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Total-body positron emission tomography (PET) has been a
true revolution of modern biomedical instrumentation follow-
ing its initiation about 5 years ago, when Simon Cherry and
Ramsey Badawi from the University of California, Davis re-
ceived a $15.5 million, 5-year NIH Grant to lead the consor-
tium in September 2015 [1, 2]. By May 2018, the fabrication
of the first total-body PET scanner was completed by the
consortium with aid from several industrial collaborators.
The scanner has a 194 cm axial field-of-view for PET imaging
provided by > 500,000 detector elements, as well as an 80-
row, 160-slice CT scanner for anatomical imaging and PET
attenuation correction [3, 4], and was later called the
uEXPLORER PET/CT scanner (United Imaging Healthcare
Co., Ltd.). This scanner has a coincidence time window of
4.5–6.9 ns (ring difference dependent), an energy resolution
of 11.7%@511 keV, and a time resolution of 430 ps. In terms
of sensitivity based on the NEMA NU-2 phantom, it was ~
190 kcps/MBq (70 cm length) and ~ 150 kcps/MBq (200 cm
length) respectively [5].

In November 2018, the first human images from the
uEXPLORER scanner were presented at a Total-body PET
workshop, which were acquired at the Department of
Nuclear Medicine, Zhongshan Hospital, Fudan University
(Shanghai, China). A 61-year-old male healthy volunteer

was injected with 7.8 mCi of 18F-FDG, with just 1 min of data
acquisition providing good quality PET images [4]. At the
beginning of the EXPLORER consortium, it was claimed that
with the total-body PET scanner, one could: image better (e.g.,
reconstruct at higher resolution and detect smaller lesions),
image faster (e.g., perform total-body PET in 15–30 s and
reduce respiratory motion), image longer (e.g., image for 5
more half-lives due to the 40-fold increase in dynamic range),
and image gently (e.g., use 40-fold reduction of radioactivity
dose which will enable PET scans in the young population, as
well as more repeated scans in the adult population) [1].

These claims were successfully demonstrated through a series
of well-designed studies and publications over the last 2 years [4,
6–11]. Indeed, this state-of-the-art scanner possesses many ad-
vantages over previously developed PET/CT scanners. In this
issue of European Journal of Nuclear Medicine and Molecular
Imaging, Dr. Shi, Dr. Gu, and colleagues reported that total-body
dynamic PET imaging with ultra-low-activity (0.37 MBq/kg)
conferred equal performance to full-activity (3.7 MBq/kg) PET
imaging when investigating the kinetic metrics of 18F-FDG in 20
human subjects [12].

When analyzing the feasibility of ultra-low-activity total-
body PET dynamic imaging for mathematical quantification
of the kinetic parameters of 18F-FDG, 5 s per frame were used
for the initial 3 min after 18F-FDG injection, and 3 min per
frame were used for the remainder of the scan. In this well-
designed and well-executed study, findings revealed that (1)
No significant difference in rate constants (k1, k2, k3) in any
organ was found between the full-activity and ultra-low-
activity groups. (2) All of the fitted models showed excellent
goodness-of-fit in full-activity and ultra-low-activity groups,
with the full-activity group models exhibiting smaller Akaike
Information Criterion (AIC) and Schwarz Criterion (SC),
which was expected. The only statistically significant differ-
ences were found in the brain. (3) Clear PET images of com-
parable quality were acquired for the ultra-low-activity group
from 12 min onward after 18F-FDG injection. (4) PET data
from the full-activity group generated significantly larger
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prompt counts than the ultra-low-activity group, including
true, scatter, random, effective (true + scatter), and noise equal
count (NEC), which were all expected. However, the percent-
age of effective counts in the full-activity group was signifi-
cantly smaller than the ultra-low-activity group (~ 36% vs. ~
60%, P < 0.001), which was attributed to higher percentage of
random fraction in the full-activity group.

With comparable performance in image quality and kinetic
analysis, several major advantages of total-body
uEXPLORER scanner with ultra-low-activity of 18F-FDG
are provided. One benefit relates to smaller median effective
radiation dose in the ultra-low-activity group compared to the
full-activity group (2.817 vs. 7.296 mSv, P < 0.001), which
was largely due to the reduction of 18F-FDG-imparted dose
from 4.886 mSv (range of 3.445–5.153) in the full-activity
group to 0.419 mSv (range of 0.333–0.582) in the ultra-low-
activity group (P < 0.001). Importantly, the effective radiation
dose of the ultra-low-activity group was mainly comprised of
a CT dose of ~ 2.4 mSv, which is more than 5 times the
effective radiation dose of 18F-FDG. In addition, the file size
of the raw PET data is ~ 10 times smaller for the ultra-low-
activity group (~70 GB for the 75-min dynamic PET scan)
when compared to the full-activity group (~720 GB). The
smaller size of raw PET data not only required much less
storage space, but also enabled faster data processing/recon-
struction/transport. Even though data storage space is usually
not an issue in the modern era, leaner raw data are still highly
desirable in the routine clinical workflow to ensure faster im-
age reconstruction and analysis. Total-body PET imaging
with ultra-low-activity of 18F-FDG is clearly highly advanta-
geous in this regard, especially in major hospitals with a large
number of patients scheduled every day.

In thework by Liu et al., a low-dosewhole-bodyCT scanwas
performed before 18F-FDG PET scan for each subject [12]. This
CT scan was used for attenuation coefficient (AC) instead of
disease diagnosis, with its effective radiation dose (~ 2.4 mSv)
being significantly lower than a typical diagnostic bodyCT exam
and the CT component of a typical modern PET/CT exam (~ 5–
10 mSv) [13–15]. With the constant advancements of CT tube
and detector technologies [16], patient-specific scan technolo-
gies, and artificial intelligence (AI)-based CT dose reduction
technologies (e.g., TrueFidelity Deep Learning Image
Reconstruction from GE Healthcare [17, 18], Advanced
Intelligent Clear-IQ Engine from Canon Medical Systems USA
Inc. [19–21], among others), there is considerable promise for the
CT component of whole-body PET/CT exam to routinely
achieve sub-mSv effective doses in the future, which means the
entire whole-body PET/CT exam with ultra-low-activity of 18F-
FDG can be accomplished under 2 mSv. This will provide un-
precedented possibilities for a variety of clinical scenarios such as
longitudinal scans of (cancer) patients when monitoring the ther-
apeutic response [22, 23], as well as routine (repeated) scans in
pediatric patients [24].

A few aspects of the uEXPLORER PET/CT scanner may
deserve to be further investigated in the future. First, dynamic
PET scans typically require larger injection doses of radioactivity
to ensure sufficient signal-to-noise ratio for accurate data analy-
sis. For most clinical management of oncologic patients, static
PET scans are performed which can tolerate even lower radioac-
tivity than dynamic PET scans. In future studies, even lower 18F-
FDG dose could be injected for static PET scans, fulfilling the
original claim of 40 times lower dose/higher sensitivity. Second,
such ultra-low-activity injection could provide unprecedented
insight for first-in-human studies of novel tracers by enabling
non-invasive whole-body pharmacokinetic analysis in all tissue.
This is especially important for 11C- or 18F-based tracers that
require elaborate and lengthy synthesis. The low radiochemical
yield will not be a limiting factor with the uEXPLORER PET/
CT scanner, and we look forward to future studies of novel
tracers in metastatic cancer setting. Third, aside from the phar-
macokinetic studies shown here, the differences in 18F-FDG
avidity within the tumor may also be analyzed to investigate
tumor heterogeneity. In a recent proof-of-principle case study,
60-min dynamic total-body PET/CT scans of cancer patients
were carried out [7]. It was found that the time-activity curves
(TACs) extracted from regions-of-interest in different areas of the
tumor mass indicated high heterogeneity: although tracer (i.e.,
18F-FDG) delivery was likely the same across the tumor mass,
the 18F-FDG uptake rate in different areas of the tumor was quite
different. Fourth, with the exceptional sensitivity and temporal
resolution, dynamic whole-body PET scans can also enable ra-
diotracer angiography, which may become a one-stop shop for a
wealth of information and eliminate unnecessary CT or MR
angiography procedures in various clinical settings [7]. Fifth,
such ultra-low-activity dynamic and static PET/CT scans will
require validation in large cancer patient cohorts, similar to a
recent study reported by the same group which used half-dose
(1.85 MBq/kg) of 18F-FDG, and was able to get better quality
PET/CT images than that of conventional PET/CT with full-
activity 18F-FDG in lung cancer patients [8]. Lastly, PET scans
at later time points may offer important information, such as
differentiating cancer from inflammation based on dual-time-
point 18F-FDG PET scans. In addition, faster PET/CT scans
can significantly shorten the acquisition time without
compromising lesion detectability and image quality. For exam-
ple, it was found that acceptable subjective PET image quality
could be achieved with 60- and 30-s scans after full-activity
(4.4 MBq/kg) 18F-FDG injection [11]. For future systematic
and routine studies in these areas, the scanner performance will
not be the limiting factor, logistics will be the major challenge
especially in medical centers with a high daily clinical workload.

Both the clinical and preclinical total-body PET scanners
hold tremendous potential for various biomedical applica-
tions, and the scientific community is looking forward to what
can be done in the immediate future to unleash their full po-
tential. Along the way of building the clinical total-body PET/

4139Eur J Nucl Med Mol Imaging  (2021) 48:4138–4141



CT scanner, the EXPLORER consortium also built a proto-
type PET scanner for high sensitivity and total-body imaging
of non-human primates, called the mini-EXPLORER [25].
Recently, Berg et al. reported PET imaging of rhesus monkeys
with the primate mini-EXPLORER scanner [26]. The authors
compared four different tracers, all 89Zr-labeled antibodies,
and were able to acquire high quality PET images for up to
30 days after tracer injection (~ 10 decay half-lives of 89Zr).
Such long-term serial PET imaging could help answer many
biological questions about the in vivo behavior of
(radiolabeled) antibodies, with the appropriate biological ex-
periments to supplement the PET scans to validate the biolog-
ical meaning/relevance of the long-term PET imaging data
[27], since the radioactivity at 30 days post-injection might
be largely dissociated from the antibody, especially with a
residualizing metal such as 89Zr.

Currently, total-body PET/CT scanners are very expensive
and only available at a few major medical centers. Total-body
PET is still in its early days, which is similar to the 1970s
when PET scanners were initially developed [28, 29]. With
continued development and optimization of the scanner, as
well as cost reduction, we believe total-body PET/CT scan-
ners will become widely available in the future, just like PET/
CT scanners have replaced PET scanners [30, 31]. Now that
the proof-of-principle studies have been carried out, more sys-
tematic and sophisticated studies will be needed in the future
to fully unleash the potential of total-body PET/CT scanner.
Without any doubt, total-body PET/CT scanner will be an
indispensable tool for humankind’s ultimate victory over can-
cer, as well as catalyzing more preclinical/clinical applications
and disciplines (e.g., pediatric disorders, peripheral vascular
diseases, tracking of transplanted cells) [32–35].
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