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Abstract
Objective The objectives of our study were to assess the association of radiomic and genomic data with histology and patient
outcome in non-small cell lung cancer (NSCLC).
Methods In this retrospective single-centre observational study, we selected 151 surgically treated patients with adenocarcinoma
or squamous cell carcinoma who performed baseline [18F] FDG PET/CT. A subgroup of patients with cancer tissue samples at
the Institutional Biobank (n = 74/151) was included in the genomic analysis. Features were extracted from both PET and CT
images using an in-house tool. The genomic analysis included detection of genetic variants, fusion transcripts, and gene
expression. Generalised linear model (GLM) and machine learning (ML) algorithms were used to predict histology and tumour
recurrence.
Results Standardised uptake value (SUV) and kurtosis (among the PET and CT radiomic features, respectively), and the
expression of TP63, EPHA10, FBN2, and IL1RAP were associated with the histotype. No correlation was found between
radiomic features/genomic data and relapse using GLM. The ML approach identified several radiomic/genomic rules to predict
the histotype successfully. The ML approach showed a modest ability of PET radiomic features to predict relapse, while it
identified a robust gene expression signature able to predict patient relapse correctly. The best-performingML radiogenomic rule
predicting the outcome resulted in an area under the curve (AUC) of 0.87.
Conclusions Radiogenomic data may provide clinically relevant information in NSCLC patients regarding the histotype, aggres-
siveness, and progression. Gene expression analysis showed potential new biomarkers and targets valuable for patient manage-
ment and treatment. The application of ML allows to increase the efficacy of radiogenomic analysis and provides novel insights
into cancer biology.
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Introduction

Lung cancer is a leading global cause of cancer-related deaths,
with more than 2.2 million people diagnosed and 1.9 million
deaths documented worldwide in 2017 [1]. The 5-year survival
rate is less than 25%when diagnosis occurs at a locally advanced
or metastatic disease stage. The survival rate rises above 50% if
the disease is diagnosed earlywhen local treatment is feasible [2].
In unresectable disease, systemic therapy with cytotoxic and
targeted drugs is the main treatment option [3, 4]. Targeted ther-
apy requires tumour tissuemolecular profiling to identify specific
biomarkers to tailor treatments [5]. Cancer cells are characterised
by high genomic instability, responsible for accumulating somat-
ic mutations in crucial oncogenic/oncosuppressor genes, driving
uncontrolled cancer cell proliferation [6]. Genetic information
may be used to predict survival, as a prognostic biomarker or
response to treatment, as a predictive biomarker to support clin-
ical decisions [7]. In particular, in lung cancer, genetic mutations
in ALK, BRAF, EGFR, and ROS1 guide treatment decisions in
patients affected by advanced disease and recurrence [3, 4].
Beyond these alterations, other oncogenic driver mutations—
even if currently not targetable—include RET, HER2, KRAS,
and MET [8]. Molecular data are not routinely used in early-
stage lung cancer.

In cancer patients, features of tumours identified from im-
aging data (e.g. CT and PET) can be used as biomarkers to
reveal diagnostic, predictive, and prognostic associations,
based on the identification of correlations with pathological
or molecular reference, response to treatment, or survival out-
comes: this process is defined radiomics. Within this frame-
work, image features extracted and used as predictors include
lesion volume, shape, and texture descriptors [9].
Radiogenomics refers to the integration of imaging-derived
parameters and genomic data to find clinically relevant asso-
ciations. Imaging-based typing has the advantage that it can
capture information from the whole tumour lesion, can be
performed at multiple time points for treatment monitoring,
and can be carried out when a biopsy is not feasible. It is cost-
effective, relying on routinely acquired clinical imaging.

Imaging-genomic maps have been shown promising in
predicting molecular alterations [10]. Additionally, the inte-
gration of data generated from complementary “omics”
sources may improve single-domain predictive models [11].
Multi-dimensional omics datasets (i.e. large number of fea-
tures per each subject)—especially when the biological/
clinical significance of features is unknown [12]—have driven
research towards the application of machine learning (ML)
algorithms for analysis [13]. On the one hand, ML is ham-
pered by several issues including the “black-box” problem,
trustworthiness, ethics, and responsibility [14–16]. However,
it bears the advantage of learning directly from data and im-
proving the prediction process [17]. Therefore, it is no wonder
the close connection between radiomics and ML.

Current data supporting the efficacy of radiomics in lung
cancer predicting diagnosis, prognosis, and optimal therapy
are ample and promising and support a future role for
computer-assisted diagnosis and management in clinical on-
cology [12]. Nonetheless, radiogenomics in lung cancer pa-
tients is still in its early stages, and extensive data studies are
needed to validate the concept [5]. Many radiomic and
radiogenomic studies are burdened by limitations including
models’ explainability and results’ interpretation. However,
in some domains such as healthcare explaining and
interpreting which features or how the artificial intelligence
system is returning, the predictions may be far more critical
than model’s performance. Indeed, explainable and interpret-
able models may unveil information about biological path-
ways, chemical mechanisms, or neural substrates, potentially
leading to new scientific insights [16, 18, 19].

The objectives of our study were (1) to assess the associa-
tion of [18F]FDG PET/CT radiomic features with histology
and patient outcome; (2) to identify gene expression alter-
ations and mutations in early-stage NSCLC and test their as-
sociation with histology and patient outcome, and (3) to assess
the association of radiogenomics with histology and patient
outcome through explainable methods (both traditional statis-
tics and ML).

Methods

Study design

In this retrospective single-centre observational study, we ap-
plied the following criteria to select patients from the
Institutional database. Inclusion criteria were (i) age >
18 years, (ii) pathologic diagnosis of non-small cell lung can-
cer (NSCLC), (iii) enrolment from November 2011 to April
2018, (iv) availability of baseline [18F]FDG PET/CT, (v) sur-
gical treatment, and (vi) availability of cancer tissue sample at
the Institutional Biobank for those patients to be included in a
subpopulation of the study cohort. Exclusion criteria were (i)
diagnosis of other malignancies, but non-melanoma skin can-
cer, in the previous 3 years; (ii) interval time between PET/CT
and surgery >3 months; (iii) neoadjuvant treatment; (iv)
NSCLC other than squamous cell carcinoma (SQC) and ade-
nocarcinoma (AC) to avoid inhomogeneity within the patient
cohort. We did not exclude patients with a history of non-
melanoma skin cancers since they generally do not affect pa-
tients’ prognosis. The selection workflow is reported in Fig. 1.
Demographic parameters such as age and sex were collected
for all patients. Smoking habits were recorded. Performance
status was not considered in this analysis.

The institutional ethics committee approved the study
(study number 1751). All the patients who donated their tissue
samples to the biobank signed informed consent to use their
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data, imaging, and samples for research purposes; for the re-
maining patients, a specific, informed consent was waived
because of the observational and retrospective study design.

Image acquisition and processing

[18F]FDG PET/CT image acquisition was performed accord-
ing to versions 1.0 [20] and 2.0 [21] of the European
Association of Nuclear Medicine (EANM) guidelines until
and from February 2015, respectively. Briefly, patient prepa-
ration with fasting at least 4 h before [18F] FDG injection and
blood glucose levels below 200 mg/dl were requested. Images
were acquired 60 ± 5 min after injection of [18F] FDG, using
either a Siemens Biograph 6 LSO (Siemens, Erlangen,
Germany) or a General Electric Discovery 690 (General
Electric Healthcare, Waukesha, WI, USA) PET/CT scanner.
All PET images were corrected for attenuation using the ac-
quired CT data. Image acquisition parameters are reported in
Supplementary Table 1.

The primary lung cancer lesions were delineated on PET
images applying a fully automatic segmentationmethod, com-
bining an automatic threshold-based algorithm to define the
tumour volume and a k-means clustering algorithm to esti-
mate the background [22]. CT target lesion was delineated
using 3D Slicer application FastGrowCut, implementing a
competitive region growing algorithm using cellular automata
[23]. The images were resampled to have isometric voxels
with a 2-mm length. Calculation of PET parameters was per-
formed using an in-house image processing tool, running on
MATLAB based on the radiomicmodel of Vallières et al. [24]
and providing 60 features [25, 26]. The partial volume effect
correction was used for standardised uptake value (SUV) cal-
culation. CT radiomic features (n = 57) extraction was

performed using the HeterogeneityCAD tool implemented in
the 3D Slicer, according to Aerts et al. [27]. The different
number of radiomic features for PET and CT resulted from
the use of the two different processing tools. Image processing
and calculation of image-derived parameters are reported in
Supplementary Table 1, according to recommendations of the
imaging biomarker standardisation initiative (IBSI) reporting
guidelines [28].

Pathology

Histological type and staging classification were assessed ac-
cording to good clinical practice on pathology samples obtain-
ed at surgery (AJCC manual). Fresh-frozen samples were col-
lected and stored according to the Biological Biobank’s
Institutional procedures for those patients who donated their
tissue.

Molecular analyses (mutations and gene expression)

Molecular analysis of 74 tumour samples (21 SQC, 53 AC)
was performed using a targeted RNAseq approach. Besides,
six normal tissue samples were evaluated as reference.
Molecular analyses by targeted RNAseq included (1) detec-
tion of genetic variants (both single nucleotide variants,
SNVs, and small insertions/deletions, indels); (2) detection
of fusion transcripts; and (3) gene expression analysis. RNA
extraction from fresh-frozen lung tissues, preserved in
RNALater-ICE (Thermo Fisher Scientific, Waltham, MA,
USA), was performed using either an automated procedure
with the Maxwell RSC miRNA Tissue kit (Promega,
Madison, WI, USA) or a standard protocol using the
Eurogold TriFast reagent (Euroclone, Wetherby, UK). RNA

Fig. 1 Patients’ selection
workflow
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quality was assessed on an Agilent 4200 TapeStation (Agilent
Technologies; Santa Clara, CA, USA), obtaining a mean
RNA integrity number (RIN) of 6.7 (max: 9, min: 4).
Libraries were prepared starting from 55 ng of total RNAwith
the TruSight RNA Pan-Cancer Panel (Illumina, San Diego,
CA, USA), following the manufacturer’s instructions. This
panel allows the simultaneous detection of fusion transcripts,
point mutations, and gene expression changes, and it is
characterised by a broad dynamic range, which can robustly
detect RNAs of low abundance; it covers a total of 1385
genes, including all major ones found mutated in lung cancer.
Sequencing (76-bp paired-end reads) was performed on a
NextSeq500 platform (Illumina). Data were analysed using
the RNAseq alignment v. 2.0.10 pipeline on BaseSpace
(Illumina). Briefly, input reads were filtered against abundant
sequences, such as mitochondrial or ribosomal sequences,
using Bowtie 0.12.9, and then aligned to the reference human
genome (UCSC hg19) and the RefSeq annotation of tran-
scripts with the Spliced Transcripts Alignment to a
Reference (STAR) program (v. 2.6.1a). SNVs were identified
with the Strelka Variant Caller v.2.9.9, and the presence of
fusion transcripts was detected with the Manta Structural
Variant Caller v.1.4.0. Gene/transcript expression was quan-
tified by Salmon v.0.11.2. Differential expression analysis
among histotypes (SQC, AC, and normal tissue) was evaluat-
ed with a likelihood ratio test (LRT) for significance using the
DeSeq2 Bioconductor package [29]. We looked for known
and possibly recurrent oncogenic variants to extract meaning-
ful information to correlate with imaging and clinical data.
Therefore, we selected variants with the following features:
SNV, nonsynonymous (missense, nonsense, splice variants
mapping at ± 2 position of the splice sites), and annotated in
the Clinvar database (https://www.ncbi.nlm.nih.gov/clinvar/)
as pathogenic or likely pathogenic. Concerning indels, we
selected rare frameshift variants occurring only in cancer
samples, covered by at least 10 reads, and with a Combined
Annotation Dependent Depletion, CADD, score > 15 [30].

Follow-up and outcome assessment

After surgery, further treatment and follow-up were per-
formed according to standard procedures and guidelines
after discussion at the multidisciplinary lung tumour
board. As for outcome prediction, the endpoints of this
study were disease recurrence, disease-free survival
(DFS), and overall survival (OS). Disease recurrence
was defined as relapse occurrence during follow-up.
DFS was defined as the time between the date of surgery
and either the date of recurrence or tumour-related death
(event) or the date of last patient access (censored). OS
was defined as the time between surgery and death (event)
or last patient access date (censored).

Statistical analyses

All statistical procedures were carried out using specific R
program packages, release 3.6.1 (http://www.r-project.org/).
All P values were two-sided. P values of <0.05 were
considered statistically significant.

Conventional statistics

Patient characteristics were summarised in frequency ta-
bles, and descriptive statistics were provided in terms of
basic measures of central tendency (mean, median, and
range) and count proportion for continuous and
dichotomic variables, respectively. Furthermore, correla-
tion between age and sex either with histotype and tumour
recurrence was tested. Lastly, the correlation between the
two outcomes was analysed. For KRAS/TP53/EGFR mu-
tations, carrier frequency data were performed using the
Fisher exact test. Principal component analysis (PCA) was
used to explore data; the first two components were used
to visualise a possible clustering.

The Kaplan-Meier method was used to generate survival
curves for the subgroups in each dataset, and the log-rank test
was used to determine the statistical significance of differ-
ences (survminer R package).

For data analysis, we first performed an unsupervised clus-
tering, using the pheatmap R package on log-transformed da-
ta, evaluating whether patients are distinguishable in the fea-
ture space (either by histotype or the tumour recurrence). After
that, we used variables to fit a binomial generalised linear
model (GLM) with logistic cumulative distribution function
after checking for the correct normal distribution of residuals
and the homogeneity of variance across the fitted values of the
model. We used either the histotype (SQC or AC) or the tu-
mour recurrence (yes or no) as the output variable. More spe-
cifically, for gene expression analysis, differentially expressed
genes were selected using a false discovery rate (FDR)
≤0.001, a fold change ≥2, and a minimum average expression
(baseMean) of at least 50 counts. Differential expression anal-
yses identified genes specifically altered in cancer status com-
pared to normal tissues and genes specifically altered in each
histotype (SQC and AC). Differential expression analysis to
identify transcriptional signatures associated with tumour re-
currence (yes or not) was evaluated with a Wald test for sig-
nificance and the DeSeq2 package. In this case, differentially
expressed genes were selected using an FDR ≤0.05 and no
threshold for fold change.

For radiogenomic analysis, we focused on the top dif-
ferentially expressed genes, setting a stringent threshold
for significance of FDR ≤0.001, fold change ≥2, and av-
erage expression (baseMean) among samples of at least
50 counts.
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Machine learning analysis

In addition to classical statistics, we applied the Forecast en-
vironment of the Rulex (RULe eXtractor) 4.0 suite (www.
rulex-inc.com), an integrated suite for the analysis through
statistical/ML approaches. Rulex can manage all data types,
including categorical/continuous variables, variables showing
a high degree of correlation, or characterised by any data
distribution.

Three datasets were used for analyses: (1) a dataset includ-
ing only complete radiomic data (149 patients; two additional
patients were not included because they were missing either
PET or CT data); (2) a dataset using only molecular data (gene
expression and KRAS/TP53/EGFR mutational status), com-
prising 74 patients; and (3) a dataset including only those 73
patients for which both radiomic and molecular data were
available.

We applied the logic learning machine (LLM) algorithm to
our datasets using as an output variable either the histotype
(SQC orAC) or the patient outcome (tumour recurrence yes or
no). Each dataset was split into a training cohort and a test set
(70% and 30%, respectively). Rulex LLM takes as input the
features and returns a series of “rules” characterised by n con-
ditions. As typical for decision rules algorithms [31], rule’s
performance was expressed as coverage rate and error. The
covering is the percentage of training patterns whose output
value is equal to the rule’s output that satisfy the rule (true
positive), while the error is the percentage of the training pat-
terns whose output value is different from the output of the
rule that satisfies the rule (false positive). For each rule, accu-
racy and F1 were calculated.

We used the radiogenomic rule (integrating gene expres-
sion and radiomic data), which best-predicted tumour recur-
rence to build a score, and we calculated the corresponding
receiver operating characteristic (ROC) curve and the area

under the curve (AUC). For each condition, the score
corresponded to the sum of 1 or 0 points.

Results

Overall, 151 patients were included. Patient characteristics are
reported in Table 1: 70% of patients developed anAC, 30% an
SQC; the ratio between those that relapsed versus those that
did not was exactly 1:1.

No correlations were observed between patients’ age and
the relapse status’s histotype (P = 0.078 and P = 0.538, re-
spectively). As for sex, a weak correlation was observed with
histotype (being the male sex more common among SQC,
with a male to female ratio = 3.5, P = 0.016). Instead, no cor-
relation was evident between sex and relapse. Finally, we
observed a weak correlation between the histotype and the
relapse status, with AC cases more prone to relapse than
SQC patients (P = 0.032; the significance was also retained
after correction for age, sex, and smoking status, P = 0.026)
(Supplementary Figure 1).

The two histotype patient groups did not show any signif-
icant difference in the overall survival rate nor their tendency
to relapse (Supplementary Figure 2).

Mutation screening by targeted RNA sequencing identified
more than 130,500 variants in the 80 analysed samples (74
tumours + 6 normal), with a mean of 1632 variants per sample
(1577 SNVs, 27 deletions, and 28 insertions). Each variant
was covered on average by 162 reads (min: 3, max: 12,592).
We obtained a list of the 142 topmost pathogenic variants,
although very few of them were present in more than one
sample. We found a missense KRAS mutation at codon 12 in
28% (21/74) of tumour samples and a TP53 mutation in 55%
(41/74) of cases (Supplementary Figure 3).

Table 1 Patient characteristics
Characteristics Whole dataset (N=151)* Genetics (n=74)**

Age—median (range) 70 (41–84) years 70 (41–80) years

Sex (M:F) 95:56 47:27

Histology (AC:SQC) 106:45 53:21

Smoking status (Yes:No:Ex-smokers)*** 42:31:77 23:14:36

Outcome Lost at follow-up

Relapse Yes:No

Follow-up/OS—median (range)

DFS

7/151

72:72

39 (1–102) months

44 (1–102) months

6/74

31:37

24 (3–79) months

40 (4–81) months

*The whole dataset consisted of 151 patients, for 2 of them either PET or CT data were missing and hence not
included in the ML analysis. **This category indicates the subset of patients submitted to mutational and
differential gene expression analyses (for 1 of them, we did not have radiomics data, and hence not included in
the ML analysis of combined radiomics and transcriptomics data). ***For one person, we do not have data on
smoking status. AC, adenocarcinoma; DFS, disease-free survival; F, females; M, males; OS, overall survival;
SQC, squamous cell carcinoma
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No known pathogenic variants or hotspot mutations were
detected in EGFR, although eight samples carried rare
nonsynonymous SNVs of uncerta in signif icance
(Supplementary Figure 4). Based on the variant type, location
within the gene/protein, and predicted deleteriousness (evalu-
ated by CADD, score > 15), at least 6 (75%) of them might
represent a likely pathogenic mutation. No recurrent gene fu-
sions in the ALK, ROS, and RET1 were detected.

Gene expression analysis on RNAseq data on 80 samples
(21 SQC, 53 AC, and 6 non-tumoural tissues) showed a prev-
alent clusterisation based on histotype at PCA, with normal
tissues separating from tumour samples (Supplementary
Figure 5). According to relapse status, no clusterisation was
observed at least when considering the first two principal
components (data not shown).

1. Association of PET/CT radiomic data with histology and
outcome

A total of 60 PET and 57 CT radiomic features were ex-
tracted in 149 patients (see Table 1).

Unsupervised hierarchical clustering, based on log-
transformed data of extracted radiomic features, showed a
good clusterisation based on histotype (Supplementary
Figure 6). Conversely, the same analysis did not perform well
when discriminating patients based on relapse (data not
shown).

PET and CT features were further independently analysed
usingGLM.GLMshowed that among the 117 analysed features,
two outperformed in discriminating AC vs SQC patients. SUV

and kurtosis resulted in the best PET, and CT features, respec-
tively, in predicting histology (Fig. 2a). SUV resulted higher in
SQC than in AC (16.91 ± 7.92 and 10.13 ± 5.77, respectively;
P = 2.89*10−6). Similarly, CT-derived kurtosis was greater in
SQC than in AC (11.97 ± 11.17 and 3.81 ± 5.85, respectively;
P = 5.49*10−6). Notably, both variables survived Bonferroni cor-
rections for multiple testing (threshold corresponding to P =
0.00083 and P = 0.00088 for the SUV and the kurtosis, respec-
tively). Conversely, PET and CT features poorly correlated with
the relapse status. Indeed, the best performing PET and CT fea-
tures in discriminating tumour recurrence were kurtosis (P =
0.035) and LRE (P = 0.0096), respectively, but neither kurtosis
nor LRE survived correction for multiple testing (Fig. 2b).

The Rulex LLM software, comprehensively analysing all
the 117 radiomic features, identified four and two rules to
predict histology and tumour recurrence, respectively
(Supplementary Table 2). Rule number 4—composed of 8
different conditions, three based on PET and five based on
CT features—was the most interesting (Table 2), reaching
coverage of 85.7% with an error rate of 3.6% (accuracy =
93%). Rule number 1 composed of 6 PET-based conditions
reached an accuracy of 81% in predicting tumour recurrence
(Table 2).

2. Association of genomic data with histology and outcome

Mutation and gene expression data on the 74 cases were
used to search for possible correlations with histotype and the
relapse status. Genes specifically altered by relapse were

a b

Fig. 2 Top PET and CT features discriminating patients based on their
lung cancer histotype or their tendency to relapse. The best discriminative
features were identified using the generalised linear model approach to
predict histology (a) and outcome (b). a Boxplots show standardised
uptake value and kurtosis, the best performing PET and CT features,

respectively, in discriminating cancer histotype. b Boxplots show
kurtosis and LRE, the best performing PET and CT features,
respectively, in discriminating tumour recurrence. Boxes define the
interquartile range; thick central lines refer to the median. P values
before Bonferroni correction are provided for each feature
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investigated on the 68 samples with available data (31 re-
lapses, 37 no relapse). Only four genes resulted differentially
expressed with an FDR ≤0.05. Mutation analysis focused on
the two genes most commonly mutated in our cohort (KRAS,
TP53) and the EGFR gene, i.e. the sole—among genes guid-
ing treatment decision in lung cancer patients [3, 4]—being
mutated in the analysed cases. Concerning histotype, we evi-
denced a profound difference in the frequency of KRAS mu-
tation carriers between AC and SQC (37.7% and 4.8%, re-
spectively; P = 0.0040) (Table 3A). We also observed a sig-
nificant association between KRAS/EGFR mutations and re-
lapse status, not retained after correction for histotype (values
between parentheses in Table 3B). Gene expression analysis
focused on the 238 genes that resulted differentially expressed
(at FDR ≤0.001 and a fold change ≥2) according to different
tissue samples (normal tissue, AC, SQC; 187 genes), tumour
histotypes (47 genes), and recurrent status (4 genes). Among
these 238 genes, TP63, FBN2, EPHA10, and IL1RAP
emerged as strongly associated with the histotype
(P < 1.5*10−4; all genes survive the Bonferroni corrections
for multiple tests) (Fig. 3).

None among the analysed genes was associated below the
Bonferroni threshold (P = 0.00021) with the relapse status.
The comprehensive analysis performed by the Rulex LLM

approach focused on all the 238 genes, and the data on
KRAS/TP53/EGFR mutational status are summarised in
Supplementary Table 3. Rulex LLM proved to be very pow-
erful in predicting the histotype (rule number 1 reached a
coverage =94.3% with 95.9% accuracy) and, above all, in
predicting the outcome (rule number 4 reached a coverage =
91.7% with 95.6% accuracy). In all cases, no conditions relat-
ed to the mutational status emerged. The best-performing rule
predicting the histotype was based only on two conditions
(one related to expression levels of TP63), whereas the best
rule predicting relapse stem from the expression levels of 5
different genes (AURKA, HIST1H2AM, IL12Rb2, CXXC4,
and RYR3) as detailed in Table 2.

3. Association of radiogenomic with histology and outcome

Finally, we used the Rulex LLM approach for analysing
the 73 cases having the entire set of variables available (i.e. all
PET and CT features) and data on KRAS/TP53/EGFR muta-
tional status and on 238 differentially expressed genes.

Results of radiogenomics analysis are detailed in
Supplementary Table 4. Interestingly, using histotype as an
output variable results almost entirely overlapping with those
already obtained for the predictions based on genomic data
(Supplementary Table 2A). The slightly different covering
values depended on the missing sample.

The best-performing rule in predicting the outcome (cov-
ering rate = 73.3% with 88.2% accuracy) combined condi-
tions based on gene expression data and a PET-derived feature
(i.e. LRHGE) as detailed in Table 2. This rule’s ROC curve
resulted in an area under the curve of 0.87 (Fig. 4).

Discussion

Our study explored the ability of radiomics, genomics, and
radiogenomics to provide clinically relevant information in
lung cancer patients using explainable models. Indeed, both
the binomial generalised linear model and the Rulex/LLM are
recognised as interpretable approaches [16]. Rulex/LLM may
be used with different complementary purposes including au-
tomatic data discovery, model building, and self-explanatory
predictions. Specifically, the LLM produces conditional logic-
base predictive models with the advantage to be fully explain-
able (https://www.rulex.ai/rulex-algorithms/). We did not find
any radiomic feature, mutational status, or gene expression
profile to predict relapse per se using conventional statistics.
However, radiomic features and gene expression profile
resulted in predicting tumour recurrence when introduced in
decision rules identified using ML. Specifically, the use of
Rulex/LLM allowed (i) to confirm the central role of
SUVmax in predicting histology which was empowered by
the addition of radiomic parameters; (ii) to identify a

Table 3 Association between KRAS/TP53/EGFRmutational status and
histotype/relapse

Non-carriers (N) Carriers (N) P value *

A—Histotype

KRAS

AC 33 20 0.004
SQC 20 1

TP53

AC 24 29 0.80
SQC 9 12 (1 case with 2 mutations)

EGFR

AC 48 5 0.43
SQC 18 3

B—Relapse **

KRAS

YES 18 13 0.029
(0.086)NO 31 6

TP53

YES 15 16 0.80
(1)NO 16 21 (1 case with 2 mutations)

EGFR

YES 31 0 0.028
(0.17)NO 31 6

*Fisher exact test. **Analysis performed on a total of 68 cases; in this
analysis, the P values presented in parenthesis are corrected for the
histotype. Significant P values are indicated in bold
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combination of relevant imaging-derived features in
predicting outcome confirming the higher discriminative pow-
er of PET compared to CT-based biomarkers; and (iii) to de-
tect a gene expression pattern associated to lung cancer out-
come. Interpretable models, revealing new insights on a dis-
ease, are an essential requirement for translating radiomics
and artificial intelligence to clinical practice.

Additionally, the implementation of ML into clinical prac-
tice requires the integration of the radiomics and ML systems
into applications that imagers and clinicians use in their rou-
tine practice. Radiomics workflow is time-consuming and re-
quires additional software. Once robust evidence emerges,
radiomics/ML models should be promptly implemented into
clinical workstations to support everyday practice.

Fig. 3 Top differentially expressed genes discriminating patients based
on their lung cancer histotype. The four boxplots showmRNA expression
levels of TP63, FBN2, EPHA10, and IL1RAP genes, with lung cancer
individuals grouped upon histotype. Boxes define the interquartile range;

thick central lines refer to the median. The P value for the difference is
indicated (t-test; the threshold for Bonferroni correction for multiple
testing corresponding to P = 0.00021)

Fig. 4 Clusterisation of relapsing/non-relapsing patients based on the
best-performing prediction rule evidenced by the Rulex LLM analysis.
On the left: three-dimensional scatter plot of patients experiencing (blue
dots) or not (red dots) relapse. Patients were plotted based on the three
genes’ expression levels evidenced by the Rulex LLM analysis
(determining the first three conditions of rule number 4; see Table 2).

On the right: ROC curve for differentiating relapsing and non-relapsing
patients based on a “score” including the expression levels of theCXXC4,
PAK3, and GHR genes, as well as on the radiomic parameter LRHGE_
PET. For each patient, the score was built summing, for each of the four
conditions of the rule (Table 2), 1 or 0 points. At the bottom rich corner of
the ROC panel, the AUC value is reported
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Gene expression data—analysed by Rulex LLM—proved
to be very powerful both in predicting the histotype (rule
number 1 reached a coverage =94.3% with 95.9 accuracy)
and, above all, in predicting the outcome (rule number 4
reached a coverage =91.7% with 95.6 accuracy). The best-
performing genomic rule in predicting relapse stem from the
expression levels of AURKA, HIST1H2AM, IL12Rb2,
CXXC4, and RYR3. The expression of AURKA—a gene that
contributes to the regulation of cell cycle progression [32]—
has been reported to be associated with poor prognosis in
smoking-related lung AC [33]. Histone variants HIST1H2,
HIST1H3, and HIST1H4, acting as transcriptional promoters
or repressors of cancer-related genes, have been reported to be
involved in tumour progression and metastasis [34]. In partic-
ular, in lung AC,HIST1H2AM has been counted among genes
differentially expressed between smoking and non-smoking
[35]. Our data suggested that the smoking habits induced
changes in AURKA and HIST1H2AM genes, and their upreg-
ulation or downregulation might play a pivotal role in deter-
mining the outcome. Literature data supported the involve-
ment of IL-12Rβ2 in tumour cell proliferation, apoptosis,
and metastasis. The downregulation of IL-12Rβ2 in lung
AC seems to be a tumour escape mechanism [36], and the
IL-12Rβ2 expression has been negatively associated with tu-
mour progression [37]. The Dishevelled (Dvl) inhibitor Idax,
coded by the CXXC4 gene [38], seems to be involved in tu-
mour cell invasiveness and proliferation [39, 40], and its ex-
pression is associated with poor prognosis [41]. Furthermore,
CXXC4, being capable of inhibiting the mitogen-activated
protein kinases (MAPK) signalling pathway [42], is emerging
as a novel tumour suppressor [43]. Moreover, the downregu-
lation of the MAPK signalling pathway reduces the expres-
sion of programmed cell death 1 ligand 1 (PD-L1) in lung AC
cells [44]. The RYR3 gene encodes for a ryanodine receptor
which mediates the calcium release for many cellular process-
es. Ryanodine receptor has been reported to be involved in
epithelial-mesenchymal transition, in tumour cell apoptosis
and treatment resistance in some cancers, including lung AC
[45–47]. These data may provide the rationale for postopera-
tive risk stratification with a differential follow-up scheme.
The patients operated on a more aggressive tumour may be
closely investigated during follow-up to identify recurrence at
an earlier time point. However, molecular testing to identify
molecular biomarkers are currently performed on tumour
samples collected from biopsies or cytological specimens;
these are invasive procedures that are not always feasible,
may result in inadequate sampling, and cannot characterise
intra- and inter-tumour heterogeneity. Moreover, in the case
of recurrence, repetition of a biopsy is not mandatory. Indeed,
targeted therapies may be administered based on the molecu-
lar testing on the specimens obtained at diagnosis, assuming
that no molecular modification arises between disease onset

and recurrence [48]. Consequently, other methods to identify
actionable biomarkers in NSCLC are emerging to address the
need for complementing or replacing traditional testing on
tissue and cytological samples.

We found that image-derived features were able to discrim-
inate between NSCLC histotype (Fig. 2). Similarly, several
studies have successfully demonstrated an association be-
tween radiomic features and NSCLC tumour histology based
on both CT and PET radiomic features. In the study by Wu
et al. [49], 53 CT radiomic features from lung tumours of 350
patients were significantly associated with tumour histological
subtype. Applying multivariate classifiers using radiomic fea-
tures as input tumour histological subtype could be reliably
predicted (AUC = 0.72) [49].While Aerts et al. [27] reported a
radiomic analysis of 440 features extracted from CT data of
1019 patients affected by NSCLC and head-and-neck cancer,
they found a significant association with histology (P = 0.019,
chi-square test). While in the study by Koyasu et al., the au-
thors found PET-based models to identify histological lung
cancer subtype with an AUC up to 0.84 [50]. In a previous
cohort of 534 patients with lung nodules, we have demonstrat-
ed radiomic features’ ability to potentially classify primary
lung cancer subtypes (AUC= 0.59–0.70 for CT and = 0.61–
0.88 for PET) [51]. SUV appeared to be the best predictor in
the present work, following published data [52], regardless of
the statistical approach (i.e. conventional statistics and ML).
Indeed, SUVmax was recognised by GLM as significant, and
minimum SUV was included in the best radiomic rule to pre-
dict histology. Randomness due to high correlation and the
inherent redundancy among SUVs parameters was probably
at the basis of the model’s selection of SUVmax instead of the
minimum (selected by GLM and ML, respectively).

On the other hand, from the Rulex LLM analysis on
radiogenomics, it emerged that gene expression data alone
prevail on those coming from [18F]FDG PET/CT analyses
in predicting histology. Interestingly, the best-performing rule
in predicting the outcome (covering rate > 73%) combined
conditions based on gene expression data and PET-derived
feature (i.e. LRHGE). Through this rule—less performing
than the one found when analysing only gene expression data
(Table 2)—it was noteworthy to underline that (i) the number
of conditions for this rule was lower, (ii) we “forced” the
software to give priority to radiomic features (which indeed
only came up for relapse predictions), and (iii) the correspond-
ing ROC curve gave an overall significant AUC of 0.87.

We identified several genes’ levels of expression (e.g.
TP63 and EPHA10) to be associated with AC vs SQC. In
particular, TP63 overexpression, often due to gene amplifica-
tion, is frequently found in SQC and has been associated with
prolonged survival [53]. EPHA10 (the ephrin receptor A10
belonging to the subfamily of receptor tyrosine kinases and
involved in cell-cell communication, regulating cell
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attachment, shape, and mobility in neuronal and epithelial
cells), primarily explored in breast cancers [54], has been re-
cently described in lung cancer [55]. Its mutation has been
newly described as associated with a favourable outcome in
lung adenocarcinoma—but not in squamous cell lung
cancer—treated with immune checkpoint inhibitors [56].
This finding needs further investigation to characterise better
this protein’s role in lung cancer as a prognostic biomarker or
potential therapeutic target.

For relapse prediction, PET and CT feature failed to
predict tumour recurrence when analysed with classical
statistics. We found a couple of rules through the Rulex
LLM approach to correctly prognosticate the outcome in a
good percentage of cases (61–67% of covering with 78–
81% accuracy). These findings underlined that a radiomic
feature might efficiently differentiate tumour subtypes, but
it is not sufficient to explain the complexity (i.e. biological
phenotyping). Conversely, combining more radiomic fea-
tures, enclosing several—complementary—information,
may summarise all those biological properties beyond the
histotype that contributes to disease aggressiveness.
Notably, the best-performing rule to predict tumour relapse
comprised a total of 6 conditions all related to PET fea-
tures. The inclusion of conditions related to CT-derived
parameters determined a drop of performances, confirming
literature data [57].

The study is limited by the retrospective design that deter-
mined using routinely acquired PET/CT images on two dif-
ferent scanners, but the number of images obtained using one
scanner was well balanced compared to those acquired using
the other one (52% versus 48%). Moreover, in our previous
study, we demonstrated radiomics analysis’s reliability since
the predictive models performed in the same way when con-
sidering and not considering significantly different features
among scanners [51]. The outcome has been evaluated in
terms of occurrence or not of disease. This evaluation may
have determined a modest prognostic ability. Future analyses
will take into account time information related to recurrence
and overall survival. We could not perform further analyses
on independent tissue samples to confirm and deeply investi-
gate the role of gene expression findings of our work because
it was out of the scope. Future studies are planned to investi-
gate the role of these genes as molecular biomarkers and
targets.

In conclusion, the radiogenomic approach promises to ex-
tract relevant information regarding lung cancer histotype,
aggressiveness, and progression. Gene expression may pro-
vide additional valuable information to guide patient manage-
ment and follow-up. ML algorithms’ application allows to
increase the efficacy of transcriptomic and radiogenomic anal-
ysis and provides novel insights into cancer biology.
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