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Abstract
Purpose Accurate prognostic markers are urgently needed to identify diffuse large B-Cell lymphoma (DLBCL) patients at 
high risk of progression or relapse. Our purpose was to investigate the potential added value of baseline radiomics features 
to the international prognostic index (IPI) in predicting outcome after first-line treatment.
Methods Three hundred seventeen newly diagnosed DLBCL patients were included. Lesions were delineated using a semi-
automated segmentation method (standardized uptake value ≥ 4.0), and 490 radiomics features were extracted. We used 
logistic regression with backward feature selection to predict 2-year time to progression (TTP). The area under the curve 
(AUC) of the receiver operator characteristic curve was calculated to assess model performance. High-risk groups were 
defined based on prevalence of events; diagnostic performance was assessed using positive and negative predictive values.
Results The IPI model yielded an AUC of 0.68. The optimal radiomics model comprised the natural logarithms of metabolic 
tumor volume (MTV) and of  SUVpeak and the maximal distance between the largest lesion and any other lesion  (Dmaxbulk, 
AUC 0.76). Combining radiomics and clinical features showed that a combination of tumor- (MTV,  SUVpeak and  Dmaxbulk) 
and patient-related parameters (WHO performance status and age > 60 years) performed best (AUC 0.79). Adding radiomics 
features to clinical predictors increased PPV with 15%, with more accurate selection of high-risk patients compared to the 
IPI model (progression at 2-year TTP, 44% vs 28%, respectively).
Conclusion Prediction models using baseline radiomics combined with currently used clinical predictors identify patients 
at risk of relapse at baseline and significantly improved model performance.
Trial registration number and date EudraCT: 2006–005,174-42, 01–08-2008.
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Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon subtype of aggressive non-Hodgkin lymphoma (NHL) 
in adults. Up to one third of these patients fail to achieve 
complete remission during first-line treatment or experience 
relapse, and salvage treatment regimens lead to modest cure 
rates [1, 2]. Identification of high-risk patients with the cur-
rent prognostic scoring systems, such as the international 
prognostic index (IPI), is limited [3, 4]. Therefore, more 
accurate prognostic markers are essential to identify patients 
at high risk for progression or relapse. These poor respond-
ers might benefit from an early switch to novel therapies 
aiming to improve outcome.
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Quantitative 18F-fluorodeoxyglucose positron emis-
sion tomography (18F-FDG PET) parameters, especially 
baseline metabolic tumor volume (MTV), have shown to 
be predictive of outcome in DLBCL [5–9]. MTV reflects 
the 18F-FDG-avid tumor burden, but it does not comprise 
phenotypical aspects like spatial distribution, heterogene-
ity, and shape of lesions. Recently developed quantitative 
18F-FDG PET image features, also referred to as radiomics, 
reveal biological characteristics of disease and could help to 
improve outcome prediction in DLBCL at baseline. Radiom-
ics features capture detailed and quantitative information on, 
e.g., texture and shape of lesions. In several solid tumors, 
radiomics features provide prognostically relevant infor-
mation [10–13]. Evidence is emerging to suggest that such 
parameters may also have predictive value in DLBCL [14, 
15]. However, these parameters have not yet been success-
fully integrated with IPI components. The objective of this 
study was to assess the added value of baseline quantitative 
radiomics features in DLBCL patients compared the cur-
rently used IPI score. Secondary objectives were to assess 
the added value of radiomics to other clinical characteristics 
and MTV.

Methods

Study population

Newly diagnosed DLBCL patients from the multicenter ran-
domized phase 3 HOVON-84 trial (EudraCT, 2006–005,174-
42) who underwent baseline 18F-FDG PET/computed 
tomography (CT, 18F-FDG PET/CT) were included in this 
study. 18F-FDG PET/CT scans were included from 58 dif-
ferent hospitals. Main inclusion and exclusion criteria of 
the trial have been published elsewhere [16]. As there was 
no difference in time to progression (TTP) between the 
two treatment arms, all available data for this study was 
used (Supplemental Fig. 1). The HOVON-84 study was 
approved by the institutional review board (Erasmus MC, 
2007–055), and all participants gave written informed con-
sent to participate.

Quality control of 18F‑FDG PET/CT scans

Baseline 18F-FDG PET/CT scans were centrally collected 
from participating sites in DICOM format and de-identi-
fied. For quality control (QC), we used criteria described 
by EANM guidelines: mean standardized uptake value 
 (SUVmean) of the liver should be between 1.3 and 3.0 and 
the plasma glucose lower than 11 mmol/L [17]. QC rejected 
scans if (1) scans were not complete, (2) essential DICOM 
data was missing, (3) the liver  SUVmean was outside the 
acceptable ranges, and the total image activity (MBq) was 

not between 50 and 80% of the total injected FDG activity 
or (4) plasma glucose exceeded 11 mmol/L.

Quantitative image analysis

Quantitative PET/CT analysis was performed using the ACC 
URA TE tool [18]. Lesions were delineated using a fully 
automated preselection of 18F-FDG-avid structures defined 
by a SUV ≥ 4.0 and a volume threshold of ≥ 3 mL. Non-
tumor regions were deleted, and lymphoma lesions < 3 mL 
were added with single mouse clicks. If tumor regions were 
adjacent to non-tumor 18F-FDG-avid regions (e.g., kidney, 
bladder), non-tumor regions were removed manually. Details 
on the delineation methods and workflow are described 
elsewhere [19, 20]. All scans were reviewed by a nuclear 
medicine physician, and delineations were performed under 
supervision of a nuclear medicine physician.

Feature extraction

Four hundred eighty features pertaining to morphology 
(n = 22), intensity (n = 50), and texture (n = 408) (Supple-
mental data) were extracted both for the individual lesions 
as for the complete MTV (patient level). Before feature cal-
culation, all images were resampled to 2 × 2 × 2 mm voxel 
size using tri-linear interpolation. In order to calculate tex-
tural features, the images were discretized with a fixed bin 
size of 0.25 SUV [21]. Furthermore, 5 conventional PET 
features were extracted from the original images (without 
resampling): MTV,  SUVmax,  SUVpeak,  SUVmean, and total 
lesion glycolysis (Supplemental data). All image processing 
and feature calculations were performed using RaCat soft-
ware [22], which is in compliance with the Image Biomarker 
Standardization Initiative (IBSI) [23].

The patient level VOI included all segmented lesions and 
was generated by assigning all voxels within the individual 
lesions to one and all voxels outside any of the segmented 
individual lesions to zero. At patient level, 5 conventional 
PET features and 5 dissemination features were extracted: 
the number of lesions and 4 features as suggested by Cot-
tereau et al. [15], the distance between the 2 lesions that 
were furthest apart  (Dmaxpatient), the distance between 
the largest lesion and the lesion furthest from that bulk 
 (Dmaxbulk), the sum of the distances from the largest lesion 
to all other lesions  (spreadbulk), and the sum of the distances 
from all lesions to all the other lesions  (spreadpatient). Dis-
tances were calculated based on the location of the  SUVmax 
for each lesion.

Clinical predictors

For the currently used clinical predictors, the IPI score [24], 
the individual components of the IPI score (Ann Arbor stage, 

933European Journal of Nuclear Medicine and Molecular Imaging  (2022) 49:932–942

1 3



lactate dehydrogenase (LDH) level, extranodal (EN) involve-
ment, WHO performance status, and age), and bulky disease 
(diameter lesion ≥ 10 cm) were used. For the clinical predic-
tors, Ann Arbor stage was included both dichotomously and 
categorically. LDH was included both dichotomously and 
continuously, for which the LDH level was divided by the 
upper limit of normal (ULN). EN involvement and WHO 
performance status were used with two different cut-offs 
(EN involvement, ≥ 1 or > 1; WHO performance status, ≥ 1 
or ≥ 2). For two patients, WHO performance status was 
missing; these values were imputed as WHO performance 
status 0 for the IPI score. For the IPI prediction model, 
patients were divided into four prognostic IPI subgroups 
(low, low-intermediate, high-intermediate, and high) [24].

Statistical analysis

The primary endpoint was 2-year time to progression 
(TTP), defined as time from baseline PET/CT to progres-
sion. Patients who died without progression were censored 
at date of death. Patients still alive were censored at date of 
last contact.

The predictive value of the following models was 
assessed:

• Model 1. IPI
• Model 2. Clinical model
• Model 3. MTV at patient level
• Model 4. Limited radiomics model: conventional PET, 

dissemination, and sphericity features (e.g., commonly 
used radiomics features) at patient level

• Model 5. All radiomics features for the largest and hottest 
lesions, respectively

• Model 6. Combination of the clinical predictors (model 
2) and radiomics features (model 4) (Table 1)

To evaluate model performance for 2-year TTP, the 
receiver operator characteristic curve was generated to 

calculate the area under the curve (AUC). A 95% confidence 
interval (CI) of the AUC and differences between model 
performances of prediction models, expressed as AUC, 
were assessed with the two-sided DeLong test [25]. Strati-
fied repeated cross-validation with fivefold and 2000 repeats 
was performed to yield the cross-validated AUC (CV-AUC). 
High- and low-risk groups were defined based on prevalence 
[26] as follows: in our dataset, 52 patients had an event at 
2-year TTP. For the IPI prediction model, patients with 4 
or 5 adverse factors were considered as high risk. For the 
multivariate models, the high-risk group was defined as the 
52 patients who had the highest predicted risk of progression 
(Supplemental data). Diagnostic performance was assessed 
using sensitivity, specificity, positive predictive value (PPV) 
and negative predictive value (NPV), and log-likelihood 
ratios. Patients censored before 2 years of follow-up were 
excluded for the prediction models and diagnostic perfor-
mance. To assess the robustness of our model predictions, 
a sensitivity analysis with 2-year progression-free survival 
(PFS) as outcome parameter was performed for all predic-
tion models.

For all models except model 5, multivariate logistic 
regression with backward selection was used to predict out-
come. For models 4 and 6, to reduce the radiomics feature 
space dimension, the previously reported features regarding 
intensity, volume, shape, and dissemination of the lesions 
were preselected (Supplemental data). For model 5, LASSO 
logistic regression was performed after mean centering and 
scaling by standard deviation of all features. Prior to analy-
sis, continuous input variables that had a skewness > 0.5 
were log-transformed using the natural logarithm. To com-
pare model performance of models 1–4 and 6 to the model 
performance of model 5, we also used LASSO logistic 
regression to predict outcome for these models.

Survival curves were obtained with Kaplan–Meier (KM) 
analyses for TTP and compared with log-rank tests for the 
IPI, best clinical, MTV, best radiomics, and best combined 
prediction models based on logistic regression. In our data-
set, 16% of all patients had progression at 2-year TTP, so 

Table 1  Description of prediction models included in this study

Abbreviations: IPI, international prognostic index; LDH, lactate dehydrogenase; WHO, World Health Organization; MTV, metabolic tumor vol-
ume; SUV, standardized uptake value. TLG, total lesion glycolysis; Dmax, maximum distance

Models Included features

Model 1: IPI IPI
Model 2: clinical model Ann Arbor stage, age, WHO performance status, extranodal involvement, LDH, and bulky disease
Model 3: MTV MTV
Model 4: limited radiomics model MTV,  SUVmax,  SUVpeak,  SUVmean, TLG, number of lesions,  Dmaxpatient,  Dmaxbulk,  Spreadpatient, 

 Spreadbulk, and Sphericity
Model 5: all radiomics features (largest and 

hottest lesion)
485 features for the largest and hottest lesion

Model 6: combined model Features model 2 and model 4
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for each model, 16% of the patients with the highest risk 
were included in the high-risk group for all KM survival 
plots except for the IPI KM survival plot, for which we used 
the high-risk IPI group as high-risk group. Univariate Cox 
regression models were used to calculate hazard ratio’s 
(HR) and their corresponding 95% confidence intervals. The 
assumption of proportional hazards was assessed based on 
Schoenfeld residuals.

Statistical analysis was performed using R (version 
4.0.0). A p value of less than 0.05 was considered statisti-
cally significant.

Results

Patient characteristics

Three hundred seventy-three patients had a baseline PET/
CT, of which 317 were included in this analysis. The main 
reason for ineligibility was missing essential DICOM infor-
mation (n = 21). Other reasons for exclusion were QC out-
side of range (n = 19), incomplete whole-body or total-body 
PET/CT scans (n = 13), no FDG-avid lesions (n = 2), and 
plasma glucose out of range (n = 1). Clinical characteristics 
of included patients are summarized in Table 2. Fourteen 
patients (median age, 73; range 53–79) died without signs 
of progression before 24 months (n = 6 complications of 
treatment, n = 2 s malignancy, n = 2 intercurrent disease, 
n = 2 other reasons, n = 1 unknown, and n = 1 non-Hodgkin 
lymphoma), and 7 patients were lost to follow-up within 
24 months, leading to exclusion for the prediction model.

MTV analysis

Per patient, 1–143 lesions were analyzed, with a median of 
19 lesions per patient for patients who experienced relapse 
or progression within 2 years and a median of 8 lesions for 
patients without relapse. The median MTV was 652.2 mL 
for patients with an event within 2 years and 351.4 mL for 
patients without relapse. All dissemination features (number 
of lesions,  Dmaxpatient,  Dmaxbulk,  Spreadpatient,  Spreadbulk) 
were higher for patients with an event within 2  years 
(Table 3; Fig. 1). Dissemination features correlated poorly 
with the natural logarithm of MTV. Moreover,  Dmaxbulk cor-
related poorly with the height of patients (correlation coef-
ficient, 0.12).

Performance currently used predictors

IPI (model 1) was significantly associated with outcome 
(p < 0.001), yielding an AUC of 0.68 (95% CI, 0.61–0.75) 
(Fig. 2, Table 4). In a multivariate logistic regression of 
individual IPI components and bulky disease with backward 

selection (model 2), the natural logarithm of LDH/ULN 
(p = 0.014), WHO performance status ≥ 1 (p = 0.026), and 
EN involvement ≥ 1 (p = 0.039) were all significantly associ-
ated with 2-year TTP, and together yielded an AUC of 0.73 
(95% CI, 0.66–0.80). This was not significantly higher than 
the discriminative power of IPI (model 1) (p = 0.267).

Added value of radiomics features

The natural logarithm of MTV (model 3) was significantly 
associated with outcome (p < 0.001), yielding an AUC 
of 0.66 (95% CI, 0.58–0.74). The natural logarithms of 
MTV (p < 0.001) and of  SUVpeak (p < 0.001) and  Dmaxbulk 
(p = 0.001) were all significantly associated with 2-year TTP, 
and together yielded an AUC of 0.76 (95% CI, 0.69–0.82) for 
the limited radiomics model (model 4) using logistic regres-
sion with backward selection. When correcting  Dmaxbulk for 
height, the radiomics model still yielded in an AUC of 0.76. 
This model showed a trend for better discriminative power 
compared to the IPI prediction model (model 1, p = 0.068) 
but was significantly higher than the discriminative power of 
MTV only (model 3, p = 0.012). LASSO regression with all 

Table 2  Patient characteristics

Abbreviations: LDH, lactate dehydrogenase; WHO, World Health 
Organization; IPI, international prognostic index

N (%)

Age
  Median (range)
   ≤ 60 years
   > 60 years

65 (23–80)
102 (32)
215 (68)

Sex
  Male
  Female

161 (51)
156 (49)

Ann Arbor Stage
  2
  3
  4

51 (16)
66 (21)
200 (63)

LDH
  Normal
   > Normal

104 (33)
213 (67)

Extranodal localizations
   ≤ 1
   > 1

186 (59)
131 (41)

WHO performance status
  0
  1
  2
  missing

179 (56)
97 (31)
39 (12)
2 (1)

IPI
  Low
  Low-intermediate
  High-intermediate
  High

52 (16)
77 (24)
109 (34)
79 (25)
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radiomics features yielded a CV-AUC of 0.67 for the largest 
lesion and a CV-AUC of 0.54 for the hottest lesion (model 
5). For both models, texture features have contributed most 
to the model (Supplemental data).

When currently used clinical predictors and radiom-
ics features at patient level were combined (model 6), the 
natural logarithms of MTV (p < 0.001) and of  SUVpeak 
(p < 0.001),  Dmaxbulk (p = 0.002), WHO performance sta-
tus ≥ 1 (p = 0.044), and age > 60 (p = 0.045) were all signifi-
cantly associated with 2-year TTP, and together yielded an 
AUC of 0.79 (95% CI, 0.73–0.86) in a multivariate model. 
This combination showed better discriminative power 

compared to the IPI model (model 1, p = 0.003) and the best 
clinical prediction model (model 2, p = 0.049) and a trend for 
better discriminative power than the best radiomics predic-
tion model (model 4, p = 0.051). Model performances and 
feature selection using LASSO regression for model 1–4 
and 6 are presented in the Supplemental data (Supplemental 
Table 2).

For the sensitivity analysis with 2-year PFS as outcome 
parameter, multivariate logistic regression with backward 
selection resulted in selection of the same features for the 
radiomics and combined prediction models. For the best 
clinical model, extranodal involvement ≥ 1 was significantly 

Table 3  Descriptive statistics 
of conventional PET features, 
dissemination features, and 
sphericity stratified for events 
and non-events

Abbreviations: MTV, metabolic tumor volume; SUV, standardized uptake value; TLG, total lesion glycoly-
sis; Dmax, maximum distance

Parameter Events (n = 52) Non-events (n = 265)

Median (IQR) Range Median (IQR) Range

MTV (ml) 652.2 (322.6–1363.2) 13.7–5598.5 351.4 (115.9–842.1) 0.8–2827.3
SUVmax 20.4 (15.2–27.7) 5.4–48.3 22.6 (16.8–29.3) 4.1–56.9
SUVpeak 16.4 (12.1–21.8) 4.1–34.8 17.8 (13.8–24.3) 2.5–47.7
SUVmean 8.4 (6.0–9.8) 4.2–13.6 8.7 (6.9–10.6) 4.1–21.5
TLG 6030.9 (2446.1–10,571.8) 59.3–47,965.7 3216.1 (1041.5–7091.3) 0.3–25,776.8
Number of lesions 19 (6–35) 1–143 8 (4–16) 1–55
Dmaxpatient (cm) 63.9 (43.4–70.3) 0–114.2 40.8 (15.9–58.3) 0–126.1
Dmaxbulk (cm) 44.4 (32.6–54.2) 0–110.8 29.4 (13.1–43.0) 0–87.0
spreadpatient (cm) 7482.3 (734.0–37,496.1) 0–968,211 607.6 (108.0–4995.9) 0–175,968)
spreadbulk (cm) 604.3 (156.1–1193.0) 0–6067.6 148.1 (46.3–429.5) 0–4406.9
sphericity 0.31 (0.23–0.42) 0.13–0.68 0.39 (0.29–0.53) 0.08–1.0

Fig. 1  Maximum intensity projections of patients with high MTV, 
low MTV, high dissemination, and low dissemination. Tumor deline-
ations are indicated in red. From left to right: high MTV and high 

dissemination, low MTV and high dissemination, high MTV and low 
dissemination, and low MTV and low dissemination
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associated with outcome and added to the prediction model. 
The combined model (model 6) had higher discriminative 
power compared to the IPI prediction model (model 1, 
p = 0.009). For all prediction models, AUCs with 2-year PFS 
as outcome parameter were lower compared to AUCs with 
2-year TTP as outcome parameter (Supplemental Table 3).

Diagnostic performance prediction models

Using the prevalence of progression to define the high-risk 
group, specificity, sensitivity, NPV, and PPV increased, 
and log-likelihood ratio’s decreased when adding radiom-
ics features to currently used clinical predictors (Table 3). 
Sensitivity ranged between 27% for the MTV model and 
44% for best radiomics and combined prediction models. 
Specificity was always above 79% and the highest for the 
radiomics and combined models (88%). The NPV was high 

for all models and always above 84%. The PPV was gener-
ally low (< 50%). Both PPV and NPV were highest for the 
best radiomics model and combined model (PPV, 44%, and 
NPV, 88%, respectively). Moreover, the log-likelihood ratio 
was lowest for the combined model.

Survival analysis

High-risk patients had significantly lower survival than low-
risk patients for all prediction models (all, p < 0.015; Fig. 3, 
Supplemental Fig. 1). Twenty-eight percent of the high-risk 
patients identified by the MTV and IPI prediction models 
(models 1 and 3) showed progression at 2-year TTP; 40% of 
the high-risk clinical patient showed progression (model 2). 
The radiomics and combined prediction models (models 4 
and model 6) correctly identified more patients; 44% of the 
high-risk patients showed progression at 2-year TTP. Uni-
variate HRs for high-risk versus low-risk groups were lowest 
for the MTV model (HR, 2.2 (95% CI, 1.1–3.9)); HRs were 
higher for the IPI model (HR, 2.3 (95% CI, 1.3–4.1)), the 
best clinical model (HR, 3.6 (95% CI, 2.1–6.4)), and com-
bined model (HR, 4.6 (95% CI, 2.6–7.9). Univariate HRs for 
high-risk versus low-risk groups were highest for the best 
radiomics model (HR, 4.7 (95% CI, 2.7–8.1)).

Discussion

Results from study indicate that baseline radiomics features 
are predictive of outcome and have added value compared 
to currently used clinical parameters. Adding radiomics 
features can significantly increase the efficiency of clinical 
trials.

Currently used clinical scoring systems, such as the IPI, 
fail to identify a high-risk group for which novel treatment 
approaches are most needed [3, 4]. Combining clinical pre-
dictors and radiomics features improved model performance 
significantly, from an AUC of 0.68 to an AUC of 0.79. Age 
and WHO performance status were the only clinical pre-
dictors that remained significant. In this model, disease 
burden is expressed as MTV, dissemination, and intensity 
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Fig. 2  Receiver operating characteristic curves for 2-year time to pro-
gression for IPI, best clinical, MTV, best radiomics model, and com-
bined prediction models

Table 4  AUC’s, CV-AUCs, and diagnostic measures of prediction models

Abbreviations: AUC , area under the curve; CV-AUC , cross-validated AUC; NPV, negative predictive value; PPV, positive predictive value; IPI, 
international prognostic index; MTV, metabolic tumor volume

Model AUC (95%CI) CV-AUC (95%CI) Log-likelihood ratio Specificity Sensitivity NPV PPV

IPI (model 1) 0.68 (0.61–0.75) 0.68 (0.51–0.80)  − 126.11 0.79 0.40 0.86 0.29
Clinical model (model 2) 0.73 (0.66–0.80) 0.71 (0.56–0.86)  − 123.52 0.87 0.38 0.87 0.38
MTV (model 3) 0.66 (0.58–0.74) 0.66 (0.50–0.81)  − 129.96 0.84 0.27 0.84 0.27
Limited radiomics model (model 4) 0.76 (0.69–0.82) 0.75 (0.59–0.88)  − 117.61 0.88 0.44 0.88 0.44
Combined model (model 6) 0.79 (0.73–0.86) 0.77 (0.61–0.90)  − 113.4 0.88 0.44 0.88 0.44
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and combined with physical capacity to tolerate therapy, 
expressed as age and WHO performance status; the risk of 
relapse was predicted most accurately. Radiomics features 
had higher relative effect on the prediction of relapse com-
pared to the clinical parameters (Supplemental data). Con-
trary to our results, a recent study showed that in a multi-
variate analysis with age-adjusted IPI (aaIPI) and radiomics 
feature, aaIPI was no longer a significant predictor of out-
come [14], which could be caused by the smaller sample size 
or their choice to add aaIPI, instead of individual predictors.

The PPV increased with 15% when adding radiomics 
features compared the IPI model but still remained under 
50%. Because of effective treatment regimens, event rates in 
DLBCL are low. In our database, the prior probability (i.e., 
the prevalence) of an event was 16%. By selecting high-risk 
patients with our combined prediction model, the posterior 
probability (i.e., PPV) of an event in this group increased 
to 44%. There are more high-risk patients included in the 
high-risk group identified using radiomics features com-
bined with clinical parameters compared to the IPI model, 

as shown by higher progression rate at 2-year TTP (44% 
vs 28%, respectively). These survival rates are still rather 
high, meaning that even the best model poorly identifies real 
high-risk patients; this may be partly caused by our choice of 
outcome parameter. We chose TTP instead of the more com-
monly used PFS and overall survival (OS), because unlike 
TTP, both PFS and OS are affected by age [5]. Patients 
with DLBCL are generally older, and outcome of these 
elderly patients is not only determined by lymphoma but 
also by age-related comorbidities, adverse treatment effects, 
and limited life expectancy in general. In our dataset, 14 
patients died within 2 years without signs of progression 
(i.e., 21.2% of PFS events). Death is a competing risk for 
progression. Our sensitivity analysis showed that 2-year PFS 
as outcome parameter showed lower predictive performance 
compared to 2-year TTP for all models, which could indicate 
that the outcome of these 14 patients is indeed unrelated to 
lymphoma.

Radiomics features could increase the efficiency of the 
design of future clinical trials for new therapies. By only 
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Fig. 3  Kaplan–Meier survival curves for time to progression in 
months stratified by high risk and low risk according to prediction 
models A international prognostic index (IPI), prediction model, B 

clinical prediction model, C metabolic tumor volume (MTV) predic-
tion model, D limited  radiomics prediction model, and E combined 
prediction model
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selecting the high-risk patients according to our proposed 
prediction model, fewer patients that will not experience an 
event will be included. Since about 44% of the patients will 
experience progression, depending on the expected effec-
tivity of the proposed drug, the difference between stand-
ard and new therapies can be studied under optimal power 
conditions. This allows for smaller sample sizes and thus 
lower costs.

MTV is one of the most studied radiomics features in 
DLBCL [5–9, 27]. In our study, the AUC for MTV was 
0.66, which was similar to the AUC of other recent stud-
ies (range 0.64–0.66) [14, 15, 28]. These studies mainly 
included advanced stage DLBCL patients, making stratifica-
tion more difficult and possibly explaining the relatively low, 
AUCs. It should be noted that these studies used different 
outcome parameters (PFS) and segmentation methods (41% 
max and 1.5 × liver SUVmax). However, the choice of seg-
mentation method probably does not influence the predictive 
value of MTV [20, 29]. Schmitz et al. [5] reported an AUC 
of 0.78 using the same segmentation methods and outcome 
parameters as in the present study. Their higher AUC may 
be explained by the inclusion of more low-intermediate/low-
risk IPI patients in their study.

Relatively few studies have investigated the predictive 
value of other radiomics features in DLBCL. Moreover, due 
to the different features that were extracted and different 
numbers of features extracted, it is hard to perform a direct 
comparison between studies. Generally speaking, our results 
confirm the findings of Parvez et al., who found that radi-
omics features of the hottest lesion have limited predictive 
value [30]. Aide et al. reported that the size of regions with 
similar intensity in the largest lesion (long-zone high grey-
level emphasis) had highest accuracy and that this was the 
only predictor of 2-year event-free survival in a multivariate 
analysis [14]. In our data, 48 out of 485 radiomics features of 
the largest lesion predicted 2-year TTP in univariate logis-
tic regression models after Bonferroni-correction (data not 
shown), and indeed, long-zone high grey-level emphasis was 
one of them. Our study confirms that radiomics features of 
the largest lesion are predictive of outcome, albeit not as 
predictive as radiomics features at patient level, involving all 
lesions. In our study, the radiomics model with preselected 
conventional PET features and dissemination features had 
higher discriminative power than the models that included 
all 490 radiomics features, indicating that more complex 
radiomics features did not have additional predictive abilities 
compared to simpler radiomics features.

Cottereau et al. [15] were the first and to our knowl-
edge the only ones to investigate the predictive value of 
dissemination features. They reported that  Dmaxpatient and 
 Dmaxbulk were significantly associated with outcome and 
that  Dmaxpatient was the only predictor of outcome in multi-
variate analysis. In our analysis, the predictive performance 

of  Dmaxpatient and  Dmaxbulk was similar, but the discrimi-
native power for  Dmaxbulk exceeded that of  Dmaxpatient, so 
that  Dmaxpatient was not included in our multivariate model 
with backward selection. We found that adding  Dmaxbulk and 
 SUVpeak to MTV significantly improved model performance 
(raising AUC from 0.66 to 0.76).

Risk stratification significantly improved when combin-
ing radiomics features with clinical parameters [15, 31, 32]. 
Baseline 18F-FDG PET/CTs are already part of clinical prac-
tice; therefore, radiomics features can be calculated at no 
additional costs. With software becoming available that eas-
ily and reliably calculate radiomics features [18, 33], adding 
radiomics features to clinical scoring systems should seri-
ously be considered. Significant efforts have been made to 
standardize FDG scanning, including initiatives by the Euro-
pean Association for Nuclear Medicine Research Limited 
and the US Society of Nuclear Medicine [34, 35]. However, 
the absence of standardized methodology hampers the use 
of quantitative PET parameters. The optimal cut-off of MTV 
and other radiomics features heavily rely on segmentation 
method and underlying patient data. Work is in progress to 
solve these methodological problems.

This study is the first to investigate the predictive value 
of radiomics features at patient level, for the largest lesion 
and the hottest lesion while combining it with currently used 
clinical predictors, making it the most comprehensive study 
so far. Even though this is the largest study that examined 
the predictive value of radiomics features, with 18% of the 
patients that were included in the prediction model having 
progression, this study had limited power to test more com-
plex prediction models that included more features or to 
make a distinction between refractory patients and relapsed 
patients. Another limitation of this study is that we used a 
single method to segment the lymphoma lesions. Due to 
the large heterogeneity of tracer uptake in DLBCL lesions, 
choosing a single segmentation method for the whole cohort 
could have caused suboptimal segmentation of lesions for 
some patients. However, literature suggests that the fixed 
SUV4.0 segmentation method is successful in 78% of 
DLBCL patients without editing and is acceptable in 98% 
of patients after manual editing [20]. Moreover, the majority 
of our patients had advanced stage disease and were classi-
fied as high-intermediate or high risk by the IPI score. The 
relative lack of limited stage and low-risk DLBCL patients 
could influence the generalizability of our results. Lastly, 
harmonization methods such as ComBat have shown to be 
definitely worthwhile to retrospectively increase uniformity 
in large multicenter datasets. Therefore, ComBat-based data 
alignment would be a very successful approach to harmonize 
radiomics features between centers. However, in our study, 
the number of included patients per center was too small to 
apply ComBat..
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To further investigate the predictive value of radiomics 
features in DLBCL, these results will be validated in a large 
cohort of DLBCL patients treated in different clinical trials 
(the PETRA cohort, https:// petra lymph oma. org). Moreover, 
the combination of radiomics and genomic features could 
be investigated, since both have promising results, and by 
combining these biomarkers, the identification of high-risk 
DLBCL patients could be further improved.

In conclusion, prediction models combining quantita-
tive radiomics features extracted from baseline 18F-FDG 
PET/CT scans with components of the IPI score signifi-
cantly improved identification of patients at risk of relapse 
at baseline compared to the currently used IPI score. Adding 
radiomics features can significantly increase the efficiency 
of clinical trials.
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Acknowledgements This work was financially supported by the Dutch 
Cancer Society (# VU 2018-11648). The sponsor had no role in gath-
ering, analyzing, or interpreting the data. The authors thank all the 
patients who participated in the trial and the HOVON Data Center for 
collecting the data.

Author contribution J.J.E. T.v.d.B., H.C.W.d.V., O.S.H., R.B., and 
J.M.Z. contributed to the concept and design of the study. P.J.L. and 
B.v.d.H. were responsible for acquiring the data. J.J.E., S.E.W, and 
G.J.C.Z. performed data analysis, and E.A.G.P. gave technical sup-
port for analytical tools. J.J.E. and T.v.d.B. performed the statistical 
analysis. J.J.E., S.E.W., G.J.C.Z., H.C.W.d.V., O.S.H, R.B., and J.M.Z. 
contributed to the interpretation of the data. J.J.E. drafted the manu-
script. J.J.E., T.v.d.B., S.E.W., G.J.C.Z., E.A.G.P., P.J.L., B.v.d.H., 
H.C.W.d.V., O.S.H., R.B., and J.M.Z. critically reviewed and approved 
the manuscript.

Funding This work is financially supported by the Dutch Cancer Soci-
ety (# VU 2018–11648).

Data availability The datasets generated during and/or analyzed dur-
ing the current study are available from the corresponding author on 
reasonable request.

Code availability Not applicable.

Declarations 

Ethics approval The HOVON-84 study was approved by the institu-
tional review board of the Erasmus MC (2007–055) and was performed 
in accordance with the ethical standards as laid down in the 1964 Dec-
laration of Helsinki and its later amendments or comparable ethical 
standards.

Consent to participate All individual participants included in the 
HOVON-84 study gave written informed consent to participate in the 
study.

Consent for publication Not applicable.

Conflict of interest J.J.E., T.v.d.B., S.E.W., G.J.C.Z., E.A.G.P., 
B.v.d.H., H.C.W.d.V., O.S.H., and R.B. declare no competing finan-
cial interests. P.J.L. received research funding from Takeda, Servier, 
and Roche and received honoraria for advisory boards from Takeda, 
Servier, Genentech, Genmab, Celgene, and Incyte. J.M.Z. received re-
search funding from Roche and received honoraria for advisory boards 
from Takeda, Gilead, and Roche.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Crump M, Neelapu SS, Farooq U, Van Den Neste E, Kuruvilla J, 
Westin J, et al. Outcomes in refractory diffuse large B-cell lym-
phoma: results from the international SCHOLAR-1 study. Blood. 
2017;130:1800–8. https:// doi. org/ 10. 1182/ blood- 2017- 03- 769620.

 2. van Imhoff GW, McMillan A, Matasar MJ, Radford J, Ardeshna 
KM, Kuliczkowski K, et al. Ofatumumab versus rituximab sal-
vage chemoimmunotherapy in relapsed or refractory diffuse 
large B-cell lymphoma: the ORCHARRD study. J Clin Oncol. 
2017;35:544–51. https:// doi. org/ 10. 1200/ JCO. 2016. 69. 0198.

 3. Gleeson M, Counsell N, Cunningham D, Lawrie A, Clifton-Had-
ley L, Hawkes E, et al. Prognostic indices in diffuse large B-cell 
lymphoma in the rituximab era: an analysis of the UK National 
Cancer Research Institute R-CHOP 14 versus 21 phase 3 trial. Br 
J Haematol. 2020. https:// doi. org/ 10. 1111/ bjh. 16691.

 4. Ruppert AS, Dixon JG, Salles G, Wall A, Cunningham D, Poe-
schel V, et al. International prognostic indices in diffuse large 
B-cell lymphoma: a comparison of IPI, R-IPI, and NCCN-IPI. 
Blood. 2020;135:2041–8. https:// doi. org/ 10. 1182/ blood. 20190 
02729.

 5. Schmitz C, Huttmann A, Muller SP, Hanoun M, Boellaard R, 
Brinkmann M, et al. Dynamic risk assessment based on posi-
tron emission tomography scanning in diffuse large B-cell lym-
phoma: post-hoc analysis from the PETAL trial. Eur J Cancer. 
2020;124:25–36. https:// doi. org/ 10. 1016/j. ejca. 2019. 09. 027.

 6. Mikhaeel NG, Smith D, Dunn JT, Phillips M, Moller H, Fields PA, 
et al. Combination of baseline metabolic tumour volume and early 
response on PET/CT improves progression-free survival predic-
tion in DLBCL. Eur J Nucl Med Mol Imaging. 2016;43:1209–19. 
https:// doi. org/ 10. 1007/ s00259- 016- 3315-7.

 7. Shagera QA, Cheon GJ, Koh Y, Yoo MY, Kang KW, Lee DS, 
et al. Prognostic value of metabolic tumour volume on baseline 
(18)F-FDG PET/CT in addition to NCCN-IPI in patients with 
diffuse large B-cell lymphoma: further stratification of the group 
with a high-risk NCCN-IPI. Eur J Nucl Med Mol Imaging. 
2019;46:1417–27. https:// doi. org/ 10. 1007/ s00259- 019- 04309-4.

 8. Sasanelli M, Meignan M, Haioun C, Berriolo-Riedinger A, Casas-
novas RO, Biggi A, et al. Pretherapy metabolic tumour volume is 
an independent predictor of outcome in patients with diffuse large 
B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2014;41:2017–
22. https:// doi. org/ 10. 1007/ s00259- 014- 2822-7.

940 European Journal of Nuclear Medicine and Molecular Imaging  (2022) 49:932–942

1 3

https://petralymphoma.org
https://doi.org/10.1007/s00259-021-05480-3
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1182/blood-2017-03-769620
https://doi.org/10.1200/JCO.2016.69.0198
https://doi.org/10.1111/bjh.16691
https://doi.org/10.1182/blood.2019002729
https://doi.org/10.1182/blood.2019002729
https://doi.org/10.1016/j.ejca.2019.09.027
https://doi.org/10.1007/s00259-016-3315-7
https://doi.org/10.1007/s00259-019-04309-4
https://doi.org/10.1007/s00259-014-2822-7


 9. Cottereau AS, Lanic H, Mareschal S, Meignan M, Vera P, Tilly H, 
et al. Molecular profile and FDG-PET/CT total metabolic tumor 
volume improve risk classification at diagnosis for patients with 
diffuse large B-cell lymphoma. Clin Cancer Res. 2016;22:3801–9. 
https:// doi. org/ 10. 1158/ 1078- 0432. CCR- 15- 2825.

 10. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, 
Carvalho S, et al. Decoding tumour phenotype by noninvasive 
imaging using a quantitative radiomics approach. Nat Commun. 
2014;5:4006. https:// doi. org/ 10. 1038/ ncomm s5006.

 11. van Helden EJ, Vacher YJL, van Wieringen WN, van Velden 
FHP, Verheul HMW, Hoekstra OS, et al. Radiomics analysis of 
pre-treatment [(18)F]FDG PET/CT for patients with metastatic 
colorectal cancer undergoing palliative systemic treatment. Eur 
J Nucl Med Mol Imaging. 2018;45:2307–17. https:// doi. org/ 10. 
1007/ s00259- 018- 4100-6.

 12. Dissaux G, Visvikis D, Da-Ano R, Pradier O, Chajon E, Barillot 
I, et al. Pretreatment (18)F-FDG PET/CT radiomics predict local 
recurrence in patients treated with stereotactic body radiotherapy 
for early-stage non-small cell lung cancer: A Multicentric Study. J 
Nucl Med. 2020;61:814–20. https:// doi. org/ 10. 2967/ jnumed. 119. 
228106.

 13. Giannini V, Mazzetti S, Bertotto I, Chiarenza C, Cauda S, Del-
mastro E, et al. Predicting locally advanced rectal cancer response 
to neoadjuvant therapy with (18)F-FDG PET and MRI radiomics 
features. Eur J Nucl Med Mol Imaging. 2019;46:878–88. https:// 
doi. org/ 10. 1007/ s00259- 018- 4250-6.

 14. Aide N, Fruchart C, Nganoa C, Gac AC, Lasnon C. Baseline (18)
F-FDG PET radiomic features as predictors of 2-year event-free 
survival in diffuse large B cell lymphomas treated with immuno-
chemotherapy. Eur Radiol. 2020;30:4623–32. https:// doi. org/ 10. 
1007/ s00330- 020- 06815-8.

 15. Cottereau AS, Nioche C, Dirand AS, Clerc J, Morschhauser F, 
Casasnovas O, et al. (18)F-FDG PET dissemination features in 
diffuse large B-cell lymphoma are predictive of outcome. J Nucl 
Med. 2020;61:40–5. https:// doi. org/ 10. 2967/ jnumed. 119. 229450.

 16. Lugtenburg PJ, de Nully Brown P, van der Holt B, D’Amore FA, 
Koene HR, de Jongh E, et al. Rituximab-CHOP with early rituxi-
mab intensification for diffuse large B-cell lymphoma: a rand-
omized phase III trial of the HOVON and the Nordic Lymphoma 
Group (HOVON-84). J Clin Oncol. 2020. https:// doi. org/ 10. 1200/ 
JCO. 19. 03418.

 17 Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch 
K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines 
for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 
2015;42:328–54. https:// doi. org/ 10. 1007/ s00259- 014- 2961-x.

 18. Boellaard R. Quantitative oncology molecular analysis suite: ACC 
URA TE. J Nucl Med. 2018;59:1753.

 19. Burggraaff CN, Rahman F, Kassner I, Pieplenbosch S, Barrington 
SF, Jauw YWS, et al. Optimizing workflows for fast and reliable 
metabolic tumor volume measurements in diffuse large B cell lym-
phoma. Mol Imaging Biol. 2020;22:1102–10. https:// doi. org/ 10. 
1007/ s11307- 020- 01474-z.

 20. Barrington SF, Zwezerijnen BG, de Vet HC, Heymans MW, 
Mikhaeel NG, Burggraaff CN, et al. Automated segmentation 
of baseline metabolic total tumor burden in diffuse large B-cell 
lymphoma: which method is most successful ? J Nucl Med. 2020. 
https:// doi. org/ 10. 2967/ jnumed. 119. 238923.

 21. Pfaehler E, van Sluis J, Merema BBJ, van Ooijen P, Berendsen 
RCM, van Velden FHP, et al. Experimental multicenter and mul-
tivendor evaluation of the performance of PET radiomic features 
using 3-dimensionally printed phantom inserts. J Nucl Med. 
2020;61:469–76. https:// doi. org/ 10. 2967/ jnumed. 119. 229724.

 22. Pfaehler E, Zwanenburg A, de Jong JR, Boellaard R. RaCaT: an 
open source and easy to use radiomics calculator tool. PLoS ONE. 
2019;14:e0212223. https:// doi. org/ 10. 1371/ journ al. pone. 02122 23.

 23. Zwanenburg A, Vallieres M, Abdalah MA, Aerts H, Andrearczyk 
V, Apte A, et al. The image biomarker standardization initiative: 
standardized quantitative radiomics for high-throughput image-
based phenotyping. Radiology. 2020;295:328–38. https:// doi. org/ 
10. 1148/ radiol. 20201 91145.

 24 International Non-Hodgkin’s Lymphoma Prognostic Factors P. A 
predictive model for aggressive non-Hodgkin’s lymphoma. N Engl 
J Med. 1993;329:987–94. https:// doi. org/ 10. 1056/ NEJM1 99309 
30329 1402.

 25. DeLong ER, DeLong DM, Clarke-Pearson DL. Compar-
ing the areas under two or more correlated receiver operating 
characteristic curves: a nonparametric approach. Biometrics. 
1988;44:837–45.

 26. Steyerberg EW. Clinical prediction models. New York: Springer; 
2009.

 27. Aide N, Lasnon C, Damaj G. Combining baseline TMTV and 
gene profiling for a better risk stratification in diffuse large B cell 
lymphoma. Eur J Nucl Med Mol Imaging. 2018;45:677–9. https:// 
doi. org/ 10. 1007/ s00259- 018- 3966-7.

 28. Vercellino L, Cottereau AS, Casasnovas O, Tilly H, Feugier P, 
Chartier L, et al. High total metabolic tumor volume at baseline 
predicts survival independent of response to therapy. Blood. 
2020;135:1396–405. https:// doi. org/ 10. 1182/ blood. 20190 03526.

 29. Ilyas H, Mikhaeel NG, Dunn JT, Rahman F, Moller H, Smith 
D, et al. Defining the optimal method for measuring baseline 
metabolic tumour volume in diffuse large B cell lymphoma. Eur 
J Nucl Med Mol Imaging. 2018;45:1142–54. https:// doi. org/ 10. 
1007/ s00259- 018- 3953-z.

 30. Parvez A, Tau N, Hussey D, Maganti M, Metser U. (18)F-FDG 
PET/CT metabolic tumor parameters and radiomics features in 
aggressive non-Hodgkin’s lymphoma as predictors of treatment 
outcome and survival. Ann Nucl Med. 2018;32:410–6. https:// doi. 
org/ 10. 1007/ s12149- 018- 1260-1.

 31. Senjo H, Hirata K, Izumiyama K, Minauchi K, Tsukamoto E, Itoh 
K, et al. High metabolic heterogeneity on baseline 18FDG-PET/
CT scan as a poor prognostic factor for newly diagnosed diffuse 
large B-cell lymphoma. Blood Adv. 2020;4:2286–96. https:// doi. 
org/ 10. 1182/ blood advan ces. 20200 01816.

 32. Ceriani L, Gritti G, Cascione L, Pirosa MC, Polino A, Ruberto T, 
et al. SAKK38/07 study: integration of baseline metabolic hetero-
geneity and metabolic tumor volume in DLBCL prognostic model. 
Blood Adv. 2020;4:1082–92. https:// doi. org/ 10. 1182/ blood advan 
ces. 20190 01201.

 33. Nioche C, Orlhac F, Boughdad S, Reuze S, Goya-Outi J, Robert 
C, et al. LIFEx: a freeware for radiomic feature calculation in mul-
timodality imaging to accelerate advances in the characterization 
of tumor heterogeneity. Cancer Res. 2018;78:4786–9. https:// doi. 
org/ 10. 1158/ 0008- 5472. CAN- 18- 0125.

 34. Sunderland JJ, Christian PE. Quantitative PET/CT scanner per-
formance characterization based upon the society of nuclear 
medicine and molecular imaging clinical trials network oncology 
clinical simulator phantom. J Nucl Med. 2015;56:145–52. https:// 
doi. org/ 10. 2967/ jnumed. 114. 148056.

 35. Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boellaard 
R. EANM/EARL harmonization strategies in PET quantifica-
tion: from daily practice to multicentre oncological studies. Eur J 
Nucl Med Mol Imaging. 2017;44:17–31. https:// doi. org/ 10. 1007/ 
s00259- 017- 3740-2.

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

941European Journal of Nuclear Medicine and Molecular Imaging  (2022) 49:932–942

1 3

https://doi.org/10.1158/1078-0432.CCR-15-2825
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1007/s00259-018-4100-6
https://doi.org/10.1007/s00259-018-4100-6
https://doi.org/10.2967/jnumed.119.228106
https://doi.org/10.2967/jnumed.119.228106
https://doi.org/10.1007/s00259-018-4250-6
https://doi.org/10.1007/s00259-018-4250-6
https://doi.org/10.1007/s00330-020-06815-8
https://doi.org/10.1007/s00330-020-06815-8
https://doi.org/10.2967/jnumed.119.229450
https://doi.org/10.1200/JCO.19.03418
https://doi.org/10.1200/JCO.19.03418
https://doi.org/10.1007/s00259-014-2961-x
https://doi.org/10.1007/s11307-020-01474-z
https://doi.org/10.1007/s11307-020-01474-z
https://doi.org/10.2967/jnumed.119.238923
https://doi.org/10.2967/jnumed.119.229724
https://doi.org/10.1371/journal.pone.0212223
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1056/NEJM199309303291402
https://doi.org/10.1056/NEJM199309303291402
https://doi.org/10.1007/s00259-018-3966-7
https://doi.org/10.1007/s00259-018-3966-7
https://doi.org/10.1182/blood.2019003526
https://doi.org/10.1007/s00259-018-3953-z
https://doi.org/10.1007/s00259-018-3953-z
https://doi.org/10.1007/s12149-018-1260-1
https://doi.org/10.1007/s12149-018-1260-1
https://doi.org/10.1182/bloodadvances.2020001816
https://doi.org/10.1182/bloodadvances.2020001816
https://doi.org/10.1182/bloodadvances.2019001201
https://doi.org/10.1182/bloodadvances.2019001201
https://doi.org/10.1158/0008-5472.CAN-18-0125
https://doi.org/10.1158/0008-5472.CAN-18-0125
https://doi.org/10.2967/jnumed.114.148056
https://doi.org/10.2967/jnumed.114.148056
https://doi.org/10.1007/s00259-017-3740-2
https://doi.org/10.1007/s00259-017-3740-2


Authors and Affiliations

Jakoba J. Eertink1  · Tim van de Brug2  · Sanne E. Wiegers1  · Gerben J. C. Zwezerijnen3  · 
Elisabeth A. G. Pfaehler4  · Pieternella J. Lugtenburg5  · Bronno van der Holt6 · Henrica C. W. de Vet2  · 
Otto S. Hoekstra3  · Ronald Boellaard3  · Josée M. Zijlstra1 

 Jakoba J. Eertink 
 j.eertink@amsterdamumc.nl

1 Cancer Center Amsterdam, Department of Hematology, 
Amsterdam UMC, Vrije Universiteit Amsterdam, De 
Boelelaan 1117, 1081 HV Amsterdam, Netherlands

2 Department of Epidemiology and Data Science, Amsterdam 
UMC, Vrije Universiteit Amsterdam, Amsterdam Public 
Health Research Institute, De Boelelaan 1117, Amsterdam, 
Netherlands

3 Cancer Center Amsterdam, Department of Radiology 
and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit 
Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands

4 Department of Nuclear Medicine and Molecular Imaging, 
University of Groningen, University Medical Center 
Groningen, Groningen, The Netherlands

5 Department of Hematology, Erasmus MC Cancer Institute, 
Wytemaweg 80, 3015 CN Rotterdam, The Netherlands

6 Department of Hematology, HOVON Data Center, 
Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 
3015 GD Rotterdam, The Netherlands

942 European Journal of Nuclear Medicine and Molecular Imaging  (2022) 49:932–942

1 3

http://orcid.org/0000-0002-6094-0016
http://orcid.org/0000-0003-3541-9111
http://orcid.org/0000-0003-3698-8121
http://orcid.org/0000-0002-9571-9362
http://orcid.org/0000-0002-6160-3011
http://orcid.org/0000-0002-6735-8651
http://orcid.org/0000-0002-5454-2804
http://orcid.org/0000-0003-0767-2734
http://orcid.org/0000-0002-0313-5686
http://orcid.org/0000-0003-1074-5922

	18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusion 
	Trial registration number and date 

	Introduction
	Methods
	Study population
	Quality control of 18F-FDG PETCT scans
	Quantitative image analysis
	Feature extraction
	Clinical predictors
	Statistical analysis

	Results
	Patient characteristics
	MTV analysis
	Performance currently used predictors
	Added value of radiomics features
	Diagnostic performance prediction models
	Survival analysis

	Discussion
	Acknowledgements 
	References


