on struc-
tural substrates of  FDGcov, contributing to establishment of 
 FDGcov as a sovereign index of brain connectome.
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