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Abstract
Purpose The present scoping review aims to assess the non-inferiority of distributed learning over centrally and locally trained
machine learning (ML) models in medical applications.
Methods We performed a literature search using the term “distributed learning” OR “federated learning” in the PubMed/
MEDLINE and EMBASE databases. No start date limit was used, and the search was extended until July 21, 2020. We excluded
articles outside the field of interest; guidelines or expert opinion, review articles and meta-analyses, editorials, letters or com-
mentaries, and conference abstracts; articles not in the English language; and studies not using medical data. Selected studies
were classified and analysed according to their aim(s).
Results We included 26 papers aimed at predicting one or more outcomes: namely risk, diagnosis, prognosis, and treatment side
effect/adverse drug reaction. Distributed learning was compared to centralized or localized training in 21/26 and 14/26 selected
papers, respectively. Regardless of the aim, the type of input, the method, and the classifier, distributed learning performed close
to centralized training, but two experiments focused on diagnosis. In all but 2 cases, distributed learning outperformed locally
trained models.
Conclusion Distributed learning resulted in a reliable strategy for model development; indeed, it performed equally to models
trained on centralized datasets. Sensitive data can get preserved since they are not shared for model development. Distributed
learning constitutes a promising solution for ML-based research and practice since large, diverse datasets are crucial for success.
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Introduction

Artificial intelligence has gained significant attention because of
the achievements of machine learning (ML) and deep learning
algorithms that rapidly accelerate research and transform prac-
tices in multiple fields, including medicine. However, data-
driven learning necessitates “big data”-sets not to suffer from
overfitting and underspecification. Indeed, studies on a small
sample size usingML are affected by an inherentmethodological
bias that might undermine their validity. The adequate sample
size is thus crucial for ML as for classical statistics [1–3]. An
adequate sample is a hurdle in rare diseases (e.g. thymic malig-
nancies, sarcomas) or low-prevalence conditions (e.g. refractory
lymphoma, iodine-negative thyroid cancer) [4]. The small sam-
ple size is acknowledged as a limitation in almost every research
study on image mining [1].

Other commonly recognized weaknesses in image mining
studies are the monocentric retrospective design (i.e. localized

learning) and the lack of independent validation. Collectively, all
these aspects negatively affect the reproducibility and the general-
izability of the results [1, 5]. These limitations might be overcome
by multicenter or benchmarking trials. However, benchmarking
trials require considerable infrastructural efforts to develop data
repository platforms, while traditional multicenter studies (i.e. cen-
tralized learning) are affected bymany logistical difficultiesmainly
related to sharing of clinical and imaging data. Data transfer is
indeed burdened by legal, ethical, and privacy issues [5, 6].

Given these constraints, distributed learning has emerged as a
strategy for effective collaboration between centres while pre-
serving governance and regulatory aspects [7]. Distributed learn-
ing aims to train one or more machine learning models within a
network of nodes, each one owning a local dataset. Individual
institutions do not share patients’ data externally. Just post-
processed data in the form of model updates (e.g. coefficients
and weight parameters) are shared among centres to build the
final model [8, 9] (Fig. 1). Distributed learning methods may be

Fig. 1 Distributed learning framework
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distinguished according to computational principles (e.g. data
parallelism and communication topology [10]) (Fig. 2)
[11–13]. However, some general principles, (i) how the model
parameters are displaced over the network of nodes, (ii) how
nodes interact and which type of data they exchange, (iii) limi-
tations on the kind of disclosed data, (iv) technical and techno-
logical constraints related to the task, are relevant to design the
best-distributed learning model. Accordingly, distributed learn-
ing methods include different approaches, namely ensemble [14,
15], split [16], and federated learning [17, 18] described in details
in Fig. 3.

Therefore, distributed learning dealing with a network of
nodes, each one owning a local dataset, has been proposed as a
method to cross the hurdles related to patient data sharing [7,
9]. However, there are some uncertainties related to distribut-
ed learning performance compared to centrally trained
models. Therefore, the present scoping review, providing an
overview of distributed learning in medical research, aimed at
assessing the non-inferiority of distributed learning over cen-
trally and locally trained models. The non-inferiority of dis-
tributed learning over centrally and locally trained models is
an essential requirement to appoint distributed learning as a
suitable approach for data sharing within multicenter
collaborations.

Materials and methods

Literature search and selection

We performed an extensive literature search using the term
“distributed learning” OR “federated learning” in the
PubMed/MEDLINE and EMBASE databases. No start date

limit was used, and the search was extended until July 21,
2020. Two authors (MS and GN) independently searched
the literature and performed an initial screening of identified
titles and abstracts. The following exclusion criteria were ap-
plied: (a) articles outside the field of interest (i.e. distributed
learning); (b) guidelines or expert opinion, review articles and
meta-analyses, editorials, letters or commentaries, and short
abstracts presented at conferences and scientific meetings; (c)
articles not in the English language; and (d) studies not testing
distributed approaches using medical data (i.e. electronic
health records, genomic data, signals, or images). Selected
papers were retrieved in full text, and reference lists were
screened in order to identify additional records. Screened pa-
pers were included in the scoping review when considered
eligible by both reviewers. In case of discrepancies, papers
were reviewed by a third researcher, blinded to previous as-
sessments. The majority vote was used to include/exclude a
paper finally.

Analysis

Each selected article was tabulated in an Excel ®2017
(Microsoft®, Redmond, WA) file. The following information
was collected: (i) clinical setting; (ii) type of data (clinical
data, images, genomic data); (iii) source of data (open-access
or local dataset); (iv) type of distributed network (simulated
versus real); (v) machine learning algorithms’ architecture;
(vi) distributed learning approach (ensembling, split, or feder-
ated learning); (vii) performance metrics; (viii) comparative
analysis (distributed versus centralized, distributed versus lo-
cal); (ix) analysis on data distribution among nodes; (x) other
results. Later on, selected studies were classified according to
their aim, namely (a) risk prediction; (b) diagnosis; (c) prog-
nosis; and (d) treatment side effect/adverse drug reaction pre-
diction. Papers having more than one aim were analysed as
separate works.

Results

Study selection

Overall, the search criteria resulted in 387 articles. After
removing duplicates and initial screening of titles and ab-
stracts, 347 papers were excluded, and the remaining 40
were retrieved in full text. Subsequent analysis of full-text
articles excluded 22 papers (two using non-medical data,
13 outside the field of interest, five review articles). Eight
additional research studies of interest were identified as
screening reference lists. A total of 26 studies were even-
tually selected. Figure 4 summarizes the process of study
selection.

Fig. 2 Schematic overview of the most popular distributed learning
methods. Differences among methods are summarized according to two
general design principles: (i) how the model parameters are displaced
over the network of nodes, local, local + shared, and shared (y-axis),
and (ii) how nodes interact and which type of data they exchange, no,
partial, and complete exchange (x-axis)
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Overall results

Distributed learning was based on federated learning with [12,
19–21] or without [22–43] other methods in the great majority
of the selected studies (4/26 and 22/26, respectively); in few
articles (3/26), the ensembling approach was preferred [38,
40, 42]. Distributed training was compared to centralized
and/or localized training in 21/26 [12, 19, 20, 22–24, 26,
28–31, 34–43] and 14/26 [12, 21, 22, 25, 27, 28, 30, 32, 33,
36, 37, 39, 40, 42] selected papers, respectively. Area under
the curve (AUC) [19, 22–25, 27–29, 36, 43] and accuracy [12,
21, 27, 34, 35, 37, 39–41] were the most commonly used
metrics to assess models’ performance in the selected papers
(10/26 and 7/26). Other metrics included mean squared error
[26, 31, 39, 41], dice score [20, 32, 33], F1 score [27, 42],

precision [27, 37], normalized mutual information and signal-
to-noise ratio [39], recall [37], sensitivity and positive predic-
tive value [27], hazard ratio [38], relative bias, error ratio, and
odd ratio [30]. Figure 5 summarizes the studies by the aim.

Risk prediction

Three out of the 26 included papers developed a distributed
learning framework for risk prediction (Table 1). Brisimi et al.
[29] and Wang et al. [38] used clinical data to predict hospi-
talization risks for cardiac events and re-hospitalization for
heart failure, respectively. Duan et al. [30] used distributed
clinical data to build a risk model for foetal loss in pregnant
women. Wu et al. [35] instead performed a federated genome-
wide association studies analysis to predict the risk of

Fig. 3 Distributed learning
methods
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developing ankylosing spondylitis in healthy individuals. In
the four studies, distributed and centralized learning model
performance was compared. In all cases, the two approaches
showed substantial equivalence.

Diagnosis

Out of the 26 papers on distributed learning, 15 focused
on diagnosis (Table 2). Among these, three works [12,

34, 42] used different datasets as input for their exper-
iments. Specifically, Chang et al. [12] tested distributed
learning to analyse retinal fundus images and mammo-
grams, Balachandar et al. [34] to analyse retinal fundus
images and chest x-ray, and Tuladhar et al. [42] to
analyse digital fine-needle aspiration (FNA) images
and clinical data.

In the group of 26 papers, seven articles aimed at using
distributed clinical [27, 28, 42, 43] or imaging [12, 21, 34,

Fig. 4 Study selection

Fig. 5 Summary of the topics
covered by selected studies.
(ADR, adverse drug reaction)
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40, 42] data to detect several diseases. Included diseases were
diabetic retinopathy, breast cancer, cardiac diseases, diabetes,
and neuropsychiatric disorders.

Five studies instead tested distributed learning using diag-
nostic images for various classification tasks, namely differ-
entiation of neurodegenerative diseases [31], thoracic pathol-
ogies [34], types of pneumonia [36], benign vs malignant
breast lesions [39, 41], and HPV+ vs HPV- head and neck
cancer [43].

Finally, three studies [20, 31, 32] utilized distributed head
computed tomography (CT) and brain magnetic resonance
imaging (MRI) data to perform segmentat ion of
intraparenchymal haemorrhages and brain tumours.

In 13/15 papers focusing on the diagnosis, the authors com-
pared distributed and centralized approaches for model train-
ing. The performance achieved using a model trained on dis-
tributed data was always comparable to the one obtained using
a centralized approach, except for a few experiments [36, 42].
Specifically, in the experiment by Tuladhar et al. [42] on real
data distribution, the skewness of the training dataset towards
patient examples affected the ensembling approach’s perfor-
mance in predicting mild cognitive impairment (MCI), but not
those of the centralized learning. However, this experiment
was characterized not only by imbalanced classes (189 MCI
patients versus 94 healthy subjects) but also by a limited num-
ber of observations (average of 4 patients and two healthy
cases) for each node [42]. Finally, centralized learning
outperformed distributed learning in classifying non-
COVID-19 viral pneumonia [36]. Xu et al. [34] developed a
distributed CNN model [36](Xu et al. 2020) [26–28, 34]to
classify CT scan as normal or with pneumonia, distinguishing
among COVID-19 or other viral pneumonia and bacterial
pneumonia. The federated model performed close to the cen-
tralized one in all cases, except non-COVID-19 viral pneumo-
nia, which was scarcely represented in the whole dataset (76
cases) [36].

Prognosis

Five out of the 26 analysed articles on distributed learning
were aimed at prognostication (Table 3).

Jochems et al. [24] set up a network of systematic clinical
data collection and sharing through distributed learning to
predict post-treatment 2-year survival in 894 non-small cell
lung cancer (NSCLC) patients. The same group [25] con-
firmed the previous results on a larger cohort, including more
than 20,000 patients in eight centres across different countries.

Bogowicz et al. [43] used a distributed approach to train a
radiomic model to predict 2-year survival in a cohort of 1174
patients with head and neck cancer.

Dankar et al. [26] and Huang et al. [19] used a distributed
algorithm to estimate the patient length of stay in hospital andTa
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ICU, respectively. Moreover, Huang et al. [19] used the same
approach to predict inpatient mortality.

In four out of these five prognostic studies, predictive
models trained using distributed and centralized data were
compared (Table 3). In all cases, models did not show signif-
icant differences in terms of performance.

Adverse drug reaction/side effect prediction

Three out of the 26 studies used a distributed approach to
predict either adverse drug reaction (ADR) or treatment side
effect (Table 4).

Among these, Choudhury et al. [37] performed two distrib-
uted learning experiments and built models to predict opioid
chronic usage and antipsychotic side effects using clinical
data.

Jochems et al. [22] tested the distributed approach using
clinical parameters and built a Bayesian network model to
predict dyspnoea in NSCLC patients treated with radiothera-
py. The same group [23] confirmed the distributed approach’s
potential in a second study using a different machine learning
algorithm to predict the same outcome.

In the three studies, authors compared the distributed and
centralized algorithms’ performance and showed substantial
equivalence between the two approaches.

Discussion

The present scoping review aimed to gather and assess the
research evidence to answer whether multi-institutional col-
laboration in machine learning research and practice can rely
on distributed learning as on a conventional centralized ap-
proach. Our analysis confirmed that distributed learning is an
effective strategy for multi-institutional collaboration with the
potential advantage of being privacy-preserving. Although
distributed learning has been proposed to share data
guaranteeing privacy-preserving issues, it does not per se
guarantee security and privacy by design. Indeed, it might
be possible to retrieve estimations of the original data through
a reverse engineering approach from the shared weights.
Nonetheless, distributed learning should be considered as the
prerequisite infrastructure to address governance and regula-
tory compliance. Indeed, a distributed network may be easily
empowered by specific privacy preservation methods (e.g.
differential privacy and cryptographic techniques) [7, 9]. To
propose an effective privacy-preserving methodology in mul-
ticenter collaboration, the assessment of distributed learning
performance compared to a centralized approach is the first-
step requirement. Evaluation of the effectiveness of privacy-
preserving methods was out of the present work’s scope and
should be evaluated in future investigations.Ta
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Regardless of the aim (risk prediction, diagnosis, prognosis,
or treatment side effect/adverse drug reaction prediction), the
type of input (clinical data, images, or genetic data), the method
(federated or ensembling), and the classifier (e.g. artificial neural
networks, support vector machine, random forest), distributed
training performed close to centralized training in almost all the
experiments [12, 19, 20, 22–24, 26, 28–31, 34–43] (Tables 1-4).
Centralized learning showed better performances than the distrib-
uted approach in two experiments among those reported in the
studies by Xu et al. [36] and Tuladhar et al. [42]. However, both
these experiments were burdened by a limited number of obser-
vations, probably responsible for the overfitting-related failure.
Particularly, Xu et al. [36] built amodel using a dataset consisting
mainly of patients with SARS-CoV-2 or bacterial pneumonia
(34% and 27%, respectively) and healthy subjects (33%).
Other viral non-COVID pneumonia, which per se included sev-
eral entities characterized by specific features (e.g. respiratory
syncytial virus, cytomegalovirus, influenza A), represented only
6% of the entire dataset [36]. Similarly, the ensembling approach
tested by Tuladhar et al. [42] dealt with unbalanced groups (67%
MCI patients versus 33% healthy subjects), but the experiment
also suffered from a limited number of observations for each
node (average of 6 cases in the 43 nodes). Notably, the other
experiments performed by Tuladhar et al. [42] dealing with sim-
ulated distributed data demonstrated that the dataset’s skewness
did not affect the final model’s performance. This finding indi-
cated that the imbalance of groups determined the model’s poor
generalizability when the number of nodes and observations in
each node is not sufficiently heterogenous to be representative for
the target population. Indeed, when a sufficient number of
“nodes” and of “observations for each node” is included in the
model, distributed learning is not prone to the inherent limitations
of locally trained models (e.g. imbalanced groups) and the
overfitting related to the peculiarity of each site resulting in a
competitive generalisable model. Distributed models
outperformed locally trained models [21, 27, 28, 30, 32, 33,
36, 37, 39, 40, 42] with rare exceptions [22, 25]. Specifically,
the distributed model developed by Jochems et al. [22] was as
efficient as localized learning models in predicting post-
radiotherapy dyspnoea. Diversely, Deist et al. [25] found that
localized learningmodels sometimes outperform federated learn-
ing in 2-year survival prediction, suggesting that unobserved
confounding factors or diverse outcome collection standards
may affect the model’s performance. Preprocessing data harmo-
nization – if possible – (e.g. image resampling, a clear method-
ology and uniform criteria for data collection) could positively
impact data integration, simplifying multi-institutional collabora-
tion for large-scale analytics [25, 44].

This scoping review aimed to produce evidence on the effi-
ciency of the distributed learning regardless of the type of input
data. We included papers dealing with clinical data (n = 12),
images (hand-extracted features = 1, images = 11), both clinical
data and images (n = 1), and genetic data (n = 1). This variabilityTa
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demonstrates that distributed learningmay be implemented with-
in any multicenter collaboration. Indeed, in precision medicine,
an increasing number and kind of variables (lifestyle habits, con-
stitutional factors, clinical, pathological, imaging, and “omics”
data including treatment-related information) need to be consid-
ered to build predictive models. Medicine is evolving from a
“disease-based” vision towards a “patient-based” approach based
on multidimensional data that describe physiological and patho-
logical conditions [6, 45, 46]. Distributed learning may represent
a reliable framework for future multi-institutional and multidis-
ciplinary research and clinical practice.

On the other hand, the “digital twin” approach has been pro-
posed to respond to the challenge of the integration and analysing
of large amounts of data within a dynamic framework. This tech-
nology is based on the construction of a digital model of an indi-
vidual patient (depicting the molecular profile, the physiological
status, and the life style habits) to virtually test a multitude of
treatments to choose the optimal one [47, 48]. Therefore, both
the medical and technological conceptual views that aim to pro-
vide a detailed and extensive description of an individual’s multi-
dimensionalitymay benefit from a distributed learning framework.

Differences in terms of aims, input data, and methods (i.e.
algorithms, data distribution among nodes, number of nodes,
and metrics to assess model performance) made selected papers
hardly comparable. Consequently, a preferred distributed learn-
ing method tailored for each specific task cannot be recommend-
ed. Nonetheless, ensembling emerged to be incredibly conve-
nient when input data are heavily heterogeneous; it can be ap-
plied to any machine learning algorithm and uses different learn-
ing models for each node [14, 15]. Split learning, owing to its
layered architecture, is fit for deep neural networks [16]. Finally,
federated learning, which parallelly trains local models and ag-
gregates their updates into a “central” node, can be efficiently
utilized with many different machine learning algorithms [17].
Therefore, when setting up a distributed learning network, artifi-
cial data and simulated networks may be developed according to
the model’s particular setting and objective to get preliminary
performance results and compare distributed vs non-distributed
approaches.

Technical constraints and artificial intelligence (AI) accep-
tancemay be themain barriers to widespread distributed learning
in healthcare. Technical challenges consist of computational bur-
den and the communication overload (i.e. the amount of data
shared among nodes) that need to meet the infrastructure con-
straints. In this regard, the number of nodes and kinds of data
distributed among nodes is crucial hyperparameters that need to
be tuned. Nonetheless, as a proof of concept, some commercial
and open source solutions (e.g. DistriM from Oncoradiomics
[49], Varian Learning Portal from Varian [50], Clara platform
from Nvidia [51], and GRIN from Genomics Research and
Innovation Network [52]) have recently become available,
supporting the feasibility of implementing a distributed learning
infrastructure.

Moreover, the lack of confidence and critical appraisal of
the ML-based tools by healthcare personnel may limit tech-
nology implementation. Consequently, educational material
and programs [6, 17, 53] involving clinicians, researchers,
and regulatory officers are progressively getting available to
promote the awareness on opportunities of multi-institutional
trials and practices based on distributed learning towards a
responsible AI. Additionally, the trustworthiness of AI-based
methods is challenged by the barrier of explainability. The so-
called eXplainable AI (XAI) field is growing, intending to
develop responsible AI and encourage experts and profes-
sionals to embrace the new technology’s benefits to overcome
the limitation related to explainability [54].

Furthermore, data have to be structured or preprocessed
before their use to train a model. Distributed learning strate-
gies were first introduced to analyse clinical data from elec-
tronic health records (EHRs). The rigid structure of EHRs has
been influenced by research data collection systems and tech-
nology advances applied in clinical trials. Indeed, in clinical
research, study design, data collection, analysis, and sharing
have evolved over the last 20 years [55]. At present, data
within clinical trials are recorded according to demanding
rules aimed at making them standardized and structured or
semi-structured. Overall, these approaches lead to high-
quality information, adequate assessment of outcomes,
endpoints, events, timely data analysis, reliable models,
and efficient and comprehensive results’ publication and
dissemination. The trend towards structured data is getting
translated to routine medical EHRs. Generally, EHRs share
common terminology, codes, and sections that could be
easily collected from different centres or countries and sub-
sequently analysed, while other domains, including medi-
cal imaging, are less structured. In the past years, several
initiatives and registries containing structured data have
been developed mainly as public health and descriptive
epidemiological tools [55, 56]. The CancerLinQ has been
the first and the foremost initiative sponsored by the
American Society of Clinical Oncology and its Institute
for Quality to collect “protected” EHRs data with the final
goal of assessing, monitoring, and improving delivered care
in cancer patients [57]. However, all these initiatives were
challenged by privacy and security concerns on collecting,
using, and patient information disclosure.

Additionally, concerns related to ethical and reliability as-
pects of AI-based algorithmsmay influence distributed learning
technology spread. A potential drawback of AI prediction is its
dependence on the data being used to train the algorithm.
Training data have to represent the diseases and patient popu-
lations under evaluation and be balanced to perform when ex-
posed to diverse patient data. Additionally, underspecification
in ML pipelines may contribute to the failure of ML algorithms
in a real-world deployment. Underspecification occurs when
many distinct solutions can solve the problem equivalently
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[58]. Modelling pipelines need to explicitly account for this
problem, also in the medical imaging domain.

The great potential of distributed learning has been al-
ready recognized by companies as proofed by the
EHR4CR project. Within that project, pharmaceutical
companies created a precompetitive data environment that
relied on distributed learning methods that allowed them to
safely perform clinical trials, sharing commercially confi-
dential information [59].

This scoping review has some limitations. The high hetero-
geneity of included studies in terms of aims, input data,
methods, and performance metrics prevented a comparison
between studies, leaving no space for systematic consider-
ations. Therefore, the present review aimed at assessing if
multisite collaboration could efficiently rely on distributed
learning. Therefore, our interest focused on assessing the
non-inferiority of distributed learning over centrally and
locally trained models instead of producing a systematic
review. Nonetheless, the review gathered evidence that dis-
tributed learning is feasible, safe, and non-inferior for lo-
calized and centralized learning. Given this premise, we
expect that distributed learning’s usefulness and applicabil-
ity will be objects of many more investigations in different
medical settings shortly.

In conclusion, distributed learning-based models showed
to be reliable; indeed, they performed equally to models
trained on centralized datasets. Sensitive data can get pre-
served by distributed learning since they are not shared for
model development. Distributed learning constitutes a prom-
ising solution, especially for AI research, since large, diverse
datasets are crucial for success. We foresee distributed learn-
ing being the bridge to large-scale, multi-institutional collab-
oration in research and medical practice.
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