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Abstract

The ability to non-invasively visualize endogenous chromophores and exogenous probes and sensors across the entire rodent
brain with the high spatial and temporal resolution has empowered optoacoustic imaging modalities with unprecedented capac-
ities for interrogating the brain under physiological and diseased conditions. This has rapidly transformed optoacoustic micros-
copy (OAM) and multi-spectral optoacoustic tomography (MSOT) into emerging research tools to study animal models of brain
diseases. In this review, we describe the principles of optoacoustic imaging and showcase recent technical advances that enable
high-resolution real-time brain observations in preclinical models. In addition, advanced molecular probe designs allow for
efficient visualization of pathophysiological processes playing a central role in a variety of neurodegenerative diseases, brain
tumors, and stroke. We describe outstanding challenges in optoacoustic imaging methodologies and propose a future outlook.
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Introduction

Optoacoustic imaging and tomography as a new
modality in neuroscience research

Advances in imaging technology have led to tremendous
breakthroughs in life sciences and biomedicine. In particular,
cutting-edge neuroimaging tools have greatly aided in the un-
derstanding of brain organization while also being instrumen-
tal in studying and treating brain disorders [1-8]. Imaging
studies in animal models of human disease have enabled dis-
section of disease mechanisms and identification of molecular
targets toward the development of novel therapeutic strategies
[9-11]. While significant progress has been made in
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understanding the molecular pathophysiology of most brain
diseases, we are still far from linking information on mole-
cules, gene regulatory events, and signaling pathways to the
changes that occur over time on the tissue and organ level in
an integrative way [12]. For example, while some pathologi-
cal processes occur on short time scales or small spatial scales
(cellular and sub-cellular scale), e.g., synaptic dysfunction,
other processes, such as neurodegeneration, develop over
years and decades before being manifested as gross histopath-
ological changes. Imaging methods that can visualize and
quantify several processes over prolonged durations in vivo
are highly desired, but pose high demands on the sensitivity,
field-of-view (FOV), depth of penetration, and spatial and
temporal resolution of the imaging techniques. Moreover,
the ability to capture the interplay between different cellular
and molecular pathophysiological processes implies the use of
methods providing highly multiplexed information. Figure 1
summarizes the performance of various brain imaging modal-
ities with respect to their FOV, resolution, and imaging speed.
State-of-the-art confocal and two-photon microscopies allow
for the investigation of cellular processes with high spatial
resolution in vivo. However, microscopic methods come with
the price of a limited (sub-millimeter) depth penetration in
mammalian brains, a small FOV, and a high degree of inva-
siveness. Non-invasive optical imaging techniques, such as
near-infrared fluorescence imaging (NIRF) and tomography,
exhibit high sensitivity and can be used in combination with
imaging probes to observe biological processes at the cellular
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and subcellular level, deep in rodent brains [13, 14]. However,
these techniques exhibit poor spatial resolution in the 1 mm
range due to intense photon scattering in living tissues [15].
Magnetic resonance imaging (MRI) and X-ray computed to-
mography (CT) are routinely employed for clinical diagnos-
tics and achieve whole-brain coverage and excellent anatom-
ical contrast, making those techniques capable of characteriz-
ing gross morphological changes during disease progression
[7, 16, 17]. However, those modalities come with low sensi-
tivity to cellular and sub-cellular events. In contrast, positron
emission tomography (PET) and single-photon emission com-
puted tomography (SPECT) provide good detection sensitiv-
ity but at the expense of low spatial resolution and only brief
observation windows due to decaying radioactive isotopes. In
particular, functional ultrasound imaging is emerging as a
powerful brain interrogation tool in rodents [18].
Transcranial-focused ultrasound is further explored for
treating certain neurological and neurodegenerative condi-
tions [19-21], yet highly sensitive detection of molecular
events remains challenging with ultrasound imaging, which
limits imaging applications to the vascular space where most
pathological processes remain inaccessible.

Optoacoustic (OA) imaging, also termed photoacoustic, is
an emerging tool in biomedical research providing a variety of
complementary benefits to other imaging modalities in terms
of contrast, penetration depth, and spatial and temporal reso-
lution. OA relies on the photophonic phenomenon first de-
scribed by Tainter and Bell in 1880 where intermittent light
radiation is absorbed by molecules and converted into heat,
leading to instantaneous thermoelastic expansion and induc-
tion of broadband pressure waves [22]. It has yet taken more
than a century of technological progress bringing about in-
tense pulsed laser sources, sensitive broadband ultrasound ar-
rays, fast digitization electronics, and efficient image recon-
struction algorithms, to enable practical biomedical OA imag-
ing systems [23, 24]. Nowadays, tunable laser sources in the
near-infrared range, where tissue optical absorption is

Resolution (mm)

reduced, are commonly employed for in vivo imaging appli-
cations, thus allowing for deep tissue penetration of the exci-
tation photons. In this way, distribution of tissue chromo-
phores and photoabsorbing agents can be rendered
tomographically via single transducer scanning or parallelized
OA signal detection with arrayed probes accompanied by suit-
able image reconstruction algorithms, e.g., based on back-
projection or model-based inversion approaches [25, 26].
OA methods are ideally suited for functional and molecular
in vivo interrogations at different scales, from single cells to
whole organisms. For instance, optical-resolution
optoacoustic microscopy (OR-OAM) uses scanning of fo-
cused optical excitation along the tissue surface thus attains
high-resolution imaging of the mouse cortical areas at single
capillary resolution [25] (Fig. 2a). Small animal scanners use
instead tomographic data collection with partial- or full-ring
concave transducer arrays to render cross-sectional recon-
structions [26] or whole-body 3D scans by means of spiral
volumetric optoacoustic tomography (SVOT) [29]. In addi-
tion, multi-spectral optoacoustic tomography (MSOT) can
sensitively differentiate between different tissue chromo-
phores or extrinsically administered probes via spectroscopic
analysis to provide multiplexed information from the same
animal (Fig. 2b) [27]. Fast repetition rate laser sources have
been developed to enable data acquisition of cross-sectional
images with high frame rates thus follow fast biological pro-
cesses dynamically [28]. Further technical advances focus on
real-time recording of true 3D spectroscopic data from the
whole mouse brain in action [29, 30] (Fig. 2¢). The combina-
tion of optical excitation with ultrasonic detection offers
unique benefits for investigating the vascular system in model
systems: (1) ultrasonic detection is not sensitive to light scat-
tering; thus, the technique can provide rich optical contrast
while extending the effective penetration compared to con-
ventional optical microscopy methods by at least an order of
magnitude (> 1 cm); (2) various OAM and MSOT
implementations can achieve scalable imaging in the living
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Fig. 2 Examples of optoacoustic imaging setups used for molecular
interrogation of brain diseases. a Optoacoustic microscopy OR-PAM.
Adapted with permission from [25]; b Cross-sectional multi-spectral

brain, from capillary resolution in up to 1 mm deep cortical
areas to whole mouse brain observations with sub-200 pm
resolution [25, 30, 31]; (3) OA provides label-free visualiza-
tion of multiple cerebral hemodynamic parameters [29, 32]
along with highly sensitive spectroscopic differentiation of
extrinsic labels [27, 28]. Simultaneous multi-parametric imag-
ing of hemoglobin concentration, blood oxygenation, and
blood flow, as well as the micro-regional cerebral metabolic
rate of oxygen, is possible by means of multi-parametric
OAM [33, 34]. As a result, OA techniques effectively bridge
the gap between microscopic and macroscopic brain imaging
realms and are uniquely endowed with high-resolution, fast,
multiscale, and multiplex imaging capacities in small-animal
organisms in vivo.

Endogenous contrast for structural and functional
imaging

In OA imaging, several contrast mechanism can be exploited
to derive diverse information from tissues. Even though the
soft tissue contrast of OA imaging might be inferior to other
anatomical imaging modalities (e.g., MRI), OA microscopy
and mesoscopy provide a unique ability for label-free visual-
ization of the cortical vasculature in murine brains down to the
capillary level [35-38] (Fig. 3a, c, d). For ex vivo samples, the
high-resolution microtomy-assisted OAM can reach 400 nm
resolution when imaging cell nuclei, blood vessels, axons, and
myelin structures in paraffin or agarose-embedded mouse
brain tissues [39, 40] (Fig. 3b). In biological tissues, major
absorbers are melanin, water, lipids, and hemoglobin (i.c.,
deoxyhemoglobin, Hb and oxyhemoglobin, HbO,), which
provide endogenous absorption contrast. Spectroscopic
(MSOT) imaging (Fig. 3e—f) of hemoglobin has been
employed in numerous applications aimed at attaining real-
time readouts on the total hemoglobin concentration, blood
oxygen saturation, cerebral blood volume (CBV), and oxygen
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optoacoustic tomography (MSOT) imaging setup. Adapted with permis-
sion from [207]; ¢ Volumetric MSOT. Adapted with permission from
[29]

metabolism [41-43]. By using sparsely distributed flowing
microbeads and droplet, localization-based OAM [38] (Fig.
3a) and tomography [35, 37, 44-46] have been developed,
which enabled in vivo micro-angiography of deep brain vas-
culature at 20 wm resolution, further providing cerebral blood
flow (CBF) readouts. While functional MRI (fMRI) based on
blood oxygen level-dependent (BOLD) signal is widely used
for studying brain activity under resting state and stimulus-
evoked conditions in humans and rodents [23, 29, 47-49], due
to its fast imaging capacity, hemodynamic MSOT imaging is
similarly establishing itself as a surrogate for brain activity in
small animal models, correlating robustly with electroenceph-
alogram (EEG) readouts [29, 31, 49-52]. Yao et al. demon-
strated using OAM of brain responses to electrical stimula-
tions of the hindlimbs of mice (Fig. 4a—c) [25]. Li et al.
showed imaging of brain stimulation using snapshot photo-
acoustic topography through an ergodic relay for high-
throughput imaging of optical absorption (Fig. 4d—g) [53].
Ovsepian et al. demonstrated the feasibility of imaging diverse
spectroscopic endogenous contrast in the mouse brain ex vivo
[54].

MSOT probes for molecular imaging

The advent of new MSOT probes (Table 1), e.g., those based
on small-molecule near-infrared dyes (e.g., cyanine dyes,
squaraines, porphyrin derivatives), plasmonic (e.g., gold,
single-walled carbon nanotubes), and polymer nanoparticles
has facilitated their use for unspecific vascular contrast en-
hancement and conjugated to targeting moieties and enzymat-
ic sensors [55-57]. In particular, organic dyes allow for stable
labeling making them ideal for longitudinal studies. Small-
molecule dyes currently used for MSOT imaging are also
fluorescent, aiding ex vivo validation of biodistribution of
probes in whole organs and tissue sections by using NIRF
and fluorescence microscopy. In addition, nanoprobes have
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Fig. 3 OA imaging of structural and anatomical information in small
animal brain. a In vivo super-resolution localization optoacoustic micros-
copy (OAM) of a mouse brain using intrinsic contrast of red blood cells—
depth and amplitude are color-encoded. Adapted with permission from
[37]. Superior sagittal sinus (SSS) and transverse sinus are labeled with
white arrows; b 300-pum-thick slices of the mouse brain cerebrum myelin
imaged using mid-infrared (MIR)-OAM [39]. An ultraviolet-localized
image is shown at the bottom right, exhibiting higher spatial resolution;
¢ Raster-scan optoacoustic mesoscopy (RSOM) images of the mouse
brain (dorsal and lateral views are shown with skin or skullcap removed).

been developed for labeling and longitudinal tracking stem
cells evaluating therapeutic treatment effects in stroke and
brain injury models [58-66]. Li et al. demonstrated imaging
of bone mesenchymal stem cells labeled with Prussian blue
nanoparticles in a brain injury mouse model (Fig. 6¢c—¢) [64].
Probes with theranostic potential have also been developed
such as graphene oxide (rGO)-loaded plasmonic gold nanorod
vesicle [67], and polymer nanoparticle conjugated with c-
RGD peptide [68].

Genetic reporter systems have also been developed to en-
able MSOT imaging of gene expression. Existing genetic sen-
sors for non-invasive molecular imaging [69, 70], such as the
pigment enzyme reporters, fluorescent proteins,
chromoproteins, and photo-switchable proteins (e.g.,
rsOAPs, BphP1, DrBphP-PCM, iRFP [69, 71-73]), have pro-
vided excellent means for whole-brain MSOT imaging [74,
75]. Efforts have been recently made to develop genetically
encoded calcium indicators (GECIs) [76-79], and voltage-
gated indicators [80], as well as astrocyte- and neuronal-
specific sensors [81]. Dean-Ben et al. demonstrated rapid
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Scale bars, 1 mm. Adapted with permission from [36]; d Single-impulse
panoramic photoacoustic—computed tomography (SIP-PACT) of vascu-
lature in the mouse brain cortex. Adapted with permission from [37]; e
In vivo MSOT imaging of the mouse brain showing single wavelength
(800 nm) anatomical image, along with spectrally unmixed distribution of
deoxy- and oxyhemoglobin; f Dynamics of cerebral blood oxygenation
following carbon dioxide challenge imaged with MSOT (white, normal
air; dark gray, 10% carbon dioxide; intermediate gray, 100% oxygen; and
light gray, 100% carbon dioxide). Adapted with permission from [43]

imaging of calcium transients elicited by pentylenetetrazole
in HuC:GCAMPS5g zebrafish larvae using functional
optoacoustic neuro-tomography (FONT) [82]. Gottschalk
et al. further showed rapid, high-resolution 3D mapping of
large-scale Ca** neuronal activity across the mammalian brain
in models expressing genetically encoded calcium indicator
GCaMP6f using FONT [31] (Fig. 5c—f). The recent advances
in development of near-infrared-shifted NIR-GECO indica-
tors [78] hold promise for mapping neural activity with lower
background absorption levels and increased penetration depth,
both with fluorescence-based and OA modalities.

Application in elucidating brain diseases

Gliomas

Gliomas are the most prevalent type of primary malignant
brain tumors and are associated with high mortality and mor-

bidity. Conventional therapy comprises surgical resection, ra-
diation, and/or chemotherapy, but the responses to the
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Fig. 4 Functional imaging based on endogenous absorption contrast. a-c
Optoacoustic microscopy of brain responses to electrical stimulations of
the hindlimbs of mice. Adapted with permission from [25]; d-g Imaging
of rat whole-brain functions using Single-impulse panoramic
photoacoustic—-computed tomography; d Whole-brain vasculature; e seg-
mentations of different functional regions of the brain; f Seed-based

treatment regimens are only the modest and associated with
adverse effects. Imaging techniques such as CT and MRI have
been critically implicated in the development of precision
medicine related to gliomas and other cancer types [83].
While useful for diagnosis, current anatomical imaging can
neither adequately determine the most effective treatment reg-
imen for individual patients nor reliably monitor treatment
response. Thus, advanced imaging techniques that are capable
of quantitatively interrogating glioma biology at the physio-
logic, cellular, and molecular levels are highly desired.
Angiogenesis has been visualized using endogenous hemo-
globin contrast in tumor models bearing U87MG [43, 67,
84] and orthotopic brain glioma [36, 53, 68, 85-88], where
elevated signal levels were observed in the tumor regions. In
addition to the diagnostic potential in tumor staging, MSOT
imaging has been assisting imaging-guided surgery [89] for
visualizing tumor margins using contrast agents, e.g., gold or
other nanoparticles [68, 84, 90, 91], in evaluation of
photothermal therapy [68, 90, 92, 93], pharmacological treat-
ment [90, 94-100], and radiation therapy response [101].
The completeness of the surgical resection is a key factor in
the prognosis of patients with brain tumors. Despite its known
limitations, MRI using gadolinium-based contrast enhance-
ment currently remains the gold standard for diagnosis and
pre-surgical planning [102]. Several alternative optical
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cancer cells, color represent the flow direction of circulating tumor cells
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methods have been suggested for intraoperative delineation
of tumor margins, based either on intrinsic optical tissue prop-
erties or exogenous contrast agents. The location of the tumor
can be tracked deep inside the brain with MSOT, as demon-
strated by Deliolanis et al. on iRFP-labeled US7MG express-
ing glioblastoma tumor implants [103] and by Mishra et al. on
4TI cell mouse mammary gland tumors expressing ReBphP-
PCM [71] (Fig. 5a).

Kircher et al. (2012) developed a triple-modality MRI-OA-
Raman nanoparticle for imaging of glioblastoma [84] (Fig.
6a-b). Liu et al. (2018) loaded molybdenum disulfide nano-
sheets with indocyanine green [104]. Glioblastoma could be
clearly visualized after the probe injection. Song et al. (2019)
developed a multi-modal probe for MRI and OA imaging for
visualization of glioblastoma [105]. OA has been used to de-
tect circulating breast cancer cells metastasizing to the brain
[106]. After injecting gold nanoparticles directly into the tu-
mor, the cells could be detected in the cerebrospinal fluid in
the cisterna magna in the following days. Li et al. demonstrat-
ed tracking circulating tumor cells melanoma migration in the
mouse brain in vivo using endogenous melanin signals by
using tomographic OA imaging method termed SIP-PACT
(Fig. 4h-k) [37]. Metastatic cells in the cerebrospinal fluid
were detected before macroscopic brain metastases became
apparent.
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Table 1 Optoacoustic contrast
Endogenous contrast

Category Application

Deoxy/oxyhemoglobin
Melanin

Lipid

Indocyanine green (ICG)*
IRDye800cw

AOI987, CRANAD-2, CDA-3,
Congo red
BODIPY

N,N-dimethylaniline (RPS1)
dipicrylamine

MMPsense680

Peptide ligand cRGD

Prussian blue-poly(L-lysine) NP
Ca-pSiNPs-ICG, MoS(2)-ICG
iron NP

Carbon nanotubes

Gold NP

Quantum dot

Cu,. . Se NP

H,0,-responsive liposomal NP
1-RGD

PBT; semiconducting polymer NP

r1sOAPs; BphP1; DrBphP-PCM,
iRFP

iGECI, GCaMP, CaMPARI

Voltage gated

Functional, metabolic [23, 30, 49, 82, 193]
CTC in brain [37, 54]

Myelin [40, 194, 195]

Brain tumor [196]

Tumor [192]

Amyloid-beta [100, 118, 119, 126]

Organic dye

[159]

Brain copper2+ accumulation [129]

Voltage response in epilepsy [157]
Inflammation in stroke model [142]

Brain tumor [90]

Track stem cell and brain injury [61-64, 197]
[65] Brain tumor [104]

Image-Guided Surgery [89]

Brain tumor [94, 96, 162, 198, 199]

Brain tumor [69, 89, 91, 98, 200]

Image-guided photothermal therapy [95, 97], Brain
tumor [109]

Blood brain barrier [201]
Inflammation [87]

Peptide

NIR I nanoprobe

Brain tumor apoptosis, caspase-3 [202]

Brain tumor [68, 91, 99, 107, 203-205],

Vasculatures [88, 206] ;
Bacterial Brain tumor [69, 71-73]
phytochrome

GECI
GEVI

Calcium imaging [70, 76-78]
Calcium imaging [80]

*FDA approved, NP nanoparticle

Various theranostic strategies have also been tested [36, 68,
87, 88, 90, 92, 93, 107, 108]. For example, Song et al. (2015)
designed and synthesized a graphene oxide (rGO)-loaded
ultra-small plasmonic gold nanorod vesicle [67]. The vesicle
also exhibited a high loading capacity of doxorubicin; thus, it
was selectively uptaken by the tumor following an intrave-
nous injection where it was subsequently detected with OA.
The absorption of light also led to local heating of tumor cells
and release of the doxorubicin. The combination of
photothermal and chemotherapeutic effects has led to reduc-
tion of the tumor volume. Guo et al. (2018) used a polymer
nanoparticle that was conjugated with c-RGD peptide, and
thus can target the .35 integrin receptor overexpressed on
tumors [68].

Targeted particles were used to image gliomas with
MSOT. Moreover, light in the second NIR window was used
for phototherapy, which resulted in the inhibition of tumor
growth and increased survival. Li et al. (2020) demonstrated
the use of large amino acid mimicking quantum dots for im-
aging and treatment of glioma [109]. The functionalized

quantum dots can bind to the large neutral amino acid trans-
porter 1 that is overexpressed in most tumors, and are taken up
by cells where they localize in the cytoplasm. The particles
were localized after intravenous administration at the tumor
site with MSOT in vivo. The quantum dots were also used as
carriers for a number of DNA-damaging chemotherapy drugs.
The group could show that the use of this particles as drug
carriers enhanced delivery of drug to tumors and enhanced
survival of tumor-bearing mice.

Tumor growth and tissue infiltration are associated with the
activation of multiple pro-angiogenic signaling pathways. The
newly formed blood vessels are highly irregular, have low
perfusion and a partially or entirely compromised blood-
brain barrier (BBB). Vascular leakage leads to edema and a
high interstitial fluid pressure, thus preventing accumulation
of therapeutic agents. Because of their high proliferation rate,
tumor cells outgrow their vascular supply, causing
intratumoral hypoxia, which increases tumor aggressiveness
and resistance to radiation and chemotherapy. Thus, hemody-
namic alterations may serve as a valuable imaging target.
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Fig. 5 Molecular (contrast-enhanced) MSOT imaging at the whole-brain
level. a 4T1 cells (0.7 x 10° injected intracranially) stably expressing
ReBphP-PCM imaged using MSOT at a depth of 3.6 mm in the brain
(arrow I) immediately after injection. Adapted with permission from
[71]; b volumetric MSOT imaging of amyloid-beta plaque in
Alzheimer arcA3 mouse brain using amyloid binding probe
CRANAD-2, showing higher signal retention in the cortical areas com-
pared to age-matched wild-type mice. Adapted with permission from
[120]; c-f whole-brain functional optoacoustic neuro-tomography
(FONT) volumetric imaging of calcium waves induced by
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pentylenetetrazole (PTZ) injection into an isolated mouse brain model.
Adapted with permission from [31]; ¢ absorption spectrum of purified
calcium-saturated (blue) and calcium-free (red) GCaMP6f proteins. d
Time traces of the normalized FONT data. Gray traces represent tetrodo-
toxin (TTX) injected 180 s before PTZ (=0 s), abolishing the activation;
e no signal change due to PTZ injection are detected in a control isolated
CD-1 mouse brain not expressing GCaMP6f proteins; f temporal evolu-
tion of the relative signal changes (AOA/OA,) in slices at depths of
0.7 mm and 1.1 mm in a GCaMP6f-expressing brain
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Fig. 6 Multi-modality imaging studies. a—b Optoacoustic (OA), Raman, location at the predetermined time points. *P < 0.05; e OA images of the
and MR images of the brain of orthotopic inoculation tumor-bearing mice mouse brain (i) before and (ii) after a single injection of bone mesenchy-
before and after i.v. injection with multimodal probe. The post-injection mal stem cells (BMSC) labeled with Prussian blue particles (PBPs). The
images of all three modalities demonstrated clear tumor visualization. The image (iii) represents the delta image. Adapted with permission from
OA and Raman images were co-registered with the MR image, demon- [64]; =h OA tomography (at 680 nm) and MRI of mouse brain in a
strating good co-localization between the three modalities. Adapted with photothrombosis stroke model at an early stage in vivo by Evan blue
permission from [84]; c—e stem cell imaging in brain injury model; ¢ dye injection at varied time points upon injection; g normalized OA and
volumetric OA, CT, and MRI images of the mouse brain after cerebral MRI signals of mice brains in infarcted areas at varied time points upon
injury. The wound hole marked by the red dotted line circle was induced Evan blue dye injection. *P < 0.05. h Triphenyl tetrazolium chloride
by the steel needle; d normalized OA signal intensities of the damaged staining in the brain of model mice. Adapted with permission from [144]

Burton et al. used MSOT to characterize glioblastoma hemo- ~ MSOT to retrieve information on tissue oxygenation for the
dynamics in a mouse model [43]. The tumor displayed a  purpose of cancer staging and monitoring of vascular-targeted
strong Hb signal. Oxygenation measurements using a CO,  treatment [111]. They showed in a glioblastoma model that

challenge also enable to localize the tumor mass.  the tumor has a hyperoxic and hypoxic phase during growth.
Furthermore, with injection of IntegriSense, the expression = Moreover, administration of combretastatin A4 phosphate, an
of the angiogenic «, (35 integrin receptor was directly visual-  agent that increases vascular permeability by increasing inter-
ized. Attia et al. (2016) showed with MSOT higher hemoglo- stitial pressure reducing intratumoral blood flow, has resulted
bin signal in the tumor periphery, reflecting the vascular het-  in measurable transient changes in tumor oxygenation.

erogeneity of this tumor form with a higher vessel density at Taken together, MSOT can be used to monitor a number of

its boundary [110]. Moreover, by injection of the  brain cancer hallmarks. Endogenous contrast is exploited to
IRDye800CW 2-deoxyglucose, a higher glucose metabolism  study tumor vascular function. Use of specific MSOT probes
in the glioblastoma compared to the surrounding tissue was  allows to detect tumor specific processes and use of particles
observed. Balasundaram et al. (2018) demonstrated the use of ~ as drug carriers can be used for theranostics.
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Alzheimer’s disease

Alzheimer’s disease (AD) is the most common form of
dementia and cognitive decline in the elderly [112]. As
western societies are aging, the incidence is expected to
increase dramatically. Despite major efforts to develop AD
therapy, present medication can only retard the progress of
AD and stabilize cognitive functions for a limited time, but
there is no cure of the disease yet. Therapy needs to start at
the earliest possible stage of AD, i.e., before cognitive
decline is detectable, because neurodegenerative processes
have already irreversibly damaged the brain. Robust,
quantitative, and non-invasive biomarkers that identify
the transition from normal aging to the onset of AD at an
early presymptomatic stage are highly desired. Such bio-
markers will enable an earlier onset of therapy to stabilize
individuals at a higher cognitive level. In addition, such
biomarkers will support the development of new treat-
ments to cure the disease by enabling to act at a time when
neurodegeneration can still be prevented, and by monitor-
ing the effectiveness of a therapy. Its two major neuropath-
ological features are the aggregation of fibrillar 3-amyloid
(AP) in amyloid deposits and neurofibrillary tangles of
misfolded hyperphosphorylated tau protein [113].
Transgenic animal models that show abnormal A and/
or tau pathology have been developed and facilitated the
mechanistic understanding of AD and therapeutic devel-
opment [114]. A panel of optical imaging probes based on,
e.g., Thioflavin T, Congo red derivatives, and luminescent
conjugated oligothiophenes [100, 115-123] has been de-
veloped for imaging A3 and tau targeting at the (3-sheet
fibril structure [124, 125]. Hu et al. were the first to show
the use of OAM and Congo red in APP/PS1 mice to visu-
alize AP plaques [126]. As Congo red does not cross the
BBB, the probe had to be injected into the cisterna magna.
Derivatives have been designed capable to cross the BBB
thus providing an easy access to cerebral A3 pathology
with, e.g., croconium compounds (CDAs) by Liu et al.
[100]. In vitro assays favored the use of CDA-3 for
in vivo OA imaging of A3 deposits. Indeed, after intrave-
nous injection of CDA-3 into five familial AD and wild
type animals, the probe was specifically retained in the
brain of transgenic animals with specificity further dem-
onstrated by stainings. Ni et al. applied oxazine derivative
AOI987 [118, 127] in arcAf3 and APP/PS1 mice and
curcumin derivative CRANAD-2 in arcAf3 mice (Fig.
5b) [119, 128], and demonstrated a higher cortical reten-
tion of A3 deposits in transgenic models in vivo using
MSOT. In addition to detecting the [3-sheet of fibrils,
many studies focus on targeting at copper ion which seems
to be one of the main polyvalent metallic cations involved
in AP plaque formation. Wang et al. have designed and
synthesized an activatable probe RPS1 for MSOT imaging
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of brain copper accumulation [129], which can effectively
cross the BBB. Upon chelation with Cu2+, the RPS1 probe
becomes RPS1-Cu and generates strong OA signals. Tau
imaging probes with suitable optical absorption spectrum
such as PBB derivative could potentially be employed for
MSOT imaging of tauopathy [130-132].

Alternative to the neuropathological pathway, neuroin-
flammation has been implicated to partake in the AD patho-
genesis [133]. To study glial activation in AD, Park et al.
(2019) have applied the probe CDnir7 to triple transgenic
AD mice [134]. Specific retention of probe was observed with
MSOT imaging in the cerebral cortex. Immunohistochemistry
showed intracellular accumulation of probe in astrocytes and
microglia/macrophage. Thus, the probe might enable to study
the role of glial activations in the disease course.

Vascular pathways play important roles in AD [135]. The
arcAf3 model of amyloidosis exhibits strong vascular dysfunc-
tion [136—138]. Tissue oxygenation and CBF were respective-
ly measured in arcAf3 mice by means of MSOT and MRI
[111]. Cerebral metabolic rate of oxygen was subsequently
calculated based on these metrics, which was found signifi-
cantly lower in aged arcA 3 mice versus young mice and wild
type controls. Therefore, MSOT allows to detect, quantify,
and monitor A3 deposition in AD, thus following the distri-
bution and spread of the misfolded proteins across the brain,
as well as to monitor response to therapies targeted against
protein aggregation. In addition, mediators of other patho-
physiological pathways can be visualized by OA.

Stroke

Stroke is the second highest cause of death globally and a
leading cause of disability, with an increasing incidence in
developing countries. The majority of ischemic stroke is
caused by arterial occlusion. The acute reduction of CBF re-
sults in a shortage of glucose and oxygen to the supplied area.
In the areas having the most severe reduction in CBF, termed
the ischemic core, irreversible tissue damage occurs within
minutes to hours after the onset of occlusion [139]. The sur-
rounding tissue, referred to as ischemic penumbra, is still par-
tially perfused although at a reduced rate. Management of
stroke focuses on rapid restoration of CBF with intravenous
thrombolysis and endovascular thrombectomy, which both
reduce disability but are only effective and safe within a short
and early time window.

With its central capability to monitor Hb and HbO,, MSOT
has been used to study hemodynamic function and tissue ox-
ygenation in rodent models of stroke. For instance, in a mouse
model using intraluminal occlusion of the middle cerebral
artery, Kneipp et al. (2014) have shown a reduction of CBV
in the ischemic territory during the acute occlusion [140].
Furthermore, they demonstrated that area surrounding the core
had an increased concentration of Hb, indicative of an
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increased oxygen extraction fraction in the penumbral area
[141]. In the same mouse model, Ni et al. (2018) demonstrated
a significant reduction of tissue oxygenation in the ischemic
hemisphere and cortex during occlusion [142]. Tissue oxy-
genation was found to return to normal at 48 h after reperfu-
sion. Vaas et al. (2017) showed that in the middle cerebral
artery model, also, the external carotid artery is occluded,
leading to a reduction in tissue oxygenation in extracerebral
tissue with subsequent tissue damage by MSOT [143]. Work
by Lv et al. (2020) used both the intraluminal model of the
middle cerebral artery and a photothrombosis model of stroke
to visualize reduction in tissue oxygenation in the ischemic
territory within 6 h after onset of vessel occlusions using
OAM [144]. In the case of photothrombosis, tissue oxygena-
tion was followed for seven days, where eventually a gradual
return to baseline oxygenation values in the tissue was ob-
served. Work from Bandla et al. (2018) in the
photothrombosis model showed that intravenous thromboly-
sis with recombinant tissue plasminogen activator leads to an
improved perfusion of ischemic area and to a faster recovery
of tissue oxygenation [145]. Sun et al. (2015) showed in a
model of transient cerebral hypoxia-ischemia that the condi-
tion led to a severe reduction in tissue oxygenation, which
persisted also after an experimental resolution of the condition
[146]. The group further showed that treatment with the free
radical scavenger Edaravone improved reoxygenation of tis-
sue, demonstrating that reactive oxygen species are involved
in the reperfusion and oxygenation deficit after stabling reper-
fusion. Secondary tissue damage occurs in the penumbra lead-
ing to growth of the core, where its molecular and cellular
players have been identified in animal models of stroke. For
example, Ni et al. (2018) have shown activity of matrix me-
talloproteinases using MSOT and an activatable probe at the
subacute stage after middle cerebral artery occlusion and re-
perfusion [142]. BBB impairment is a consequence of matrix
metalloproteinase activity [147]. Lv et al. (2020) showed ex-
travasation of intravenously injected Evans blue, which binds
to plasma albumin, after middle cerebral artery occlusion, in-
dicative of BBB impairment [144, 148] (Fig. 6f—g). Thus,
MSOT and other OA imaging methods are suitable for mon-
itoring the hemodynamic and cellular processes during and
following stroke.

Epilepsy

Epilepsy is the most common chronic brain disorder, affecting
one percent of the population worldwide, spanning all age
groups [149]. Epilepsy can substantially impair quality of life
owing to seizures, comorbid mood and psychiatric disorders,
and cognitive deficits. Seizures can be fatal owing to direct
effects on autonomic and arousal functions or by leading to
accidents. Although anti-epileptic drugs are available, about
one-third of the patients with epilepsy remain refractory to

current medical therapy. Surgery is an effective intervention
for patients with pharmaco-resistant types of epilepsy. A pre-
requisite for complete surgical resection of the epileptogenic
foci is the mapping of epilepsy networks. Epileptic seizures
are clearly recognizable on EEG recordings as they are usually
accompanied by bilateral 3 to 4 Hz spike—wave discharges.
Hemodynamic changes are often used as surrogates for epi-
leptic neuronal activity both in animal models and in the
clinics [150]. Techniques such as intrinsic optical signal,
fMRI, and SPECT are employed to assess these hemodynam-
ic changes. Spiking neuronal activity generates a strong met-
abolic response that induce a focal increase in CBF and vessel
dilation, with a measurable increase in local hemoglobin con-
centration [150]. OA is ideally suited to monitor hemodynam-
ic changes in the brain and has been used to study different
animal models of epilepsy. Measuring hemodynamic signals
with high spatial and temporal resolution and wide spatial
sampling together with the associated neuronal activity, e.g.,
by EEG during epileptic activity in the same preparation al-
lows to understand the correlation between the spatial extent
of perfusion, oxygenation, and neuronal activity.

The first application was demonstrated by Zhang et al.
(2008) who studied focal seizures in the rat brain with OA.
After microinjection of bicuculline, a gamma-aminobutyric ac-
id (GABA), receptor antagonist, into the neocortex, the group
observed increased OA contrast at the site of the seizure [151].
The work was later extended to monitor epileptic seizures with
a real-time tomography imaging system in the same animal
model [152]. The system allowed spatially and temporally fol-
lowing the seizure onset and spread. Further technical develop-
ment allowed to monitor of focal epileptic activity with sub-
second temporal resolution [153]. Following bicucullin admin-
istration in to the cortex, the authors noted not only a focal spot
manifesting increased optical absorption contrast but also a de-
crease in signal surrounding the primary lesion and the appear-
ance of homotopic foci in the contralateral cortex. Moreover, a
network analysis was performed with the dynamic readings,
which revealed significant changes in the whole-brain circuitry
as aresult of the epileptic activity. A similar system was used by
Xiang et al. (2013) to monitor epileptic activity in real-time in
the pentylenetetrazol (PTZ) model of generalized seizures in
rats [154]. PTZ, a GABA4 receptor antagonist, was injected
intraperitoneally and seizures were observed, with a clear cor-
relation between interictal spike amplitude as recorded with
EEG and OA signal. A MSOT system was used by Wang
et al. (2014) to discriminate the response of Hb/HbO, in the
PTZ seizure rat model [155]. In their study, Wang et al. (2014)
described a three-stage hemodynamic response in the superior
sagittal sinus in relation to the EEG recordings of the seizure.
During the first stage, there was a sudden decrease in HbO,
while Hb slightly increased as seizures initiated. In the second
phase, as the seizures evolved, the HbO, signal began to in-
crease with a simultaneous increase in Hb. In the third phase,
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during resolution of the seizure activity, the Hb signal remained
at diminished levels, while the hemoglobin increased.

Using a volumetric MSOT system and EEG, Gottschalk
et al. (2017) studied the 4-aminopyridine (4-AP) model of focal
seizures in mice [29]. Administration of 4-AP, a potassium
channel blocker, has caused prolongation of action potentials
and abnormal neural synchronization. At the epileptic foci, they
observed an increase in oxygenated hemoglobin and decrease in
Hb, concomitant with an increase in total hemoglobin levels
with EEG activity. They also observed a delayed oxygenated
hemoglobin signal in the thalamus, away from the epileptic
focus correlated to the EEG activity [29]. The 4-AP mouse
model was used by Zhang et al. (2018), who showed that the
epileptic activity can generalize from the focal area across the
whole brain [156]. In work by Rao et al. (2017), an approach to
use dipicrylamine, a non-radiative voltage sensor, to monitor
epileptic neuronal activity in conjunction with hemodynamic
response in the 4-AP mouse model, was explored [157]. Upon
injection of 4-AP, a strong voltage response signal change and a
hemodynamic signal change were observed, where the voltage
response signal changes were lower. The used voltage sensor
works in the visible spectral range and thus is not suitable for
sensing in deep brain tissue. Gottschalk et al. (2019) further
showed a calcium signal increase with injection of PTZ in iso-
lated GCaMP6f mouse brains, but not in control and phosphate-
buffered saline injected brain [31] (Fig. 5c—f). Kang et al. (2019)
proposed an alternative approach with the use of a near-infrared
cyanine voltage-sensitive dye in the PTZ rat model of general-
ized seizures [158]. Administration of PTZ led to a measurable
increase voltage response signal. Kang et al. (2020) further used
the voltage-sensitive dye to monitor excitatory neuronal activity
in the hippocampus evoked by infusion of N-methyl-D-aspartate
(NMDA) in rat model [159]. Infusion of NMDA resulted in
measurable increase in the voltage response signal.

Taken together, MSOT can be used to map epileptic sei-
zures via both hemodynamic and neuronal activity. The tech-
nique may be well-suited to monitor the spread of activity
across the brain in models of epilepsy and to monitor the
effects of anti-epileptic drugs and interventions.

Multimodal imaging

At present, fMRI based on BOLD signal is widely used for
studying brain activity under resting state and stimulus-
evoked conditions in humans and rodents [47, 48].
Simultaneous fluorescence Ca®" imaging across the cortex
and whole-brain fMRI at high field may serve to provide
insights into the mechanisms of neurovascular coupling
through the link between Ca** and BOLD signals [160].
Combining MSOT imaging approaches with other modalities
having better soft tissue contrast, such as MRI or CT, has
facilitated more accurate quantification [118, 161]. To this
end, co-registration of images acquired by stand-alone
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MSOT and MRI scanners has been performed using MRI data
as an anatomical reference for brain regional analysis [142] or
by applying MRI/MSOT dual modality probes [86, 100, 162,
163]. The recent introduction of a hybrid scanner capable of
concurrent MRI and volumetric MSOT recordings [164]
holds great promise for improving the workflow, further
complementing and validating functional and molecular read-
ings by both modalities. All in all, various other multimodal
combinations have been reported in the context of molecular
imaging of brain diseases, including fluorescence/MSOT
[107, 165], Raman/MSOT/MRI [84, 91], MSOT/MRI [64,
144], PET/MSOT [100], SPECT/MSOT [66], PET/MSOT
[100], ultrasound/MSOT [166, 167], and fluorescence molec-
ular tomography (FMT)/CT/MSOT [86] (Fig. 6).

Outlook

At present, the real-time direct monitoring of large-scale neu-
ronal activity can truly revolutionize brain research. Integrated
neurophotonics has been introduced for dense volumetric im-
aging of brain circuit activity at deep brain has been proposed
[168]. Hand-held MSOT technology was recently employed
for the characterization of hemodynamic changes related with
neuronal activity induced by optogenetic stimulation of intra-
cortical connections in the rat brain [169]. MSOT imaging
based on hemodynamic [32, 51] and calcium [31, 170] imag-
ing has demonstrated the unique capacity to fill the gap be-
tween optical 2P microscopy [171, 172], and macroscopic
hemodynamics and metabolism imaging using MRI [47,
48]. Furthermore, the use of optogenetics [173—175] and
chemogenetic tools (DREADDs) [176] has enabled to modu-
late the activity of targeted neurons in animal models with
high precision. Thus, combining MSOT imaging with
optogenetics, chemogenetics and other neuromodulation tech-
niques (e.g., ultrasound-based [50]) will allow for real-time
whole-brain modulation and imaging pipeline, useful for elu-
cidating the brain function and disease mechanisms.

Future developments/challenges

OA is a rapidly evolving technique with outstanding chal-
lenges in regard to imaging methodologies and implementa-
tion of applicants still exists. Particular challenges are:

1. Technical issues in accurate signal quantification: a num-
ber of outstanding challenges exist for accurate quantifi-
cation of MSOT data acquired from deep brain tissues.
Those include the following: limited penetration depth;
inability to accurately account for wavelength- and
position-dependent light fluence distribution; image arti-
facts induced by skull aberrations and acoustic heteroge-
neities; and insufficient accuracy of the spectral unmixing
algorithms for reconstructing chromophore concentration.
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This calls for development of more advanced algorithms for
accurate modelling of the various experimental parameters,
such as the excitation light fluence distribution [177],
wavelength-dependent light attenuation [178], speed of
sound distribution [179], frequency, and spatial response
of the transducer arrays [180, 181], to name a few examples.

2. Artificial intelligence: different machine and deep learn-
ing algorithms have been exploited in OA imaging at
different stages of the OA workflow, including data ac-
quisition [182], image reconstruction [183], segmentation
[184], artifact removal [183, 185], and spectral unmixing
[186]. Rapid development of machine learning ap-
proaches for MSOT imaging can be foreseen as the vast
amount of in vivo data is being accumulated across a
variety of application fields.

3. Progress will also come from the design and synthesis of
new specific OA probes for brain imaging. Probes should
ideally have (1) suitable absorption spectrum in NIR or
NIR II window that can be reliably unmixed from strong
endogenous hemoglobin background, (2) BBB penetra-
tion, (3) low toxicity, (4) high sensitivity and specificity,
(5) sufficient binding affinity, and (6) photostability.

4. Clinical translation: application of MSOT imaging in the
clinical research such as dermatology and cancer has
shown promising results in the recent years [187—190].
However, significant challenges exist for MSOT imaging
of the human brain due to acoustic distortions introduced
by the skull bone. Furthermore, to facilitate the clinical
translation of MSOT imaging for precision diagnostics ap-
plications, there is an urgent need for standardized method-
ology, quality assurance, and consensus on data acquisition
and analysis to enable accurate and reproducible compari-
sons of the performance across different MSOT imaging
instruments and among different users [191, 192].
Addressing these outstanding challenges in the foreseeable
future, OA will provide robust quantitative data, thus pro-
viding unique capabilities for in vivo interrogation of the
structure and functions of the healthy and diseased brain.
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