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Abstract
Purpose  In the prediction of COVID-19 disease progression, a clear illustration and early determination of an area that will 
be affected by pneumonia remain great challenges. In this study, we aimed to predict and visualize the progression of lung 
lesions in COVID-19 patients in the early stage of illness by using chest CT.
Methods  COVID-19 patients who underwent three chest CT scans in the progressive phase were retrospectively enrolled. 
An extended CT ventilation imaging (CTVI) method was proposed in this work that was adapted to use two chest CT scans 
acquired on different days, and then lung ventilation maps were generated. The prediction maps were obtained according to 
the fractional ventilation values, which were related to pulmonary regional function and tissue property changes. The third 
CT scan was used to validate whether the prediction maps could be used to distinguish healthy regions and potential lesions.
Results  A total of 30 patients (mean age ± SD, 43 ± 10 years, 19 females, and 2–12 days between the second and third CT 
scans) were included in this study. The predicted lesion locations and sizes were almost the same as the true ones visual-
ized in third CT scan. Quantitatively, the predicted lesion volumes and true lesion volumes showed both a good Pearson 
correlation (R2 = 0.80; P < 0.001) and good consistency in the Bland–Altman plot (mean bias = 0.04 cm3). Regarding the 
enlargements of the existing lesions, prediction results also exhibited a good Pearson correlation (R2 = 0.76; P < 0.001) with 
true lesion enlargements.
Conclusion  The present findings demonstrated that the extended CTVI method could accurately predict and visualize the 
progression of lung lesions in COVID-19 patients in the early stage of illness, which is helpful for physicians to predetermine 
the severity of COVID-19 pneumonia and make effective treatment plans in advance.
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Introduction

In December 2019, coronavirus disease 2019 (COVID-19) 
caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) was first reported in Wuhan, China [1]. By 
March 2021, more than 118 million people had been infected 
with COVID-19, and 2.6 million of those infected had died [2]. 
In this public health emergency, chest computed tomography 

Cheng Wang, Lu Huang, and Sa Xiao contributed equally to this 
work.

This article is part of the Topical Collection on Technology.

 *	 Liming Xia 
	 lmxia@tjh.tjmu.edu.cn

 *	 Xin Zhou 
	 xinzhou@wipm.ac.cn

1	 School of Physics, Huazhong University of Science 
and Technology, Wuhan 430074, China

2	 State Key Laboratory of Magnetic Resonance and Atomic 
and Molecular Physics, National Center for Magnetic 

Resonance in Wuhan, Wuhan Institute of Physics 
and Mathematics, Innovation Academy for Precision 
Measurement Science and Technology, Chinese 
Academy of Sciences – Wuhan National Laboratory 
for Optoelectronics, Wuhan 430071, China

3	 Department of Radiology, Tongji Hospital, Tongji Medical 
College, Huazhong University of Science and Technology, 
Wuhan 430030, China

/ Published online: 17 June 2021

European Journal of Nuclear Medicine and Molecular Imaging (2021) 48:4339–4349

http://orcid.org/0000-0002-5580-7907
http://crossmark.crossref.org/dialog/?doi=10.1007/s00259-021-05435-8&domain=pdf


1 3

(CT) plays an important role in screening and monitoring the 
progression of COVID-19 pneumonia due to its high efficiency 
[3]. The typical CT features of COVID-19 pneumonia include 
ground glass opacities (GGOs), GGOs with consolidation, 
eccentric paving patterns, and consolidation [4]. In accordance 
with the guidelines of the diagnosis and treatment of COVID-
19 pneumonia, patients are suggested to undergo more than 
one chest CT scan during hospitalization [5].

During the treatment of COVID-19 patients, it is advanta-
geous to identify patients who are likely to progress to a severe 
or critical stage as soon as possible [6]. Previous studies have 
shown that CT structural features, combined with clinical 
and laboratory biomarkers, are a promising tool to predict the 
clinical progression of COVID-19 [7–13]. However, previous 
methods focused on the prediction of the overall progression 
of the disease, and it is difficult to determine the spatial loca-
tion and the size of the upcoming lung lesions (e.g., the new 
GGO and/or consolidation) in COVID-19 patients. Therefore, 
it is necessary to develop a prediction method to help physi-
cians accurately assess COVID-19 disease progression with a 
clear illustration that allows for early determination of the area 
that will be affected by COVID-19 pneumonia [14].

Generally, there is an incubation period of several days 
before the emergence of lung lesions on CT imaging in 
COVID-19 patients [15, 16]. During this incubation period, 
regional lung function might have been impaired; this func-
tional impairment can be detected by lung function imag-
ing [17–19]. Preliminary studies have used single-photon 
emission computed tomography [20] to discover regional 
lung gas-exchange impairments (e.g., ventilation defects) 
in COVID-19 patients in the early stage of the disease [21, 
22]. Hyperpolarized noble gas (such as 3He or 129Xe) mag-
netic resonance imaging (MRI) [23] has also been used 
for the anatomical structure and functional imaging of the 
human lung, and recently, our group detected damaged lung 
gas-exchange function with hyperpolarized 129Xe MRI in 
discharged COVID-19 patients [24]. In addition, CT ven-
tilation imaging (CTVI) using two chest CT scans is able 
to detect regional lung function [25]. The CTVI method 
generates the ventilation images from a pair of inspiration 
and expiration CT images [26–28]. The regional volume 
changes due to ventilation are calculated based on CT 
regional values, and the regions of greater changes in CT 
values correspond to higher relative ventilation. Consider-
ing that many COVID-19 patients have undergone more 
than one chest CT scan, CTVI has a good foundation in the 
lung function impairment research on COVID-19.

Based on the above, we intend to use CTVI to predict the 
progression of lung lesions in COVID-19 patients in the early 
stage of the disease. Nevertheless, the conventional CTVI 
method uses two CT scans acquired on the same day [25–28], 
while the CT scans of the COVID-19 patients are usually 
acquired on different days. Thus, we propose an extended 

CTVI method for two CT scans acquired on different days. 
Then, the prediction maps generated from the proposed 
method are used to distinguish the healthy lung regions and 
potential impaired lung regions. This method could predict 
the progression of lung lesions accurately, help physicians 
predetermine the severity of COVID-19 pneumonia, and assist 
them in making effective treatment plans in advance.

Materials and methods

Study subjects

From January 13 to March 28, 2020, COVID-19 patients 
who were confirmed by using real-time reverse-transcriptase 
polymerase chain reaction were retrospectively enrolled 
from Tongji Hospital, Wuhan, China. The inclusion criteria 
of the patients were as follows: (1) each patient underwent 
three chest CT scans [the first two CT scans (referred to as 
CT1 and CT2) were used for prediction, and the third CT 
scan (referred as CT3) was used to validate the predicted 
results], (2) the CT scans of the patients were acquired in 
the progressive phase of the disease, and (3) the patients had 
no previous history of pulmonary disease. The local ethical 
review board approved this retrospective study and waived 
the requirement to obtain individual informed consent.

Extended CT ventilation imaging

In the acquisition process, all chest CT scans were performed 
in the supine position. The CT acquisition parameters were as 
follows: tube voltage = 100–120 kVp, matrix = 512 × 512, slice 
thickness = 1–1.25 mm, field of view = 350 mm × 350 mm, and 
spiral pitch factor = 0.81–1.375.

In CT image preprocessing, lung masks of CT1 and CT2 
images were initially segmented with the seed region growth 
algorithm provided in 3D Slicer software (version 4.2) [29] 
and then manually corrected by two radiologists (with more 
than 10 years of experience in pulmonary imaging diagnosis). 
Then, CT1 and CT2 images were spatially coregistered using 
the B-spline deformation registration algorithm provided in 
Elastix software (version 4.9) [30]. After that, CT1 and CT2 
images were smoothed by the median filter. Finally, the nonaer-
ated lung regions (e.g., vasculature) and the visible lesions were 
marked and excluded from the CTVI analysis [31].

After image preprocessing, the lung ventilation maps were 
calculated according to CTVI theory. In this theory, chest CT 
scans measure the density [Hounsfield units (HUs)]] of the pul-
monary voxel, and air ventilation causes a change in the HU 
value [25]. The conventional CTVI method used two CT scans 
with different respiratory phases that were acquired on the same 
day (e.g., the end-inspiration and end-expiration of a 4D CT 
scan) to generate a lung ventilation map [25–28]. However, 
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during the clinical hospitalization of COVID-19 patients, the 
CT1 and CT2 scans of the patients were usually acquired on 
different days. Thus, in this paper, we adapted the CTVI method 
to evaluate two lung CT scans acquired on different days.

Herein, we derived the mathematical relationship between 
ventilation and HU values to generate a lung ventilation 
map. A pulmonary voxel could be considered a combination 
of air content and tissue content [32]. The tissue includes 
cells, blood, collagen, water, etc., which have approximately 
the same density of water. The air volume (Vair) and tissue 
volume (Vtissue) of that voxel could be calculated based on 
the total volume (Vtotal) and total HU value (HUtotal) of that 
voxel (see Appendix). Then, for that pulmonary voxel in 
CT1 and CT2 images, the corresponding air volume (Vair1 
and Vair2) and tissue volume (Vtissue1 and Vtissue2) are

where V1 and HU1 and where V2 and HU2 represent the total 
volume and total HU value of that voxel in the CT1 and CT2 
scans, respectively.

Then, the fractional ventilation (FV) value between the 
CT1 and CT2 scans of the pulmonary voxel is defined as the 
breathing-induced air volume change [26–28] and could be 
calculated as

Assuming the tissue volume of that pulmonary voxel has 
little difference between CT1 and CT2,

Then, the FV of that pulmonary voxel between CT1 and 
CT2 is

Based on Eq.  (4), the lung ventilation map could be 
obtained with the calculated FV values. The validation of 
the accuracy of FV values was shown in Fig. S1 of the Sup-
plementary material.

Prediction of lung lesion progression

The concept of predicting the progression of lung lesions in 
COVID-19 patients is shown in Fig. 1 and mainly includes 
four steps. In the first step, CT1 (Fig. 1a) and CT2 (Fig. 1b) 
images were used to generate the lung ventilation map 
(Fig. 1c) with the extended CTVI method. In the second 
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step, the pulmonary voxels in the lung ventilation map were 
divided into three categories (P1, P2, and P3) according to 
the FV value of each pulmonary voxel, as shown in Fig. 1d. 
In the third step, the three categories were displayed as dif-
ferent colors and visualized on a prediction map, as shown 
in Fig. 1e. The blue, black, and yellow color voxels represent 
the P1, P2, and P3 voxels, respectively, in the prediction 
map. P1 was predicted to be a healthy region, and P2 and P3 
were predicted to be lesions. Finally, a follow-up CT3 scan 
(Fig. 1f) was used to validate the predicted results.

The second step was critical for predicting the progres-
sion of lung lesions in COVID-19 patients. The pulmonary 
voxels were divided into three categories in this step. In the 
first category, the tissue volume of the voxel had little differ-
ence between CT1 and CT2 scans, and the voxel had normal 
ventilation function. Therefore, the voxel had a normal FV 
value (referred to as the P1 voxel). In the second category, the 
tissue volume of the voxel had little difference between CT1 
and CT2 scans, but the voxel had impaired ventilation func-
tion. Accordingly, the voxel should have an abnormally lower 
FV value (referred to as the P2 voxel). In the third category, 
the tissue volume of the voxel had some differences between 
CT1 and CT2 scans, which indicated the trends of lesions and 
the sharp increase of HU values. Thus, the voxel should have 
an abnormally higher FV value (referred to as the P3 voxel) 
due to the large value of (HU2 − HU1) in Eq. (4).

Specifically, we used a threshold method to distinguish 
P1, P2, and P3 voxels. The voxels with FV values below A 
were categorized as P2, the voxels with FV values above 
B were categorized as P3, and the voxels with FV values 
between A and B were categorized as P1. In this work, we 
empirically set the threshold A = 0.01 and threshold B = 1.0.

Statistical analysis

The lesions on the maximum lesion slice of the CT2 scan and 
the follow-up CT3 scan were manually segmented and cor-
rected by the two radiologists with more than 10 years of expe-
rience in pulmonary imaging diagnosis. Continuous variables 
are expressed as the means ± standard deviations (SDs), and 
categorized variables are expressed as frequencies and per-
centages. The lesion volume in the CT3 scan was used as the 
true lesion volume. Paired 2-tailed Student’s t-test was used to 
evaluate the differences between the lesion volumes in predic-
tion maps and follow-up CT3 scans. The Pearson correlation 
and Bland–Altman plot were used to evaluate the agreement 
between the predicted lesion volumes and the true lesion vol-
umes. The Pearson correlation between the predicted lesion 
enlargements and the true lesion enlargements was analyzed. 
The relation between the relative prediction error and the time 
interval of CT3-CT2 was plotted. All statistical analyses were 
performed by using SPSS statistical software (version 20.0), 
and P < 0.05 was considered statistically significant.
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Results

Participant demographic

A total of 30 COVID-19 patients (mean age ± SD, 
43 ± 10 years, and 19 females) were included in this study. 

The most common symptom of the patients at symptom 
onset was fever (92.0%). During the observation period, 
leukocytes were one of the main abnormalities observed 
in laboratory inspection. The mean ± SD of the time inter-
vals between symptom onset and CT1 scans, between CT1 
scans and CT2 scans, and between CT2 scans and CT3 

Fig. 1   The concept of predicting the progression of lung lesions in 
COVID-19 patients. First, the a CT1 and b CT2 images were used 
to generate the c lung ventilation map by the extended CTVI method. 
Then, the d pulmonary voxels were categorized into three types (P1, 
P2, and P3) according to the FV values of the CT-based ventilation 

map and were used to create the e prediction map. P1 was predicted 
to be a healthy region, and P2 and P3 were predicted to be lesions. 
Finally, the predicted results were validated by the follow-up CT3 
scan. The visible lesions on the CT2 image were marked in orange in 
the prediction map and excluded from the prediction
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scans of the patients were 1.6 ± 1.9 days, 4.0 ± 2.1 days, and 
5.8 ± 2.6 days, respectively. The mean ± SD of the relative 
change in lung volumes between the CT1 and CT2 scans 
of the patients was 11.3% ± 9.9%. The detailed demogra-
phy and clinical characteristics of the patients are shown 
in Table 1.

Prediction results

Figure 2 displays the CT1 scan, CT2 scan, CT3 scan, and 
prediction maps of three representative COVID-19 patients. 
For the first patient (female, 39 years old), CT1 and CT2 
scans showed no positive findings, and the prediction map 
was mainly composed of P1 voxels (blue color), which pre-
dicted that the lungs of that patient were healthy. As verifica-
tion, the follow-up CT3 scan showed negative findings. For 
the second patient (male, 30 years old), CT1 and CT2 scans 
showed negative findings, but the prediction map had a large 
number of P2 voxels (black color) in the right lower lobe. 
This predicted that the right lower lobe would develop into 
regions with lesions. Then, visible lesions appeared in that 
lobe in the CT3 results, which verified the prediction result. 
For the third patient (male, 40 years old), CT1 showed slight 
lesions in the right lung, and the CT2 scan showed visible 
lesions in the lower lobes of both lungs. The corresponding 
prediction map had a large number of P3 voxels (yellow 
color) in other regions of both lungs, although these voxels 
were normal on CT1 and CT2 scans. These P3 voxels pre-
dicted that the corresponding regions would develop visible 
lesions. As expected, the CT3 scan showed that all P3 voxels 
became visible lesions.

After illustrating the representative prediction results, we 
quantitatively analyzed the accuracy of the predicted results. 
Table 2 shows the lesion volumes in the maximum lesion 
slice of the CT2 scan, the prediction map, and the follow-up 
CT3 scan of the patients. Additionally, there was no sig-
nificant difference between the prediction results and the 
true results (P = 0.865), as shown in Fig. 3a. The Pearson 
correlation analysis between the predicted lesion volumes 
and the true lesion volumes of all patients is displayed in 
Fig. 3b. The predicted volumes and the true volumes had a 
good correlation (R2 = 0.80; P < 0.001). Figure 3c shows the 
Bland–Altman plot of these 2 measurements (the prediction 
and the follow-up). The mean bias ± SD was 0.04 ± 1.23 cm3 
(95% limit of agreement, ‒2.37 cm3 to 2.45 cm3). The above 
results indicated that the predicted lesion volumes and the 
true lesion volumes were in good agreement. In addition, the 
predicted lesion enlargements and the true lesion enlarge-
ments of all patients are also shown in Table 2. There was 
no significant difference between the prediction results and 
the true results (P = 0.884). Figure 3d shows the Pearson cor-
relation analysis between the predicted lesion enlargements 
and the true lesion enlargements of all patients. The pre-
dicted enlargements and the true enlargements had a good 
correlation (R2 = 0.76; P < 0.001).

In addition, the performance of the proposed prediction 
maps in negative CT was evaluated. Figure 4 shows the CT1 
scan, CT2 scan, CT3 scan, and the prediction maps of three 
representative COVID-19 patients without positive lesions 
in both CT1 and CT2 scans. For the first patient (female, 
43 years old), the prediction map showed that some regional 
lesions (indicated by red cycles) would appear in the left 
upper lobe. For the second patient (female, 60 years old), 

Table 1   The demographic and 
clinical characteristics of the 
COVID-19 patients

Values are presented as the mean ± SD (range) or n (%).
a  Data were missing for five patients.

Patient characteristics Patients (n = 30)

Age, years 42.7 ± 10.0 (29–72)
Sex, female 19 (63.3%)
Initial symptoms
Fevera 23 (92.0%)
Cougha 12 (48.0%)
Fatiguea 9 (36.0%)
Myalgiaa 6 (24.0%)
Laboratory studies within the first CT scan
Leukocytesa, 109/L (normal, 1.1–3.2) 7.8 ± 4.7 (2.9–20.8)
Lactate dehydrogenasea, U/L (normal, 120–250) 253 ± 119 (144–733)
Time course of chest CT scans
Time interval between onset and CT1a, days 1.6 ± 1.9 (0–6)
Time interval between CT1 and CT2, days 4.0 ± 2.1 (2–11)
Time interval between CT2 and CT3, days 5.8 ± 2.6 (2–12)
Relative change of lung volumes between CT1 and CT2 11.3% ± 9.9%
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the prediction map showed that some regions (indicated by 
red cycles) would have lesions in the left upper lobe. For 
the third patient (female, 36 years old), the prediction map 
showed that some regional lesions (indicated by red cycles) 
would appear in the right lower lobe. Then, the follow-up 
CT3 scan confirmed these predictions and showed new 
lesions in those regions.

After the evaluation of the proposed prediction maps in 
negative CT scans, the performance was also evaluated in 
the positive CT scans. Figure 5 shows the CT1 scan, CT2 
scan, CT3 scan, and the prediction maps of three representa-
tive COVID-19 patients with lesions on the CT2 scan. For 
the first patient (female, 60 years old), the prediction map 
showed that the lesions in both lower lobes would enlarge in 

the regions indicated by red circles. For the second patient 
(male, 57 years old), the prediction map demonstrated that 
the lesions on both lungs would enlarge significantly in the 
regions indicated with a yellow color. For the third patient 
(male, 40 years old), the prediction map revealed that the 
lesions on both lower lobes were enlarged in the regions 
indicated with a yellow color. Then, the enlargements of 
these lesions were verified by a follow-up CT3 scan. To 
further evaluate the regional function and tissue property 
changes of the existed lesions, the FV values and corre-
sponding prediction map of visible lesions were calculated, 
which were shown in Fig. S2 of the Supplementary material.

To evaluate the relation between the accuracy of the 
prediction maps and the time interval of CT3-CT2 scans, 

Fig. 2   CT1 scan, CT2 scan, CT3 scan, and the prediction maps of 
three representative COVID-19 patients. The prediction map of the 
first patient (female, 39 years old) mainly contained P1 voxels (blue 
color). The prediction map of the second patient (male, 30 years old) 
had a large number of P2 voxels (black color). The prediction map of 

the third patient (male, 40 years old) had a large number of P3 voxels 
(yellow color). The P1 voxels predicted the healthy lung regions. The 
P2 and P3 voxels predicted potential lung lesions. These prediction 
results were verified in the follow-up CT3 scan

Table 2   The lesion volumes and 
enlargements (mean ± SD) in 
the maximum lesion slice of the 
COVID-19 patients

CT2 Follow-up CT3 Prediction P value

Lesion volume (cm3) 1.09 ± 0.91 2.22 ± 2.59 2.26 ± 1.89 0.865
Lesion enlargement (cm3) N/A 1.13 ± 2.31 1.17 ± 1.55 0.884
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statistical analysis was performed on the relative errors and 
the time intervals. Figure 6a displays the relation between the 
relative errors of the lesion volumes and the time intervals. 
The mean ± SD of relative errors between the predicted lesion 
volumes and the true lesion volumes for the patients was 
0.37 ± 0.41. The relative errors were relatively lower in the 
middle of the time intervals (5–8 days). Moreover, the mean 
relative errors for the time intervals of 2–4 days, 5–8 days, 
and 9–12 days were 0.46, 0.28, and 0.36, respectively. The 
interval of 5–8 days had a lower relative prediction error 
regarding the lesion volume. Figure 6b displays the relation 
between the relative errors of the lesion enlargements and the 
time intervals. The mean ± SD of relative errors between the 
predicted lesion enlargements and the true lesion enlarge-
ments for the patients was 0.87 ± 0.79. The relative errors 
were relatively lower in the middle time interval (5–8 days). 
Moreover, the mean relative errors for the time intervals of 
2–4 days, 5–8 days, and 9–12 days were 1.08, 0.62, and 0.92, 
respectively. The interval of 5–8 days had a lower relative 
prediction error regarding lesion enlargement.

Discussion

Chest CT plays an important role in screening and monitor-
ing the progression of COVID-19 pneumonia, and there is 
an incubation period of several days before the emergence of 
lung lesions in CT scans [15, 16]. Generally, lung function 
impairments can be detected earlier than structural lesions 
on CT scans [22, 24]. Therefore, an extended CTVI method 
was proposed in this study to detect potential functional and 
tissue property changes in COVID-19 patients. The proposed 
method could predict the progression of lung lesions in the 
early stage of COVID-19 patients. Furthermore, through 
the proposed prediction maps, both the spatial locations and 
sizes of the lesions could be predicted.

The performance of the proposed method was validated 
by follow-up CT scans. The spatial locations and sizes of 
lesions in the predicted results had good agreement with the 
true lesions. For the sizes of the lesions, all the statistical 
results, such as those of the t-test, Pearson correlation, and 
Bland–Altman plot, indicated good predictive performance. 

Fig. 3   Quantitative analysis of the accuracy of the predicted results. a 
The group results of true lesion volumes and the predicted lesion vol-
umes in the maximum lesion slice of the COVID-19 patients. b The 
correlation analysis results between the predicted lesion volumes and 

the true lesion volumes. c Bland–Altman plot of the predicted lesion 
volumes and the true lesion volumes. d The correlation analysis 
results between the predicted lesion enlargements and the true lesion 
enlargements
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For the locations of the lesions, there was good agreement 
between the true results and the predicted regions indicated 
by red circles in Figs. 2, 4, and 5. All of these results indi-
cated that the proposed method had good performance in 
the early prediction of lung lesion progression in COVID-19 
patients. Note that all the prediction maps of the patients 
could be obtained several days (mean = 5.8 days) earlier than 
the follow-up CT scan. This could help physicians predeter-
mine the severity of COVID-19 pneumonia earlier and make 
corresponding treatment plans in advance.

Different from the conventional CTVI method [26–28], 
we proposed an extended CTVI method adapted to use two 
lung CT scans acquired on different days in this work. The 
mathematical relationship between the fractional ventilation 
values and the HU values was derived considering the dif-
ferent lung volumes of CT1 and CT2 scans. In addition, the 
effect of tissue change was considered in the generation of 
the prediction map, and the abnormally higher FV values 
were attributed to this effect. In the generation of the predic-
tion map, thresholds A and B were used to distinguish the 
healthy regions and lesions. However, few studies using the 
CTVI method have studied these thresholds [33, 34]. There-
fore, we referenced studies that used hyperpolarized gas 
MRI [34]. Ten percent of the mean ventilation value of the 
population could be used as a threshold to detect ventilation 

defects [35]. In this work, the mean ventilation value (i.e., 
the mean value of the relative change in lung volumes) of the 
patients was 11.3%. In addition, the FV values were usually 
within 1.0 [26, 27]. Thus, we empirically set A = 0.01 and 
B = 1.0. The predicted results confirmed the suitability of the 
threshold values. In the future, the optimization method for 
A and B could be explored.

Moreover, the time interval of 5–8 days between the CT2 
scan and the follow-up CT3 scan was shown to have the best 
performance for predicting lung lesions. The time intervals 
could cause the prediction map to not be entirely consistent 
with the follow-up CT3. If the time interval was too short, 
some regional lesions indicated by the prediction map might 
need more time to develop as visible lesions on CT3 scans. 
For example, in the third patient of Fig. 4, some yellow 
regions in the left lung of the prediction map did not have 
lesions in the CT3 scan, which may be due to the insufficient 
progression time between CT2 and CT3 scans (4 days). If 
the time interval was too long, some lesions indicated by the 
prediction map might have been absorbed, and some lesions 
that were not reflected in the prediction map might appear. For 
example, the left lower lung lesions in Fig. 1f were not entirely 
consistent with the prediction, which may be due to the long 
progression time between CT2 and CT3 scans (12 days). 
These discrepancies could generate some differences between 

Fig. 4   CT1 scan, CT2 scan, CT3 scan, and the prediction maps of 
three representative COVID-19 patients. In CT1 and CT2 scans of 
the first patient (female, 43  years old), the second patient (female, 
60 years old), and the third patient (female, 36 years old), no lesion 

was discovered. The prediction maps predicted that some regions 
(indicated by red cycles) in these patients would have lesions. The 
follow-up CT3 scan confirmed these predictions
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Fig. 5   CT1 scan, CT2 scan, CT3 scan, and the prediction maps of 
three representative COVID-19 patients. In CT2 scans of the first 
patient (female, 60  years old), the second patient (male, 57  years 
old), and the third patient (male, 40  years old), some lesions were 
discovered (marked with an orange color in the prediction maps). 

The prediction maps showed that the lesions in these patients would 
enlarge in the regions indicated by red circles and a yellow color. The 
enlargements of these lesions were verified by the follow-up CT3 
scan

Fig. 6   The relation between the time intervals of CT3-CT2 scans and a the relative errors of the lesion volumes and the relation between the 
time intervals of CT3-CT2 scans and b the relative errors of the lesion enlargements
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the predicted lesion volumes and the follow-up CT3 lesion 
volumes and cause outliers in the quantitative analysis, as 
shown in Fig. 3. In this work, the mean time interval between 
onset and the CT2 scan was approximately 6 days. Thus, the 
best time interval between onset and CT3 was 11–14 days, 
which was consistent with the peak (approximately 2 weeks) 
of COVID-19 disease symptoms [36].

The information that 5–8 days between the CT2 and follow-
up CT3 scans had the best performance for predicting lung 
lesions could provide several benefits for the treatments of 
COVID-19 patients in clinical. First, it could provide an early 
warning and relatively sufficient time for physicians to make 
intervention treatments in advance to avoid the incidence of the 
severe ill for some patients. Second, it could prevent overtreat-
ment for some patients without severe progress in this period 
and reduce the medical burdens in clinical. Third, it could pro-
vide an optimal time window for chest CT review during the 
treatments of COVID-19 patients. This may reduce the scan 
times of chest CT examinations and medical cost of the patients.

Our study has several limitations. First, in this work, 
we focused on the principle and feasibility of the proposed 
method. Therefore, we did not acquire a large data sample 
(e.g., > 100). Second, we used visual assessment instead of 
the Dice coefficient to evaluate the locations of the lesions. 
This was due to the large differences between CT2 and fol-
low-up CT3 images, which would lead to inaccurate image 
registration and Dice values [37]. In the future, registration 
algorithms with high performance should be developed to 
solve this problem.

In summary, lung ventilation maps based on two chest CT 
scans were used to predict the progression of lung lesions 
in COVID-19 patients in the early stage of the disease. The 
prediction maps generated from the ventilation maps could 
categorize the pulmonary voxels into three types according 
to regional function and tissue changes and then predict the 
potential lesions. Thus, the proposed method could help phy-
sicians predict and visualize the progression of lung lesions 
in COVID-19 patients, which might enable them to clearly 
illustrate and quickly determine an area that will be affected 
by pneumonia.

Appendix

Calculation of Vair and Vtissue in pulmonary voxels

A pulmonary voxel depicted in the simplified model [32] 
could be considered a combination of air content and tis-
sue content. The tissue includes cells, blood, collagen, 
water, etc., which have approximately the same density of 
water. The HU values of air (HUair) and tissue (HUtissue) 
are − 1000 and 0, respectively. The total volume (Vtotal) of 

that pulmonary voxel is the linear combination of these two 
compartments

In addition, the total HU value of that pulmonary voxel 
(HUtotal) is considered as

Combining with Eq. (5) and Eq. (6), the air volume (Vair) 
and tissue volume (Vtissue) of that voxel could be calcu-
lated based on the total volume (Vtotal) and total HU value 
(HUtotal) of that voxel:
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