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Abstract
Purpose To enhance the image quality of oncology  [18F]-FDG PET scans acquired in shorter times and reconstructed by 
faster algorithms using deep neural networks.
Methods List-mode data from 277  [18F]-FDG PET/CT scans, from six centres using GE Discovery PET/CT scanners, 
were split into ¾-, ½- and ¼-duration scans. Full-duration datasets were reconstructed using the convergent block sequen-
tial regularised expectation maximisation (BSREM) algorithm. Short-duration datasets were reconstructed with the faster 
OSEM algorithm. The 277 examinations were divided into training (n = 237), validation (n = 15) and testing (n = 25) sets. 
Three deep learning enhancement (DLE) models were trained to map full and partial-duration OSEM images into their 
target full-duration BSREM images. In addition to standardised uptake value (SUV) evaluations in lesions, liver and lungs, 
two experienced radiologists scored the quality of testing set images and BSREM in a blinded clinical reading (175 series).
Results OSEM reconstructions demonstrated up to 22% difference in lesion  SUVmax, for different scan durations, compared 
to full-duration BSREM. Application of the DLE models reduced this difference significantly for full-, ¾- and ½-duration 
scans, while simultaneously reducing the noise in the liver. The clinical reading showed that the standard DLE model with 
full- or ¾-duration scans provided an image quality substantially comparable to full-duration scans with BSREM reconstruc-
tion, yet in a shorter reconstruction time.
Conclusion Deep learning–based image enhancement models may allow a reduction in scan time (or injected activity) by 
up to 50%, and can decrease reconstruction time to a third, while maintaining image quality.

Keywords Deep neural networks · PET · Image quality

Introduction

Positron emission tomography (PET) is a quantitative 
imaging modality that is used to study functional pro-
cesses using specific radiotracers (e.g. metabolism using 
 [18F]-fluorodeoxyglucose (FDG), prostate cancer detection 
using  [68 Ga]-PSMA). The quality and quantitative accu-
racy of PET images are influenced by several factors such 
as scanner specifications (e.g. sensitivity, spatial resolution, 
timing resolution), patient demographics, imaging protocol 
(e.g. radiotracer, injected dose, post-injection delay, scan 
duration) and image reconstruction technique (e.g. point-
spread-function modelling—PSF, convergence criteria, 
regularisation) [1].

For a given PET scanner, increasing the injected dose 
or scan time [2] and using advanced image reconstruction 
algorithms [3] will significantly improve the image quality 
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in terms of noise and lesion detectability. On the other hand, 
there is a need to increase patient throughput and to reduce 
radiation dose; methods that allow for reduced scan time 
and/or injected dose without compromising the diagnostic 
accuracy of PET images can be important to achieve these 
goals. Advances in Bayesian iterative reconstruction tech-
niques have led to improved quality of PET images by ensur-
ing the reconstruction process considers all the statistical 
and physical processes involved during data acquisition. 
As a result, these reconstruction methods (e.g. ordered sub-
sets expectation maximisation—OSEM and block sequen-
tial regularised expectation maximisation—BSREM [4]) 
have mostly superseded the analytic techniques in emis-
sion tomography—despite their computational burden. 
GE Healthcare’s commercial implementation of BSREM 
(Q.Clear) has found widespread clinical use [5].

Bayesian reconstruction algorithms aim to penalise the 
formation of noisy images based on the hypothesis that large 
local variations in voxel intensity in the images are likely 
due to noise. The strength of penalisation is explicitly con-
trolled by a regularisation parameter (β) [6]. For a properly 
adjusted β value these techniques allow improved contrast 
to noise ratio (CNR) and lesion detectability [7]. For a zero 
β, the BSREM algorithm becomes an unregularised algo-
rithm similar to OSEM, for which the number of iterations 
is often reduced in order to implicitly control noise, at the 
cost of reducing contrast and convergence. The major limita-
tion of these hypothesis-driven algorithms is that, depend-
ing on their penalty function and the regularisation strength, 
they might suppress not only noise but also legitimate image 
features.

Deep learning (DL) techniques have recently been shown 
to have promising application in many aspects of PET imag-
ing from photon detection to image reconstruction [8] and 
lesion detection [9]. For image reconstruction, deep convo-
lutional neural networks (CNNs) have an immense potential 
to learn data-driven penalty functions that best represent 
noise and structures in the images and thus may address the 
limitation of the Bayesian reconstruction algorithms [10]. 
Recent DL developments in PET image reconstruction can 
be divided into three groups: (1) direct mapping of PET 
raw data (i.e. sinograms) to PET images using end-to-end 
networks [11–13]; (2) deep learning reconstruction (DLR), 
which combines DL with Bayesian reconstruction methods 
[14]; (3) deep learning enhancement (DLE) of PET images 
for noise reduction [15, 16] or improved convergence [17]. 
Direct methods aim to learn the whole reconstruction pro-
cess from scratch; hence, their training is computationally 
intensive and requires big datasets, whereas DLR methods 
aim to merge the model-based Bayesian algorithms with 
CNNs to reduce their data requirement and computational 
burden. As DLE methods operate on the reconstructed 
images (noisy and/or partially converged), they can be 

trained and deployed using the current clinical workflow 
without re-architecting the reconstruction engines.

DLE methods have shown promising performance for 
image denoising [9] with comparable performance to DLR 
methods [14]. Moreover, image-based machine/deep learn-
ing techniques have enabled ultra-low dose PET scans main-
taining clinically relevant information in terms of diagnos-
tic accuracy and quantitative SUV measurements [18, 19]. 
The great potential for DLE motivated the current study, in 
which we trained and evaluated a DLE model. The goal was 
reduction of both patient scan time (or injected activity) and 
computational reconstruction time, while providing image 
quality at least comparable to an advanced Bayesian recon-
struction method without the need for adjustment of any 
regularisation parameter. Specifically, the DLE was trained 
to map full- and partial-duration OSEM images (with TOF 
and PSF modelling) to full duration BSREM images. To 
the best of our knowledge, this study is the first that makes 
use of deep learning to produce BSREM-like images from 
conventional OSEM images.

Materials and methods

Our DLE model was trained in supervised learning cycles 
for mapping low-contrast high-noise OSEM PET images to 
high-contrast low-noise BSREM ones in order to improve 
lesion detectability and diagnostic confidence of oncology 
 [18F]-FDG scans. In this section, we elaborate on the steps 
involved in the life cycle of our model as illustrated in Fig. 1.

Data acquisition, validation 
and pre‑processing

The first step was to acquire PET list-mode data and CT-
based attenuation correction (CTAC) images from mul-
tiple clinical sites to improve the generalisability of a 
DLE model to account for the fact that different sites use 
different PET/CT protocols (i.e. injected activity, uptake 
time, scan duration), have different oncology applications, 
and can have different scanner types and reconstruction 
parameters (e.g. BSREM’s beta value). A total of 277 
whole-body oncology  [18F]-FDG PET examinations were 
retrospectively collected from six clinical sites, each 
equipped with either GE Discovery MI (4 or 5 ring at 3 
and 2 sites, respectively) or GE Discovery 710 PET/CT 
scanners (at one site), full details given in Table S1. The 
PET subsystems of these scanners have different spatial 
(4.8–4.9 mm at 1 cm) and TOF resolution (385–549 ps) 
as well as sensitivity depending on the number of detector 
rings and photodetection technology. Consequently, the 
 [18F]-FDG activity (mean ± SD, 391 ± 136 MBq), scan 
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duration (147 ± 8  s/bed) and regularisation parameter 
of BSREM reconstruction (beta 350–500, median 400) 
varied between sites. The  [18F]-FDG uptake time varied 
between sites: 82 ± 28 min. Moreover, there were vari-
ations in disease and patient demographics (body mass 
index, BMI, 27.2 ± 6.0 kg/m2). As the model development 
was performed on fully anonymised image-only data from 
the six sites, a breakdown of their clinical conditions was 
not available. A table of these basic demographics for 
the 277 patients is shown in Table S1. For each subject, a 
whole-body CT scan was performed for PET attenuation 
correction using 100–120 kVp, 150–200 mAs.

The 277 examinations were validated for patient 
and tracer information and then divided into training 
(n = 237), validation (n = 15) and test (n = 25) sets. Each 
patient’s list-mode data was binned into four different 
duration sinograms including full, ¾, ½ and ¼ to simulate 
reduced scanning time (from the start of the scan to the 
given fraction). Each was reconstructed using an OSEM 
algorithm with a matrix size of 256 × 256, field-of-view 
700 mm, voxel size 2.7 × 2.7 × (2.8 or 3.7)  mm3 and 2 
iterations, 34 and 24 subsets for Discovery MI and 710 
scanners, respectively, with PSF and standard z-filter. 
Full duration sinograms were additionally reconstructed 
using the BSREM algorithm with a regularisation param-
eter that was experimentally adjusted per site in order to 
achieve the same low noise level (based on visual inspec-
tion) across data from all sites. The noisy, low-contrast 
OSEM and low-noise, high-contrast BSREM images were 
respectively used as input and target images for super-
vised training of our DLE model. The training and valida-
tion image volumes were pre-processed by cropping their 
matrix sizes by up to 40% (to save GPU memory) and 
were axially divided into equally spaced 3D sub-volumes 
(patches, of size 152 × 152 × 100). Using this multi-centre 
multi-duration training set, we aimed to train one generic 
DLE model capable of dealing with different noise levels 
and datasets.

Model training and tuning

A 3D residual convolutional encoder–decoder (U-Net 
[20]) network was developed and implemented in PyTorch. 
As illustrated in Fig. S1, the network is composed of con-
volutional layers (using 3 × 3 × 3 kernels), batch normali-
sation (BN), 3D maximum pooling layers and tri-linear 
up-sampling layers, skip and residual connections and 
rectified linear unit (ReLU) activation functions. The net-
work predicts a residue image (with positive and negative 
values) that is added to an input patch in order to reduce 
noise or improve the contrast of features. The network was 
trained in a supervised session in which its output (i.e. 
OSEM + DLE) is compared to a target patch (i.e. BSREM) 
based on a mean squared error (MSE) loss function (as a 
similarity measure) and then the resulting error is back 
propagated through the network using the Adam optimiser 
[21] to update its trainable parameters (i.e. convolution 
kernels, biases, BN parameters). In each training iteration 
(termed an epoch), the training patches were randomly 
shuffled. The network was trained for a maximum of 100 
epochs on a workstation with two 24 GB RTX6000 GPUs, 
bridged via NVLink technology. The validation set was 
used to monitor the network’s generalisation error for 
inferencing on unforeseen datasets and to avoid over-fit-
ting. The standardised uptake values (SUVs) of lesions, 
liver and lungs in the validation datasets were also used for 
model evaluation (as described in the next section). The 
epoch at which the model had the lowest validation loss, as 
well as the lowest feature SUV quantification differences 
with the target data, was chosen as a stopping criterion.

The performance of a DLE model is affected by many 
factors from data sufficiency and diversity to model archi-
tecture and training hyperparameters. Given the high com-
putational load of training with large datasets, most of 
the model parameters were chosen experimentally (such 
as loss function, optimiser, learning rate, kernel size, 

Fig. 1  The pipeline and life 
cycle of our DLE model
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batch size and patch dimensions). The model’s number 
of kernels was however based on quantitative measures 
and model feedback received from clinical review of the 
model’s output. Table S2 summarises three DLE models 
used in this study that differ mostly based on their number 
of trainable model parameters.

Model evaluation, validation, deployment 
and clinical feedback

The performance of our trained DL models was objectively 
evaluated using the validation and test datasets in terms of 
lesion  SUVmax (maximum voxel intensity),  SUVmean (mean 
intensity of voxels) in liver and lungs and the noise in the 
liver using volumes of interest (VOIs) selected per subject. 
For each subject, five VOIs of size 7 × 7 × 7 voxels were 
defined in the lungs, and five similar VOIs in liver. These 
were used for evaluation of  SUVmean, the SD of noise and 
background variability. For each subject, up to five small 
lesions were visually identified and segmented using an 
adaptive thresholding method (42% of subtraction of maxi-
mum and minimum SUV in a 7 × 7 × 7 bounding box). The 
lung and liver VOIs were defined on target BSREM images 
and then transferred to the other image series of each exam 
(full- or partial-duration OSEM or DLE). The lesion seg-
mentation was separately performed for each image series 
due to its adaptive thresholding basis. The difference in SUV 
values (compared to the target BSREM SUVs), scatter plots 
and Bland–Altman plots were used for objective evaluation 
of the results. The statistical significance of differences in 
SUV bias was also evaluated using the Wilcoxon signed-
rank test.

At the evaluation stage, a model that was not over fitted 
(based on validation loss) and had the best quantification 
performance in lesions, liver and lungs for the validation set 
was chosen as the best model. Next in the model develop-
ment, the selected model was evaluated using test datasets 
and was deployed for external evaluations outside of the 
training environment. Unlike a DLR model, DLE models 
can be readily deployed on local devices or on cloud-based 
AI inferencing due to their reduced computational burden 
and reduced data transfer requirements. While DLE are 
inferenced on only image data, which is very quick to trans-
fer, DLR requires list data (or sinogram) as well as CT for 
attenuation correction. Based on initial clinical feedback, we 
had looped over the life cycle of the model and performed 
data versioning and model tuning (by changing the number 
of trainable parameters) in order to improve the models.

Two radiologists, reader 1 (K.M.B. 18 years board certi-
fied in clinical radiology and nuclear medicine) and reader 
2 (P.A.F. 17 years board certified in clinical radiology 
and nuclear medicine), blinded to image reconstruction, 

independently rated all 25 PET/CT testing sets. Each of the 
25 patient cases had 7 image series (full-duration BSREM, 
full-, ¾-, ½-duration OSEM and full-, ¾-, ½-duration DLE-
standard); these were assessed based on Likert scores con-
sidering several image features (image quality, diagnostic 
confidence, noise, etc.). The Likert scale used was 0 (non-
diagnostic), 1 (poor), 2 (satisfactory), 3 (good), 4 (very 
good) and 5 (excellent). In addition, the seven series were 
ranked in order of preference from 1 (best) to 7 (worst) for 
each imaging feature. If necessary two series were ranked 
equal, in this situation the two series were given the same 
rank with the following lower number subsequently missed 
in the ranking. To reduce the number of readings, the 
¼-duration scans and DLE-smooth and sharp were not rated.

Inter-reader agreement was measured by using a quadratic 
weighted kappa (κ) [22], using SPSS version 27. The statis-
tical significance of differences in image quality score was 
evaluated using the Wilcoxon signed-rank test between the 
target BSREM reconstruction and DLE-standard for each 
frame duration.

Results

Figure 2 compares the results of OSEM and DLE meth-
ods for different scan durations of a representative patient 
compared to its target full-duration BSREM. The results 
show liver noise in OSEM is increased as scan duration is 
decreased, while smooth, standard and sharp DLEs show 
consistently reduced noise (at different levels depend-
ing on the DLE model). Based on initial clinical reading, 
DLE-standard was found to be a model that provides the 
level of enhancement that is comparable to BSREM (with 
medium level of regularisation). In the following, we report 
the results for DLE-standard. Corresponding results for 
DLE-smooth and sharp are presented in the Supplementary 
materials.

Figure 3 shows the quantitative performance of OSEM 
and DLE-standard methods on the testing set for lesion 
 SUVmax, lung and liver  SUVmean, and liver noise for full- and 
partial-duration scans in comparison with the target BSREM 
method. Figures S2 and S3 show the corresponding results 
for DLE-smooth and DLE-sharp. The p values on the figures 
show the significance of the difference between DLE and 
OSEM results for each scan duration. Table S3 shows the 
p values of the difference between lesion  SUVmax, lung and 
liver  SUVmean for each reconstruction method and the full-
duration BSREM for all scan durations. The OSEM method 
shows a higher percentage difference in  SUVmax of lesions 
(n = 67) as compared to full-duration BSREM images (up to 
22%), due to lack of convergence, and higher noise level in 
the liver, due to lack of explicit regularisation. DLE-standard 
shows lower  SUVmax quantification differences for lesions 
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Fig. 2  Visual comparison of different reconstruction methods and 
deep learning enhancement (DLE) models for different scan durations 
of a representative subject with a BMI of 35.0 kg/m2 with an injected 

activity of 222 MBq scanned on GE Discovery MI (4-ring) PET/CT 
scanner (slice thickness 2.8 mm). BSREM = block sequential regular-
ised expectation maximisation

Fig. 3  Quantitative performance of the DLE-standard model evalu-
ated on the testing set in terms of lesion  SUVmax, lung  SUVmean, liver 
 SUVmean and noise in liver for full-, ¾-, ½- and ¼-duration input 
scans. Average of STD is the SD of noise averaged over all 5 liver 

VOIs across all patients. The p values shown are calculated using the 
Wilcoxon signed-rank test from the differences in SUV bias (OSEM 
to DLE-standard). BSREM = block sequential regularised expectation 
maximisation, DLE = deep learning enhancement
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at different scan durations down to half duration. In the lung 
and liver, we found that both OSEM and DLE-standard had 
minimal bias in  SUVmean as the total counts in the image was 
decreased; changes were around 2% or less which is of little 
clinical significance. The liver noise is relatively similar for 
all scan durations; however, the lesion quantification errors 
become larger as the scan duration is reduced. This can be 
attributed to the fact that DLE acts like a BSREM recon-
struction with a beta value that is automatically increased 
for shorter or noisier scans, reducing noise at the cost of 
a reduction in contrast (and lesion  SUVmax). As shown in 
Figs. S2 and S3, DLE-smooth behaves similarly to DLE-
standard however with a lower noise in liver, whereas DLE-
sharp shows less noise reduction and better lesion quantifica-
tion performance.

Figure 4 shows scatter plots of lesion  SUVmax for different 
duration OSEM and DLE-standard images compared to full-
duration BSREM images. Figures S4 and S5 show similar 
results for DLE-smooth and sharp, respectively. As shown in 
Fig. 4, for full-duration scans, the slope of DLE-standard is 
close to identity (gradient = 1.03), which indicates contrast 
convergence enhancement of the input OSEM images (which 
yielded a gradient of 0.77). For partial-duration scans, DLE 
provides less enhancement in terms of the slope of the fit-
ted lines, but with more noise reduction as shown in Fig. 3. 
Similar trends are observed for DLE-smooth and sharp.

Figure 5 shows Bland–Altman plots comparing the con-
cordance of lesion  SUVmax between full-duration BSREM 
and different durations of the OSEM and DLE-standard. Fig-
ures S6 and S7 show similar results for DLE-smooth and 
sharp, respectively. Table S4 summarises the means and 
the limits of agreement (1.96 SDs) for all DLEs and scan 
durations. Consistent with the other quantification measures, 
the plots show a systematic difference in  SUVmax between 
OSEM and DLE methods for full-duration scans, with this 
difference reducing as the duration reduces from full to 
¼-duration scans.

Figure  6 shows the reconstruction results for an 
 [18F]-FDG scan for DLE-standard. Figure S8 shows similar 
results for DLE-smooth and sharp, respectively. As shown, 
the DLE-standard model produces images of consistent 
noise and contrast similar to the target images. It is note-
worthy that such a noise reduction level does not adversely 
impact lesion detectability down to ½-duration scans. For 
¼-duration scans, some lesions or features have low signal-
to-noise ratio and manifest similar to noise. While DLE-
sharp is likely to preserve such features (with less noise 
reduction), DLE-smooth is likely to suppress them.

Tables 1, 2 and 3 show the scores and ranking results for 
different reconstruction methods. During clinical scoring, 
both radiologists reported that the images scored covered 
a broad range of oncological conditions. No images were 

Fig. 4  Scatter plots of lesion  SUVmax for different durations of OSEM and DLE-standard images compared to full-duration BSREM images. The 
grey line is an identity line. BSREM = block sequential regularised expectation maximisation, DLE = deep learning enhancement
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scored non-diagnostic. The results show that short scans 
with DLE filtering provide a score comparable or higher 
than BSREM for all imaging metrics. Testing the signifi-
cance between (full-duration) BSREM and DLE-standard 
for image quality score showed a significant preference for 
DLE over BSREM when the DLE input was full-duration 
(p < 0.001) or ¾-duration scans (p = 0.006). While full DLE-
standard and ¾ DLE-standard showed significant superior-
ity, there was no significant difference found for ½ DLE-
standard (p = 0.11). These ½-time DLE images had slightly 
lower (inferior) average image quality scores compared to 
full-time BSREM, and the absence of statistical significance 
in this test does not demonstrate clinical equivalence. From 
average rankings, full DLE-standard was preferred fol-
lowed by ¾ DLE-standard and then BSREM for all imag-
ing metrics.

Apart from the improved contrast-to-noise ratio, DLE 
can mimic BSREM reconstruction with a lower overall 
computational burden. The reconstruction time of BSREM 
and OSEM algorithms on a 5-ring DMI scanner are 3.2 and 
1.1 min per bed position, respectively, with DLE additional 

processing for a whole-body scan only ~ 5 s. Therefore, 
DLE can provide an image quality comparable to BSREM 
in almost one third of the reconstruction time.

Discussion

In the present study, the feasibility of generalised deep 
learning denoising model development was explored, and 
subsequently the performance of three selected models was 
evaluated. These models aim to facilitate a substantial reduc-
tion in scan duration together with a reduced reconstruc-
tion/processing time for whole-body  [18F]-FDG PET scans 
compared to the BSREM algorithm. These DLEs had a good 
performance on a range of metrics, for input data of different 
scan durations, from multiple PET centres, for a range of 
patient BMIs and across a spectrum of oncology indications. 
Crucially, the DLEs have no need for the user to fine tune 
the level of denoising or contrast enhancement per patient 
(or patient group).

Fig. 5  Bland–Altman plots comparing the concordance of lesion 
 SUVmax between full-duration BSREM and different durations of the 
OSEM and DLE-standard. Actual values for limits of agreement are 

shown in Table S4 for clarity. BSREM = block sequential regularised 
expectation maximisation, DLE = deep learning enhancement
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Given that the ideal level of smoothness is subjective, we 
trained three different models for smooth, standard and sharp 
DLEs, among which the standard model was selected for 
further clinical evaluation. Our quantitative results showed 
that DLE-standard achieved a balanced performance for 

lesion detection, as well as lung and liver background noise 
compared to our target full-duration BSREM images (for 
which the regularisation parameter had been adjusted to pro-
vide a standard smoothness level). We found the DLE-sharp 
provided the best performance in terms of lesion  SUVmax 

Fig. 6  Reconstruction results for a patient with a BMI of 23.9  kg/
m2 with an injected activity of 289  MBq scanned on GE D710 
PET/CT scanner (slice thickness 3.7  mm). This patient had a his-
tory of relapsed DLBCL (diffuse large B-cell lymphoma). Their 

blood glucose was 7.8  mmol/l. The arrow points to a small patho-
logical sub-centimetre node at the root of the left side of the neck. 
BSREM = block sequential regularised expectation maximisation, 
DLE = deep learning enhancement

Table 1  Clinical image quality scoring from two readers of 25 whole-body scans based on different criteria, mean (1 SD)

0 is non-diagnostic, 5 is excellent with no or minimal heterogeneities. Bold indicates the best (highest) score for each metric. Quadratically 
weighted kappa values between the two readers are given for each metric. The image quality scores from DLE were also tested for significant 
differences as compared to full BSREM  
a p < 0.001, bp = 0.006, cp = 0.11

Scores Image quality Liver IQ Bone marrow IQ Background tissues 
except liver/marrow

Noise level Lesion detectability Diagnostic 
confidence

Full BSREM 3.6 (0.81) 3.4 (0.79) 3.7 (0.85) 3.6 (0.84) 3.5 (0.79) 4.0 (0.83) 3.9 (0.88)
Full OSEM 2.7 (0.78) 2.6 (0.75) 2.9 (0.87) 2.7 (0.80 2.7 (0.77) 2.9 (0.72) 2.9 (0.71)
¾ OSEM 2.6 (0.67) 2.6 (0.67) 2.9 (0.93) 2.7 (0.77) 2.6 (0.67) 2.7 (0.64) 2.6 (0.64)
½ OSEM 1.9 (0.70) 1.8 (0.64) 2.1 (0.85) 1.9 (0.77) 1.8 (0.71) 1.9 (0.75) 1.9 (0.75)
Full DLE-standard 4.2 (0.84)a 4.1 (0.84) 4.3 (0.78) 4.2 (0.80) 4.1 (0.81) 4.4 (0.76) 4.4 (0.67)
¾ DLE-standard 3.9 (0.63)b 3.8 (0.65) 4.0 (0.65) 3.9 (0.63) 3.9 (0.63) 3.9 (0.78) 4.0 (0.71)
½ DLE-standard 3.3 (0.79)c 3.4 (0.64) 3.7 (0.75) 3.5 (0.65) 3.4 (0.64) 3.2 (0.95) 3.4 (0.92)
Weighted kappa 0.62 0.66 0.60 0.51 0.51 0.52 0.62
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quantification (vs. target BSREM), as it incorporated the 
least noise reduction. Such behaviour was predictable as the 
models were trained to mimic BSREM images which have 
the same trade-off between noise and contrast as the regu-
larisation parameter is changed. In order to reduce noise in 
short scans, the beta value of BSREM must be increased 
which comes at the cost of lowering  SUVmax compared to 
full-duration BSREM. The ½-duration DLE-sharp had an 
error of 4.9% on lesion  SUVmax compared to full-duration 
BSREM, whereas ½-duration DLE-standard had an error 
of 14.2%. Hence, if DLE is applied to achieve an image 
quantitatively similar to BSREM, then the DLE-sharp model 
should be chosen.

This study utilised a U-Net model as a widely used 
encoder–decoder CNN. Lu et al. [15] showed that an opti-
mised 3-D U-Net can outperform a convolutional autoen-
coder network and a generative adversarial net for lung nod-
ule quantification in reduced dose scans. The performance 
and generalisability of supervised deep learning models 
also depend on the quality and diversity of the training sets. 
For this reason, unsupervised DL models have also been 
explored for denoising of PET data [23]. However, their per-
formance will instead depend on the network architecture 
and its training hyperparameters. For this reason, supervised 

DL methods trained with sufficient datasets are potentially 
more robust than unsupervised ones. In this study, we 
additionally targeted improved lesion contrast which can 
be challenging to be achieved by unsupervised methods. 
The relationship between the number of parameters in our 
U-net model and the level of sharpness relies on the fact 
that the U-net has a bottle neck where it compresses all 
semantic features. Based on our experience, the larger that 
bottle neck (hence the more parameters), the more details 
and noise are preserved. The smoothness behaviour of our 
networks was hence controlled by changing the number of 
such parameters.

A key strength of these current DLE models is the infor-
mation variety of the training sets across different scanner 
types, acquisition protocols and patient demographics. This 
not only makes the approach applicable for a wide range 
of clinical situations but also eliminates the need for find-
ing a set of good reconstruction parameters for each patient 
(e.g. the number of iterations, the strength of post-filtering, 
the beta value of BSREM recon, etc.). In fact, our clini-
cal reading results in Tables 1 and 2 demonstrated for short 
scans DLE can provide a comparable or higher image qual-
ity than full-duration BSREM. This can be attributed to the 
fact that the regularisation parameter (beta) of BSREM is 

Table 2  Clinical image quality ranking from two readers of 25 whole-body scans based on different criteria, mean (1 SD)

1 is best and 7 is worst. Bold indicates the best (lowest) rank for each metric

Ranks Image quality Liver IQ Bone marrow IQ Background tissues 
except liver/marrow

Noise level Lesion detectability Diagnostic 
confidence

Full BSREM 2.6 (1.3) 2.6 (1.3) 2.6 (1.3) 2.6 (1.3) 2.6 (1.2) 2.3 (1.23) 2.4 (1.2)
Full OSEM 5.0 (1.2) 5.1 (1.0) 5.0 (1.2) 5.1 (1.0) 5.1 (1.0) 4.5 (1.19) 4.8 (1.1)
¾ OSEM 5.3 (0.99) 5.4 (0.86) 5.2 (1.3) 5.4 (0.85) 5.4 (0.85) 5.1 (0.99) 5.4 (0.86)
½ OSEM 6.8 (0.42) 6.8 (0.48) 6.7 (0.95) 6.8 (0.49) 6.8 (0.48) 6.8 (0.45) 6.9 (0.36)
Full DLE-standard 1.3 (0.87) 1.2 (0.68) 1.2 (0.68) 1.2 (0.68) 1.2 (0.68) 1.5 (0.91) 1.5 (0.91)
¾ DLE-standard 1.8 (0.83) 1.6 (0.72) 1.6 (0.73) 1.6 (0.73) 1.6 (0.72) 2.2 (1.21) 2.0 (0.82)
½ DLE-standard 3.4 (1.5) 2.9 (1.4) 2.6 (1.4) 2.9 (1.4) 3.0 (1.4) 4.1 (1.91) 3.8 (1.57)

Table 3  Percentage of clinical image quality scores greater than or equal to 3 from two readers of 25 whole-body scans based on different crite-
ria

Bold indicates the best (highest) percentage for each metric

Scores Image quality Liver IQ Bone marrow IQ Background tissues  
except liver/marrow

Noise level Lesion detectability Diagnostic 
confidence

Full BSREM 92 88 96 92 92 96 96
Full OSEM 40 36 56 40 40 52 52
¾ OSEM 48 40 52 48 48 40 40
½ OSEM 4 0 12 8 4 8 4
Full DLE-standard 100 100 100 100 100 100 100
¾ DLE-standard 100 100 100 100 100 96 96
½ DLE-standard 92 96 100 100 96 88 88
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often selected per site or protocol rather than per patient, 
while with DLE a regularisation step suitable for the image 
set at hand is performed by the trained convolutional neural 
networks.

In comparison to DLE, the level of noise in BSREM 
reconstructions must be controlled using a regularisation 
parameter which is usually optimised per site or tracer or 
protocol. In a  [68Ga]-DOTA PET study [24], it was found 
that adapting the regularisation parameter enables a one-
third reduction of acquisition time or injected activity. More-
over, DLE models can be deployed across different PET 
scanners across different sites via cloud-based inferencing 
services. However, the new generation of long axial FOV 
and digital scanners combined with optimised reconstruction 
allow for ultra-fast imaging (i.e. 30 s per bed) [25]. In that 
regard, a DLE model trained on sufficiently diverse datasets 
could be used across all generations of PET scanners.

He et al. [17] utilised a DLE method to reduce the recon-
struction time of BSREM algorithm through using less itera-
tions to achieve full convergence (known as leapfrogging). 
In comparison, in this study, the ‘leapfrogging’ and faster 
reconstruction was achieved by transforming an OSEM 
reconstruction, which uses a small number of iterations, 
into fully converged BSREM-like images, which uses a large 
number of iterations. Our results demonstrate that the recon-
struction time can thus be reduced, potentially to a third.

The present study has a number of limitations. The 
proposed method was not compared to other classical 
denoising methods such as non-local means (NLM). Such 
methods are however often hypothesis-driven with their 
performance limited by their mathematical form or their 
hyperparameters. For instance, NLM has a shape hyper-
parameter that governs its noise reduction and edge pres-
ervation. Since the present study included a large number 
of test sets, each with three noise levels, we decided to 
focus on the evaluation and deployment of DLE models, 
given their noise reduction and leapfrogging potential. 
The models were developed using data from three types 
of GE PET/CT scanner (D710, DMI 4-ring and DMI 
5-ring). Currently, the only available commercial imple-
mentation of BSREM for PET is by GE Healthcare. The 
model development and its current validation were hence 
limited to images from a single scanner manufacturer 
where the necessary BSREM images were available. In 
addition, future work should incorporate a prospective 
study to include lesion detectability to provide greater 
certainty on this specific aspect of performance. Such 
a study is anticipated once the DLE algorithms can be 
readily deployed to sites. We can however be guided by 
the results from clinical scoring (Table 1) in which full 
DLE-standard had a higher lesion detectability, and ¾ 
DLE-standard a similar lesion detectability, as compared 

to full BSREM. Conversely, the ½ DLE-standard had a 
lower lesion detectability than full BSREM, while still 
being higher than full OSEM. The lesion detectability for 
all durations is expected to be higher when DLE-sharp is 
used. Another limitation is that in the lesion selection pro-
cess for quantitative analysis, most of the identified lesions 
in our testing set had  SUVmax > 2.5. Future work could be 
performed to study the quantitative performance of our 
DLE models for lesions  SUVmax < 2.5. Such lesions were, 
however, present in the 25 cases scored by the two raters in 
this study. The performance of these DLE models (or simi-
lar ones) on whole-body dynamic or gated scans (which 
often provide noisy images), as well as on non-[18F]-FDG 
tracers, will also be of interest in the future. Future work 
will extend the training and testing of DLE with PET data 
from clinical sites not included in this current work, which 
will further evaluate and develop the DLE model. Future 
work could also use new advanced and computationally 
expensive reconstruction algorithms to train further AI 
algorithms as the clinically orientated time constraint is 
removed in this situation.

Conclusion

This study developed deep learning image enhancement 
models for denoising and/or contrast image enhancement 
of full- and short-duration  [18F]-FDG PET scans. Our 
quantitative and qualitative results demonstrate that with 
the proposed networks, that scan time or injected activity 
can be reduced by at least 25% versus BSREM and 50% 
versus OSEM without impacting the image quality. The 
networks predicted patient-specific BSREM-type images 
with a threefold faster reconstruction/processing time and 
without the need for tuning a regularisation parameter. 
Since the image quality and noise preference is subjective, 
three different models were trained and tested. The current 
evaluation found DLE to provide image quality at least as 
good as the full-duration BSREM reconstruction.
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