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Abstract
Purpose To evaluate radiomic features extracted from standard static images (20–40 min p.i.), early summation images 
(5–15 min p.i.), and dynamic  [18F]FET PET images for the prediction of TERTp-mutation status in patients with IDH-
wildtype high-grade glioma.
Methods A total of 159 patients (median age 60.2 years, range 19–82 years) with newly diagnosed IDH-wildtype 
diffuse astrocytic glioma (WHO grade III or IV) and dynamic  [18F]FET PET prior to surgical intervention were 
enrolled and divided into a training (n = 112) and a testing cohort (n = 47) randomly. First-order, shape, and 
texture radiomic features were extracted from standard static (20–40 min summation images;  TBR20–40), early 
static (5–15 min summation images;  TBR5–15), and dynamic (time-to-peak; TTP) images, respectively. Recur-
sive feature elimination was used for feature selection by 10-fold cross-validation in the training cohort after 
normalization, and logistic regression models were generated using the radiomic features extracted from each 
image to differentiate TERTp-mutation status. The areas under the ROC curve (AUC), accuracy, sensitivity, 
specificity, and positive and negative predictive value were calculated to illustrate diagnostic power in both the 
training and testing cohort.
Results The TTP model comprised nine selected features and achieved highest predictability of TERTp-mutation with an 
AUC of 0.82 (95% confidence interval 0.71–0.92) and sensitivity of 92.1% in the independent testing cohort. Weak predic-
tive capability was obtained in the  TBR5–15 model, with an AUC of 0.61 (95% CI 0.42–0.80) in the testing cohort, while no 
predictive power was observed in the  TBR20–40 model.
Conclusions Radiomics based on TTP images extracted from dynamic  [18F]FET PET can predict the TERTp-mutation status 
of IDH-wildtype diffuse astrocytic high-grade gliomas with high accuracy preoperatively.
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Introduction

Mutations in the telomerase reverse transcriptase promoter 
(TERTp), leading to telomerase activation and lengthened 
telomeres, play an important role in the formation of brain 
cancer and individual prognosis [1–3]. In diffuse astrocytic 
high-grade gliomas without mutation of the isocitrate dehydro-
genase gene (IDH-wildtype), TERTp mutations are reported 
to be associated with poor overall survival [4–6]. Molecular 
genetic analysis of the TERTp-mutation status has therefore 
gained increasing attention in the clinical routine diagnosis of 
IDH-wildtype diffuse astrocytic gliomas and will be included 
in the upcoming glioma WHO classification [7–9].

Molecular imaging using positron emission tomography 
(PET) with radiolabelled amino acids such as O-(2-[18F]-
fluoroethyl)-L-tyrosine  ([18F]FET) is a useful tool for the 
characterization and evaluation of primary brain neoplasms 
[10–12], and its application in the clinical management 
of brain tumour patients has been recommended by the 
Response Assessment in Neuro-Oncology (RANO) Working 
Group [13–17]. While static image data (standard 20–40 min 
summation images) are particularly used for the delineation 
of the tumour extent, the assessment of dynamic  [18F]FET 
PET data has been shown to provide additional informa-
tion about tumour biology [18]. More aggressive gliomas 
(i.e. high-grade gliomas and/or IDH-wildtype gliomas) 
were shown to be characterized by a high tracer uptake 
within the first 5–15 min post injection (p.i.) with subse-
quent curve decrease, while less aggressive gliomas (i.e. low 
grade gliomas and/or IDH-mutant gliomas) typically show 
a slowly increasing  [18F]FET uptake with highest values in 
the later time frames [12, 19, 20]. As the early peak uptake 
in aggressive gliomas is missed in the standard 20–40 min 
p.i. summation images, it does not surprise that the maximal 
tumour-to-background ratio  (TBRmax) evaluation obtained 
in early summation images (5–15 min p.i.) was reported 
to perform better than the standard static  TBRmax values 
(20–40 min p.i.) for the differentiation between low-grade 
and high-grade gliomas [17], which led to the suggestion to 
include these early summation images for a better glioma 
characterization. Another interesting parameter derived 
from dynamic  [18F]FET PET is the minimal time-to-peak 
 (TTPmin), which is extracted from the time-activity-curves 
and was reported to provide prognostic information [21]. 
Interestingly, an early  TTPmin was associated with an aggres-
sive disease course in newly diagnosed gliomas and was 
able to predict an IDH-wildtype status [22, 23]. Yet, in our 
recently published study investigating  [18F]FET uptake 
characteristics in TERTp mutant and TERTp wildtype glio-
blastomas, neither the standard  TBRmax as static parameter 
nor  TTPmin as dynamic parameter were associated with the 
TERTp-mutation status [24].

In recent years, radiomics have been increasingly investi-
gated as a promising non-invasive tool for accurate diagnosis 
and prognosis assessment by converting medical images into 
high-dimensional quantitative image features and establish-
ing predictive models [25–32]. However, radiomics have not 
been applied for the detection of TERTp mutations on  [18F]
FET PET images so far. Therefore, the aim of this study 
was to evaluate radiomic features extracted from standard 
static images (20–40 min p.i.), early summation images 
(5–15 min p.i.) as well as dynamic  [18F]FET PET images 
for the prediction of the TERTp-mutation status in patients 
with newly diagnosed IDH-wildtype diffuse astrocytic high-
grade glioma.

Materials and methods

Patients

Patients with primary diagnosis of a glioma who had 
received a pre-treatment dynamic  [18F]FET PET scan at 
the Department of Nuclear Medicine of the LMU Munich 
between December 2005 and June 2016 were screened for 
this retrospective study. Inclusion criteria were (1) neuro-
pathologically confirmed IDH-wildtype diffuse astrocytic 
gliomas (WHO grade III or IV) according to the updated 
2016 WHO classification [33], (2) availability of the TERTp-
mutation status, and (3) pre-treatment dynamic  [18F]FET 
PET scan (ECAT EXACT HR + , Siemens Healthineers, 
Inc., Erlangen, Germany Siemens Medical Systems, Inc., 
Erlangen, Germany).  [18F]FET-negative gliomas (tumour-
to-background ratio, TBR < 1.6) were excluded. All patients 
had given written informed consent prior to the PET scan as 
part of the clinical routine. The retrospective analysis of PET 
imaging data was approved by the institutional ethics com-
mittee (604–16). A total of 61% of the investigated patients 
(97/159) have been evaluated in a previous study [24].

Histopathology and molecular genetic analysis

Histopathology and molecular genetic analyses were per-
formed at the Institute of Neuropathology, LMU Munich, 
Germany. All patients initially classified according to 
the 2007 WHO brain tumour classification [34] were re-
classified according to the 2016 WHO classification [33]. 
The IDH-mutation status and TERTp-mutation status were 
evaluated according to clinical standard protocols [35, 36].

[18F]FET PET imaging

[18F]FET PET scans were performed at the Department of 
Nuclear Medicine, LMU Munich, Germany. Images were 
acquired by using an ECAT EXACT HR + PET scanner 
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(Siemens Healthineers, Inc., Erlangen, Germany) with the 
standard protocol [11, 37]. Exactly 180 MBq of  [18F]FET 
were injected after a 15-min transmission scan with a 68Ge 
rotating rod source. After tracer injection up to 40 min post 
injection in 3-D mode consisting of 16 frames (7 × 10 s, 
3 × 30 s, 1 × 2 min, 3 × 5 min, and 2 × 10 min) with a recon-
structed voxel size of 2.03 × 2.03 × 2.43  mm3 and matrix size 
of 128 × 128 × 63, dynamic emission recording was finished. 
Two-dimensional filtered back-projection reconstruction 
algorithm using a 4.9-mm Hann Filter was applied for image 
reconstruction, then corrected for attenuation, decay, dead 
time, and random and scattered coincidences. When relevant 
motion was visible in dynamic PET data, a frame-wise cor-
rection was performed by using PMOD fusion tool (version 
3.5, PMOD Technologies, Zurich, Switzerland) after frame-
wise checking for motion.

Segmentation of tumour volumes and brain 
background

First, a background activity was extracted from a large cres-
cent-shaped volume of interest (VOI) in the contralateral 
healthy hemisphere as published previously [38]. For tumour 
segmentation, a VOI was drawn using a TBR-threshold of 
1.6 in static 20–40 min p.i. summation images as suggested 
by Pauleit et al. [39]. All segmentations were processed 
within the PMOD View tool (version 3.5, PMOD Technolo-
gies, Zurich, Switzerland).

Image normalization and TTP image generation

We used the in-house developed software described previ-
ously by Kaiser et al. [40] (C +  + with integration of the 
ROOT data analysis framework, version 6.22/08, Cern, 
Switzerland and ITK segmentation and registration toolkit 
4.13.3, National Library of Medicine) to generate voxel-wise 
parametric images. Then we normalized the image values 
with the mean background value derived from each image by 
using the VOI of background to generate early 5–15 min p.i. 
 (TBR5–15) and late 20–40 min p.i.  (TBR20–40) TBR images. 
For TTP images, time-activity curves (TAC) were extracted 
from each voxel, which were then classified according to the 
time frame reaching the peak uptake (i.e. (1) < 5 min, (2) 
5–10 min, (3) 10–15 min, (4) 15–20 min, (5) 20–30 min, and 
(6) 30–40 min). To avoid influence from early blood flush, 
TTP analyses did not include the first 2.7 min p.i. [40]. In 
case of a positive late slope (15–40 min p.i.), the TTP was 
always assigned to group 6.

Radiomic feature extraction

Radiomic features from parametric images were extracted 
with PyRadiomics (version 3.0.1) [41] as introduced 

previously by Kaiser et al. [42], and complied with the Imag-
ing Biomarker Standardization Initiative (IBSI) guidelines 
[43]. Before extraction, images were resampled to isotropic 
voxels using linear interpolation in PyRadiomics (size 
2.03 × 2.03 × 2.03 mm 3). Classes of features extracted from 
 TBR5–15,  TBR20–40, and TTP images included first-order fea-
tures, shape features, and texture features. No image filters 
were used. The chosen fixed intensity bin size was set to the 
average interquartile range divided by 4, which led to 0.18 
for  TBR5–15 images and 0.13 for  TBR20–40 images [42, 44]. 
As the smallest time frame duration considered in the TTP 
categories was 5 min, this was used as the fixed bin width 
for radiomics calculation of TTP images.

Feature selection

Before feature extraction, a stratified random split was 
used to assign 70% of the patients to the training cohort 
(n = 112) and the remaining 30% to the testing cohort 
(n = 47), with a balanced distribution of TERTp-wildtype 
and TERTp-mutation.

Features were standardized as follows: for each feature, 
we calculated the mean value and the standard deviation. 
The mean value was subtracted from each individual value, 
which was then divided by the standard deviation. Feature 
normalization was computed only in the training cohort and 
then applied on the testing cohort. Since the number of fea-
tures was large, we compared the similarity of each feature 
pair. If the Pearson correlation coefficient (PCC) value of 
the feature pair was larger than 0.99, we removed one of 
them. After this process, the number of the features was 
reduced and each feature was independent to each other. 
The recursive feature elimination (RFE) based on logistic 
regression classifier was performed to reduce redundant fea-
tures and select potential TERTp-mutation related features 
[45]. Considering the imbalance of comparison groups, we 
performed the weighted logistic regression in the ‘balanced’ 
mode, which gives higher weight to the minority class and 
lower weight to the majority class and therefore automati-
cally adjusts weights inversely proportional to class frequen-
cies in the input data [46]. Each iteration removes a feature 
which is considered least important. After stratified split-
based 10-fold cross-validation, the area under the receiver 
operating characteristic curve (AUC) of the model in the 
training cohort was used to determine the optimal number 
of features.

Model construction and testing

Logistic regression (LR) models were built to predict the 
TERTp-mutation status by fitting the selected radiomic fea-
tures. Each model was generated by using only the radiomic 
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features extracted from each image (i.e.  TBR5–15,  TBR20–40, 
and TTP images) separately. According to the coefficients 
of selected features generated by the LR models [47], the 
risk probability of TERTp-mutation was calculated by the 
following formula:

x is the value of selected features, � is the coefficient of 
selected features, and �0 represents the intercept. In case of 
P > 0.5 , TERTp-mutation status was considered as positive 
by the LR model.

Model testing was applied to the independent testing 
cohort, which was not involved in the process of model 
training. The workflow of the process is presented in Fig. 1.

Statistical analysis

To evaluate the model performance, receiver operating char-
acteristic curve (ROC) analysis was performed in the train-
ing and testing cohort. The AUC was calculated as quanti-
tative measure to illustrate diagnostic power. The accuracy, 
sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV) were calculated. 95% con-
fidence intervals (CI) were calculated by using a non-para-
metric bootstrap method, which was repeated 1000 times to 
get a bootstrap distribution of the results.

Categorical variables or continuous variables were 
reported as numbers and percentages or as mean and stand-
ard deviation. Categorical variables were compared by the 

P(y = 1|x;�) =
1

1 + e−�
Tx

χ2 test, and continuous variables were compared by the 
Mann–Whitney U test. P < 0.05 were considered statistically 
significant. Statistical analyses were programmed in Python 
(v. 3.8.5; https:// www. python. org/).

Results

Patient characteristics

A total of 159 patients (median age, 60.2 years; range, 
19–82 years) were enrolled in this study. Exactly 31 patients 
(19.50%) were diagnosed with TERTp-wildtype, and 128 
patients had TERTp mutation. The clinical characteristics 
are presented in Table 1. There were no significant differ-
ences between the training and testing cohorts with regard 
to age, sex, WHO grade, and TERTp mutation status, with 
TERTp-wildtype rates of 19.64% and 19.15%, respectively.

Radiomic feature extraction and selection

In this study, 107 radiomic features of candidates were gen-
erated from standard static images (20–40 min p.i.), early 
summation images (5–15 min p.i.), and dynamic  [18F]FET 
PET images respectively, including first-order statistics, 
shape-based features, and texture features. After PCC pro-
cess, 80  TBR20–40 features, 83  TBR5–15 features, and 91 TTP 
features were retained. For the  TBR20–40 model, based on the 
AUC of the 10-fold cross-validation on the training cohort, 

Fig. 1  The workflow of process. TBR tumour-to-background ratio, TTP time-to-peak, RFE recursive feature elimination, LR logistic regression, 
AUC area under the receiver operating characteristic curve, PPV positive predictive value, NPV negative predictive value

https://www.python.org/


4419European Journal of Nuclear Medicine and Molecular Imaging (2021) 48:4415–4425 

1 3

14 features were finally selected to fit the LR model after 
performing the RFE method. For the  TBR5–15 model and 

the TTP model, 9 features and 10 features were selected for 
inclusion in the LR model, respectively (Fig. 2).

Table 1  Clinical characteristics 
of the patients

Data are means ± standard deviations or numbers of patients with percentages in parentheses. P value was 
derived from the univariate association analyses between each clinical parameter. Calculated by using the 
independent sample t test for continuous variables and the χ2 test for categoric variables

Training cohort (n = 112) Testing cohort (n = 47)

TERTp-mutation TERTp-wildtype TERTp-mutation TERTp-wildtype P

Characteristic (n = 90) (n = 22) (n = 38) (n = 9) 0.8958
Age, years 58.1 ± 12.3 59.2 ± 11.2 0.3699
Sex

  Female 45 (40.2%) 17 (54.8%) 0.1449
  Male 67 (59.8%) 14 (45.2%)

WHO grade
  III 39 (34.8%) 14 (29.8%) 0.5389
  IV 73 (65.2%) 33 (70.2%)

Fig. 2  The feature selection process of the RFE method. Each itera-
tion removes a feature that is considered least important and corre-
sponds to a 10-fold cross-validation. After 10-fold cross-validation, 
the AUC of the model in the training cohort was used to determine 
the optimal number of features. The minimum AUC of feature num-

ber was selected. a  TBR5–15 model, b  TBR20–40, and c TTP model; 
9, 14, and 10 features were selected respectively. RFE recursive fea-
ture elimination, AUC area under the receiver operating characteristic 
curve
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Diagnostic Validation of the  TBR20–40 model,  TBR5–15 
model, and TTP model

According to the above-mentioned formula, the risk prob-
abilities of TERTp-mutation were calculated. The coef-
ficients of selected features in the  TBR20–40 model and 
 TBR5–15 model are shown in Table S1. The coefficients of 
selected features in the TTP model are shown in Table 2.

No predictive power was observed in the  TBR20–40 
model with an AUC of only 0.49 (95% CI 0.30–0.69) in the 
testing cohort (AUC of 0.90 in the training cohort (95% CI 
0.85–0.95); see Fig. S1). The  TBR5–15 model demonstrated 
weak predictive capability to predict a TERTp-mutation 
(Fig. 3a, b), with an AUC of 0.61 (95% CI 0.42–0.80) in 
the testing cohort and an AUC of 0.80 (95% CI 0.71–0.89) 
in the training cohort. The TTP model showed the strong-
est predictive power and achieved an AUC of 0.82 (95% 
CI 0.71–0.92) and 0.90 (95% CI 0.84–0.95) in the testing 
cohort and training cohort, respectively (Fig. 3c, d).

Detailed information about the performance of each 
model is shown in Table 3.

Discussion

Our study showed that radiomics based on dynamic  [18F]
FET PET data can reliably predict the TERTp-mutation 
status of IDH-wildtype diffuse astrocytic high-grade glio-
mas. Best predictability was reached using the TTP model 
derived from dynamic PET, and weak predictive capabil-
ity was obtained with radiomics based on early summation 
images (5–15 min p.i.), while no reliable information about 
the TERTp-mutation status was possible based on the stand-
ard summation images (20–40 min p.i.).

Previous studies have shown that patients with IDH-
wildtype TERTp-mutant glioblastoma have a significantly 

shorter progression free and overall survival compared to 
those with TERT-wildtype status. Therefore, TERTp-muta-
tion status is now considered to be an important diagnostic 
and prognostic factor in primary glioblastomas and espe-
cially in patients with IDH-wildtype glioma [3, 5, 8, 9, 48]. 
TERTp-mutations indicate tumours that require aggressive 
and immediate treatments [3]. Hence, a preoperative tool 
for the prediction of a TERTp-mutation would be useful for 
early decision making and clinical management of patients 
with suspected glioma.

Several studies have analyzed the value of MRI based 
radiomics to predict the TERTp-mutation status in brain 
tumour patients [49–51]. Although these studies reported to 
achieve high accuracy values in the range of 79.88–93.80%, 
only WHO grade II or/and III gliomas have been consid-
ered and a limited number of patients has been investigated 
[49–51]. Besides, Tian et  al. established a multiparam-
eter MRI based radiomics model for the prediction of the 
TERTp-mutation status in patients with high-grade glioma 
[52], but ignored that TERTp-mutations play different roles 
in different IDH phenotypes [48].

Compared with conventional MRI, amino acid PET has 
been shown to be more sensitive in the definition of brain 
tumour extent [39], and dynamic  [18F]FET uptake param-
eters extracted from the TAC have shown to be an independ-
ent biomarker for prognosis [53, 54]. Several studies have 
reported the informative value of  [18F]FET PET-based radi-
omics in personalized clinical decisions and individualized 
treatment selection [27–29, 55]. Lohmann et al. found tex-
tural feature analysis in combination with TBRs to better dif-
ferentiate brain metastasis recurrence from radiation injury 
than TBRs alone, and  [18F]FET PET radiomics achieved 
a higher accuracy than the best standard FET PET param-
eter  (TBRmax) to diagnose patients with pseudoprogression 
[27, 55]. Haubold et al. utilized multiparametric  [18F]FET 
PET/MRI and MR fingerprinting to decode and phenotype 
cerebral gliomas, which may serve as an alternative to inva-
sive tissue characterization [28]. In addition, Carles et al. 
evaluated the prognostic value of  [18F]FET PET radiom-
ics after re-irradiation, and found it could contribute to the 
selection of recurrent glioblastoma patients benefiting from 
re-irradiation [29]. However, all studies included radiomics 
based on standard static images (20–40 min p.i.) only and 
did not extract radiomic features derived from dynamic  [18F]
FET PET as well as early summation images (5–15 min p.i.) 
even though two studies have shown the impact of dynamic 
parameters on radiomics [32, 56]. Furthermore, no study has 
evaluated the potential to predict the TERTp-mutation status 
by  [18F]FET PET radiomics so far.

This study included standard static images (20–40 min 
p.i.), early summation images (5–15  min p.i.), and 
dynamic  [18F]FET PET images to develop the radiomic 
models. A total of 107 features were extracted from each 

Table 2  Coefficients of selected features in the TTP model

Intercept �0 is 0.599 in the TTP model. Details of features were 
shown in Supplementary Information

Features Coefficients

SmallDependenceLowGreyLevelEmphasis 1.508
Energy 1.404
SmallDependenceHighGreyLevelEmphasis  − 1.283
GreyLevelNonUniformityNormalized  − 1.235
LeastAxisLength  − 1.219
Busyness  − 0.916
ShortRunHighGreyLevelEmphasis  − 0.699
Maximum2DDiameterColumn 0.654
LowGreyLevelZoneEmphasis  − 0.626
LargeDependenceHighGreyLevelEmphasis 0.606
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image. Our TTP model, built from ten dynamic  [18F]
FET PET features selected by RFE, achieved the highest 
AUC of 0.82 in the independent testing cohort, indicat-
ing that the TERTp-mutation status can be predicted 
by using  [18F]FET PET based radiomics. Notably, our 
former study did neither find an association between 
the TERTp-mutation status and traditional static  [18F]

FET PET parameters  (TBRmax and  TBRmean in static 
20–40 min summation images) nor the standard dynamic 
parameter  TTPmin [24].

Interestingly, radiomics based on the standard  TBR20–40 
model showed a low performance for the prediction of the 
TERTp-mutation status, and even the  TBR5–15 model, gen-
erated from nine early summation  [18F]FET PET features, 

Fig. 3  a  TBR5–15 model reached an AUC of 0.80 in the training cohort, and b an AUC of 0.61 in the testing cohort. c TTP model reached an 
AUC of 0.90 in the training cohort, and d an AUC of 0.82 in the testing cohort. AUC area under the receiver operating characteristic curve

Table 3  Performance of each model

CI confidence interval

TBR5–15 TBR20–40 TTP

Training cohort Testing cohort Training cohort Testing cohort Training cohort Testing cohort

AUC 0.80 0.61 0.90 0.49 0.90 0.82
AUC 95%CI (0.71–0.89) (0.42–0.80) (0.85–0.95) (0.30–0.69) (0.84–0.95) (0.71–0.92)
Accuracy 0.75.0% 66.0% 83.0% 66.0% 78.6% 83.0%
Sensitivity 73.3% 73.7% 81.1% 73.7% 77.8% 92.1%
Specificity 81.8% 33.3% 90.9% 33.3% 81.8% 44.4%
PPV 94.3% 82.4% 97.3% 82.4% 94.6% 87.5%
NPV 42.9% 23.1% 54.1% 23.1% 47.4% 57.1%
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had an accuracy of only 66% and an AUC of 0.61 in the 
testing cohort. With a high prediction accuracy of 83% 
in the TTP model, our study demonstrates that radiomic 
features extracted from dynamic PET data can achieve a 
higher performance level than models based on static PET 
data. Remarkably, the sensitivity of the TTP model reached 
92.1% in the testing cohort, so that patients with aggressive 
TERTp-mutant glioma can be identified non-invasively with 
high probability [3]. With the generated multivariate LR-
based formula, health practitioners will be able to calculate 
the patient individual risk probability of bearing a TERTp-
mutation before neurosurgical intervention. Our study shows 
that even sophisticated radiomic analysis of static  [18F]FET 
PET imaging cannot replace dynamic acquisitions, at least 
with regard to the prediction of the TERTp-mutation status.

Traditional dynamic  [18F]FET PET parameters such as 
the classification of the time-activity curve (increasing vs. 
decreasing or increasing vs. plateau vs. decreasing), the 
slope or the  TTPmin were most frequently calculated from 
a mean VOI-TAC of the tumour or from the hot-spot of the 
tumour with a 90% isocontour [10, 12, 19]. Considering 
the heterogeneity of gliomas, it may happen that the hot-
spot in standard summation images does not correspond 
to the most suspicious tumour aggressiveness when only 
considering  TTPmin and TAC and that, therefore, the most 
aggressive areas are inadvertently not evaluated. In con-
trast, we extracted the dynamic  [18F]FET uptake informa-
tion in every voxel within the tumour VOI and generated 
TTP images. This approach, which was first introduced by 
Kaiser et al. [40, 42], ensures that the dynamic information 
including the heterogeneity of uptake kinetics is extracted 
and that radiomics can be performed on the prognostically 
valuable dynamic data. The correlation between tumour het-
erogeneity and TERTp-mutation status can be considered 
in GreyLevelNonUniformityNormalized (GLNN) feature, 
which was used in the TTP model (see Table 2). GLNN 
belongs to Gray Level Dependence Matrix (GLDM), which 
is mathematically equal to first order–uniformity and is a 
measure of the homogeneity of the image array. A low value 
implies a greater heterogeneity, which was correlated with 
the TERTp-mutation, indicating that tumours with more het-
erogeneous TTP images are more likely to be classified as 
TERTp-mutant glioma.

Several limitations of this study should be discussed. 
First, the number of investigated patients is relatively small. 
However, it needs to be considered that we analyzed a very 
homogeneous group of patients with newly diagnosed and 
untreated IDH-wildtype diffuse astrocytic high-grade gli-
oma. To exclude any influence by scanner type, all images in 
this study were derived from the same PET scanner, which 
limited the number of patients as well. In order to increase 
the number of patients, multi-centre validation studies 
are needed which, however, require phantom studies and 

harmonization of reconstruction parameters to make images 
from different PET scanners comparable. Another approach 
to directly harmonize features extracted from different 
devices may be to use the ComBat method [57]. In addition, 
our results are difficult to extrapolate to other centres, as the 
PET images analyzed in this study were acquired with our 
old PET scanner with fixed time frames, resulting in rela-
tively long time frames (predominantly 5 and 10 min) in the 
dynamic analysis which could not be changed afterwards, 
and were reconstructed using filtered back-projection, while 
most PET centres now use other reconstruction methods 
such as ordered subset expectation maximization (OSEM). 
Furthermore, radiomic features were only extracted from 
the  [18F]FET-positive tumour VOI to construct the model. 
Besides the tumour VOI, the remaining image (with nor-
mal seeming tissue) may still contain invisible but useful 
information. To analyze the entire images, deep learning 
methods will be necessary. Furthermore, our study focused 
on PET-based radiomics only. A combination with MRI may 
improve the performance of the prediction model and should 
be evaluated in future studies.

Conclusion

While conventional  [18F]FET PET parameters assessed by 
standard analyses have previously shown no association with 
the TERTp-mutation status, radiomic models can predict 
the TERTp-mutation status of IDH-wildtype diffuse astro-
cytic high-grade gliomas with high accuracy preoperatively. 
Notably, this is only the case for radiomics based on dynamic 
image data (TTP model) instead of standard summation 
images (20–40 min). Further external validation in multi-
centre studies with a larger number of patients is needed to 
evaluate the potential for clinical applications.
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