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Abstract
Purpose Standardized uptake value ratio (SUVr) used to quantify amyloid-β burden from amyloid-PET scans can be biased by
variations in the tracer’s nonspecific (NS) binding caused by the presence of cerebrovascular disease (CeVD). In this work, we
propose a novel amyloid-PET quantification approach that harnesses the intermodal image translation capability of convolutional
networks to remove this undesirable source of variability.
Methods Paired MR and PET images exhibiting very low specific uptake were selected from a Singaporean amyloid-PET study
involving 172 participants with different severities of CeVD. Two convolutional neural networks (CNN), ScaleNet and
HighRes3DNet, and one conditional generative adversarial network (cGAN) were trained to map structural MR to NS PET
images. NS estimates generated for all subjects using the most promising network were then subtracted from SUVr images to
determine specific amyloid load only (SAβL). Associations of SAβL with various cognitive and functional test scores were then
computed and compared to results using conventional SUVr.
Results Multimodal ScaleNet outperformed other networks in predicting the NS content in cortical gray matter with a mean relative
error below 2%. Compared to SUVr, SAβL showed increased association with cognitive and functional test scores by up to 67%.
Conclusion Removing the undesirable NS uptake from the amyloid load measurement is possible using deep learning and
substantially improves its accuracy. This novel analysis approach opens a new window of opportunity for improved data
modeling in Alzheimer’s disease and for other neurodegenerative diseases that utilize PET imaging.

Keywords Alzheimer’s disease . Amyloid . Positron emission tomography (PET) . Quantification . Deep learning . Nonspecific
uptake

Introduction

Globally, dementia is a leading cause of death with a doubling
in prevalence from 1990 to 2016 [1]. Alzheimer’s disease
(AD), the most common cause of dementia, is defined by

abnormal deposits of amyloid-β (Aβ) plaques and neurofi-
brillary tau tangles in the brain [2]. Aβ plaques are the earliest
detectable pathological biomarker and can develop 20 years
before the onset of dementia [3]. Due to the increasing burden
of AD, methods for early detection and hence prevention of
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AD have become increasingly critical. Early detection of Aβ
deposition can be achieved using positron emission tomogra-
phy (PET), which enables the in vivo examination of the spa-
tial distribution and quantitative accumulation of Aβ plaques
using amyloid-targeting radiotracers.

Currently, Aβ is generally quantified from static PET scans
using the standardized uptake values ratio (SUVr) calculated
by normalizing Aβ-PET tracer uptake with a reference region
known to be devoid of Aβ [4]. However, Aβ radiotracers also
bind nonspecifically to myelin protein in the white matter
(WM), which also has β-sheet structure as the Aβ plaques
[5, 6]. This nonspecific (NS) uptake in WM is subjected to
global and local variations caused by factors such as age as
well as the presence of cerebrovascular disease (CeVD) as
detected by WM-hyperintensities (WMH), lacunes, cortical
infarcts, and cerebral microbleeds (CMBs) [6, 7]. Aβ is typi-
cally quantified within the cortical gray matter (GM) regions,
which also contains myelinated axons [8], leading to the con-
tamination of unwanted NS signals with specific Aβ uptake.
This contamination is further exacerbated by the limited spa-
tial resolution capability of PET scanners and brain atrophy
causing the WM signal to spill into the GM regions [9]. Semi-
quantitative methods, such as SUVr, are unable to distinguish
between specific binding to Aβ and NS binding to other
proteins.

We have recently proposed a novel Aβ quantification
method for static Aβ PET images yielding two computed
biomarkers: AβL, which quantifies the global Aβ burden,
and ns, which characterizes the NS uptake [7]. Both markers
are obtained via modeling of the SUVr PET image in stan-
dardized MNI-space, as a linear combination of two template
images derived from a pool of subjects, describing the amy-
loid deposition pattern and the NS binding. With this model-
ing approach, ns captures the global sources of intersubject
NS variability allowing AβL to better reflect the Aβ burden.
However, local variations caused by CeVD, inaccuracies in
spatial registrations and normalization between the subjects’
Aβ-PET images, and the use of generic templates for the
modeling may bias the fitting process and affect the quantifi-
cation of specific Aβ binding.

Recently, deep neural networks have been applied success-
fully in image-to-image translation, particularly for improving
image quality or converting structural information of one mo-
dality to another such as translating magnetic resonance im-
aging (MRI) to computed tomography (CT) images [10–13],
or from one MRI modality to another [14, 15]. In contrast,
translation from structural MRI or CT to PET is still a largely
unexplored area as PET conveys functional or protein density
information which is to a certain extent unrelated to the struc-
tural or tissue contrast information provided by MRI or CT.
This work builds upon the hypothesis that structural MRI
contains the necessary information about the myelin content,
WM condition, and localized manifestations of cortical

infarcts, lacunes, and CMBs, enabling the use of deep
learning-based mapping to estimate the subject’s NS radio-
tracer uptake. In particular, we envisioned that deep learning
models will be able to map from the structural MRI the re-
duced NS uptakes observed in regions with WHM (high
FLAIR signal and low T1w signal), lacunes, and cortical in-
farcts (low FLAIR and T1w signal).

Specific uptake images, from which a novel Aβ-PET
marker is computed, are then simply obtained by subtracting
the subject’s estimated NS map from the SUVr image, thus
simultaneously removing the need for linear fit in MNI-space.
In this manuscript, we first report comparative performance
obtained with three different deep learning networks for the
estimation of NS uptake maps. We then demonstrate the su-
periority of this novel Aβ PET marker over traditional SUVr
analysis and Aβ load computation based on generic templates
using an Asian cohort of 172 participants featuring a wide
range of cognitive impairment, many of whom have signifi-
cant CeVD.

Materials and methods

Participants, neuropsychological examination, and
neuroimaging

A total of 172 participants featuring a wide range of cognitive
impairment with varying severities of CeVD burden were re-
cruited from the Memory Aging and Cognition Centre
(MACC) at the National University of Singapore. Ethics ap-
proval was obtained from the National-Healthcare Group
Domain-Specific Review Board in Singapore and the study
was conducted in accordancewith the Declaration of Helsinki,
with written informed consent from all participants or accom-
panying relatives in their preferred language.

Cognitive function assessment of each participant was con-
ducted using a locally modified version of the Mini-Mental
Status Examination (MMSE) [16], the Montreal Cognitive
Assessment [17], clinical dementia rating (CDR) scale ques-
tionnaire, as well as the detailed neuropsychological battery
[18]. The neuropsychological battery assesses the following
domains: attention, language, visuoconstruction, visuomotor
speed, verbal memory, visual memory, and executive func-
tion. Raw scores from each assessment were transformed into
standardized Z scores using the mean and standard deviation
of the whole study sample with non-cognitive impaired sub-
jects as a reference [19].

T1-weighted and T2-weighted fluid-attenuated inversion
recovery (FLAIR) MR images used for the definition of the
regions of interest (ROIs) as well as for the estimation of the
nonspecific uptake were acquired simultaneously on the PET/
MR scanner with a 12-channel head receive coil with T1/TE/
TR = 900/3.05/1950 ms. T1-weighted images were
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reconstructed into 256 × 256 × 176 matrices of 1 mm3 isotro-
pic voxel size, while T2-weighted FLAIR images were recon-
structed into 192 × 256 × 64 matrices with 1 × 1 × 2 mm3 vox-
el size. MR images for analysis and visual rating of CeVD
were acquired using a 3 T Siemens Magnetom Trio, A Tim
scanner (Siemens Healthcare GmbH), and a 32-channel head
receive coil. The standardized neuroimaging protocol includ-
ed 3D T1-weighted images, FLAIR, T2-weighted images, and
susceptibility-weighted images (SWI).

All subjects underwent a 30-min PET scan on the 3 T
Biograph mMR (Siemens Healthcare GmbH) at the Clinical
Imaging Research Centre (CIRC), 40 min after injection of
370 (± 15%)MBq of [11C]PiB. Each PET listmode datumwas
motion-corrected using an in-house developed rebinner [20]
and reconstructed into a 3D matrix of 344 × 344 × 127 with
voxel size of 2.09 × 2.09 × 2.03 mm3. 3D ordinary Poisson
ordered-subsets expectation maximization with resolution
modeling using 3 iterations and 21 subsets was applied with
all corrections.

All [11C]PiB-PET images were visually assessed by a ju-
nior PET image analysis researcher, a senior neuro-PET re-
searcher, and a certified neurologist using the rainbow 16-bit
scale on the Siemens Syngo platform (Siemens AG,
Germany) in the transaxial plane and also in the sagittal and
coronal planes when needed. Scans were visually interpreted
as positive or negative based on 6 AD-specific regions: frontal
lobe, parietal lobe, temporal lobe, anterior cingulate,
precuneus/posterior cingulate [7].

Nonspecific Aβ uptake image estimation using deep
learning

For this image translational task, we compared two
convolutional neural networks (CNNs)—monomodal
HighRes3DNet [21] and multimodal ScaleNet [22] with
our previously developed monomodal cGAN network
[23]. The three models were trained to map structural
MR to NS PET images using 40 Aβ-PET SUVr images
that exhibited mainly NS uptake (selected based on their
low SUVr). The Aβ-PET SUVr images were paired with
their corresponding structural T1-weighted and T2-
weighted FLAIR images during training. The monomodal
cGAN network was trained using T2-weighted FLAIR as
our preliminary results showed the superiority of this MRI
sequence over T1-weighted images to predict NS PET
images [23]. The performance of the monomodal
HighRes3DNet was tested in this work with each se-
quence independently, while the multimodal ScaleNet
was trained using both images. Detailed information on
the network implementations, network configurations, and
parameter optimization of HighRes3Dnet, ScaleNet, and
cGAN can be found in supplemental material 1. SUVr
PET images as well as the T2-weighted FLAIR were

coregistered to the structural T1-weighted MR images
using ANTS (version 1.9) [24]. These 40 subjects were
split into 2 groups: 34 for network training and 6 for
independent evaluation, whereby the groups were kept
unchanged for fair comparison of the networks.

Network performance evaluation

A total of four metrics were used to assess and compare the
suitability of the model for this image translation task: mean
squared error (MSE), structural similarity (SSIM), mean rela-
tive error, (MRE) and histogram intersection (HI).

MSE measures the average pixel-wise squared difference
between the estimated image (X) and ground truth (Y):

MSE X ; Yð Þ ¼ 1

n
∑
n

i¼1
X i−Y ið Þ2 ð1Þ

SSIM estimates the perceptual difference between two im-
ages using the mean (μ) and standard deviation (σ) of the
generated image (X) and ground truth (Y). Two variables, c1
(= 0.01 L)2 and c2 (= 0.03 L)2, are included to stabilize the
division with low denominator, with L being the dynamic
range of the pixel values.

SSIM X ; Yð Þ ¼
2μxμy þ c1

� �
� 2σxy þ c2
� �

μ2
x þ μ2

y þ c1
� �

� σ2
x þ σ2

y þ c2
� � ð2Þ

MRE quantifies the relative error between the mean of the
generated image (X) and ground truth (Y), with respect to the
mean of the ground truth (Y). The mean of the absolute MRE
values was then computed for all the test subjects.

MRE %ð Þ ¼
1

n
∑n

i¼1Y i−
1

n
∑n

i¼1X i

1

n
∑n

i¼1Y i

� 100 ð3Þ

HI measures the intersection of two histograms as follows:

HI ¼ H Xð ÞH Yð Þ ¼ ∑n
i¼1min Hi Xð Þ;Hi Yð Þð Þ

where H(X) and H(Y) are the normalized histograms of the
generated image (X) and ground truth (Y) and n is the number
of histogram bins.

These metrics were measured in the whole brain (WB) and
in the cortical GM using MRI-derived masks for the 6 evalu-
ation subjects during network optimization. The optimized
HighRes3DNet and ScaleNet were compared and the best
CNN and cGAN networks were then used to generate the
NS images of all 172 subjects.
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Neuroimaging biomarkers

MR biomarkers

For each participant, cortical and lacunar infarcts were graded
on T1-weighted, FLAIR, and T2-weighted images following
the STRIVE criteria [25]. CMBs were graded on SWI se-
quences using the Brain Observer MicroBleed Scale [26].
WMH volume was quantified by automatic segmentation
using the FLAIR sequence [27, 28]. Hippocampus volume,
an MR marker for neurodegeneration, was derived using a
model-based automated procedure (Free Surfer, v.5.1.0) on
T1-weighted MR images [29].

Aβ-PET biomarkers

In this work, we propose a novel Aβ-PET biomarker,
named hereafter SAβL, that is obtained from the subtrac-
tion in native space of the subject’s NS uptake volume,
estimated with the optimal network, from the SUVr vol-
ume. For performance comparison, global SUVr values,
measured in native space using the parcellated MRI, and
global Aβ load (AβL), measured in MNI-space, were de-
rived following methods previously described [7]
(supplementary material 2).

Evaluation of Aβ-PET quantification

Spearman’s correlation analysis was conducted to evaluate the
degree of association of each of the Aβ -PET markers and the
NS estimates withMRmarkers of CeVD. The performance of
the PET markers was compared using the strength and confi-
dence of their associations with various neuropsychological
test scores.

Results

Figure 1 shows the T1-weighted and T2-weighted FLAIR
images of two subjects with the corresponding NS images
estimated by HighRes3DNet, ScaleNet, and cGAN networks.
These estimates can be directly compared with the corre-
sponding actual PET images that mainly express NS uptake
only. One subject has stroke and multiple CMBs (Fig. 1a)
while the other has WMH and severe brain atrophy (Fig.
1b). cGAN produced estimates that visually looked the closest
to the actual PET images, exhibiting similar textures and
noise. ScaleNet produced uptake images with low noise and
clear contrast between WM and GM. We note that the NS
binding to central WM areas looks generally underestimated
with all the tested networks.

Table 1 reports the performance evaluation of the opti-
mized HighRes3DNet, ScaleNet and cGAN networks using
MSE, SSIM, MRE, and HI averaged over the same six eval-
uation subjects. ScaleNet yielded the lowest MSE and highest
image similarity in WB and GM as well as the smallest MRE
in WB. cGAN yielded a slightly lower MRE in GM than
ScaleNet. Also, cGAN estimates showed higher HI values in
GM and WB, confirming the visual impression that it pro-
duces estimates with realistic noise and texture (see histo-
grams of selected cases in Supplemental Fig. 2).

HighRes3DNet using T1 or T2 images as input generated
poor results with MRE in GM close to 10% and hence was
removed from further evaluations. Figure 2 shows the mean
absolute difference and standard deviation images computed
inMNI-space from the 34 training and 6 evaluation PET scans
and their corresponding NS images estimated with ScaleNet
and cGAN. This closer look revealed that both ScaleNet and
cGAN underestimated the NS binding for the training dataset
in some central areas of WM. In addition, ScaleNet
overestimated the NS uptake in the basal ganglia, the thala-
mus, and in the cerebellar GM.

Original PET cGANScaleNet
HighRes3DNet 

(T1)
T2 FLAIRT1

a

b

HighRes3DNet 

(T2)

Fig. 1 T1-weighted, T2-weighted FLAIR, and original PET images of a
patient with (a) stroke and (b) WMH, with the corresponding NS images
estimated using HighRes3DNet (T1-weighted and T2-weighted FLAIR

input separately), ScaleNet, and cGAN (T2-weighted FLAIR as input).
The PET and estimated NS images were set to the same image intensity
range
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NS estimates as well as specific uptake images SAβL were
then generated with ScaleNet and cGAN using the remaining
unseen scans from the whole cohort of subjects. This cohort

included 21 subjects without CeVD (mean SUVr = 1.50 ±
0.51) and 151 subjects with significant CeVD (mean
SUVr = 1.44 ± 0.43). Out of these 151 subjects, 77.5% of
these cases had either WMH lesions (25.8%) or CMBs
(6.6%) alone or presence of multiple CeVD markers (45%).
The complete repartition is given in supplementary Table 3.

Figure 3 shows, for 3 selected patients with different levels
of Aβ burden, the structural MRI, corresponding SUVr im-
ages, NS estimates generated with cGAN and ScaleNet, and
the resulting specific uptake images SAβL obtained from the
subtraction of NS estimates from the SUVr images. We can
observe that the underestimation of the NS binding in some
WM areas led to residual NS signal in the SAβL images.

Figure 4 provides quantitative indications on the extent of
the inaccuracies in the central WM region and the cerebellar
GM. Unlike with the training and evaluation data, cGAN
overestimated the NS in the cerebellar GM for the unseen
scans to the same levels as ScaleNet, which remained un-
changed, indicating possible overfitting of the cGAN model.
MRE in WM increased for the unseen data with both cGAN
and ScaleNet. However, a closer look at the training and un-
seen scans revealed that NS uptakes in the WM matter of the
unseen scans were on average 12.6% higher than of the train-
ing scans (see discussion). All these inaccuracies do not affect
the Aβ quantification, withMRE, in the cortical GM, which is
the only measurement that has an impact on the accuracy of
the specific uptake in GM. MSE and MRE for GM are only
shown for the training scans as most of the unseen scans
contain specific binding to Aβ plaques. During the training
phase, ScaleNet produced more accurate NS estimates for this
critical region than cGAN with a MRE of 0.82% ± 3.65%
compared to − 5.85% ± 3.09%.

Figure 5 shows the NS in the GM measured from the
ScaleNet (top) and cGAN (bottom) estimates for the 100 sub-
jects with the lowest SUVr (< 1.3). The red line gives the
corresponding SUVr values measured from the actual PET
scans. Note that the training dataset was built from the first
40 subjects. On the training section of the graph, ScaleNet

Fig. 2 Mean SUVr absolute difference and standard deviation images
computed in MNI-space from the 40 training PET scans and the corre-
sponding NS images estimated with ScaleNet and cGAN. Top: regions
where the NS is underestimated, middle: regions where the NS is
overestimated, bottom: standard deviation images

Table 1 Comparison of performance of HighRes3DNet, ScaleNet, and cGAN (mean ± stdev)

Metric MSE SSIM MRE (%) HI

WB GM WB GM WB GM WB GM

HighRes3DNet
(T1)

0.085 ±
0.017

0.056
± 0.013

0.556
± 0.029

0.600
± 0.032

9.517
± 2.233

8.275
± 2.572

0.778
± 0.038

0.676
± 0.063

HighRes3DNet
(T2)

0.126
± 0.030

0.065
± 0.016

0.463
± 0.030

0.540
± 0.031

12.512
± 3.701

9.949
± 4.072

0.750
± 0.038

0.692
± 0.048

ScaleNet 0.063
± 0.009

0.042
± 0.008

0.606
± 0.035

0.659
± 0.039

1.888
± 2.916

1.977
± 2.494

0.845
± 0.044

0.743
± 0.067

cGAN 0.106
± 0.020

0.068
± 0.009

0.399
± 0.043

0.456
± 0.042

3.372
± 1.959

1.902
± 2.477

0.877
± 0.022

0.911
± 0.023
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produced more accurate NS estimates in GM than cGAN as
shown in Fig. 4b. More interestingly, NS estimated by both
networks show some differences but seem to follow the
intersubject variations of the SUVr observed within the train-
ing datasets. These scans were selected for training purposes
based on the assumption that they contained no or little Aβ
and that intersubject variations were mainly driven by NS
variations caused by CeVD. Observable differences can be
attributed to model inaccuracies, but also possibly due to
non-zero specific binding (scans were selected based on their
SUVr not on their SAβL, which was unknown then). NS
estimates in GM obtained by ScaleNet for the unseen scans
showed the same levels and magnitude of intersubject

variations than with the training scans demonstrating the gen-
eralization of the models (i.e., no overfitting). However, in this
case, intersubject variations of the SUVr were likely caused by
variations of both specific and NS, making the direct compar-
ison with the NS estimates less relevant. The bottom plot
shows the SAβL values computed for the whole cohort using
the NS estimates generated by ScaleNet and cGAN.

Table 2 reports the association of SUVr, NS, and SAβL

with MRI-derived markers for CeVD and neurodegeneration.
Three populations were studied: the whole cohort (top), the
subset presenting no CeVD (middle), and the subset with low
Aβ level (SUVr < 1.2). The results suggested that an increase
of CeVD burden (number of cortical infarcts and lacunes) was

Original PET
cGAN

NS

ScaleNet

NS

ScaleNet

SAβ
L

T2 FLAIRT1
cGAN

SAβ
L

Aβ+

(High SUVr) 

Aβ+

(Medium SUVr) 

Aβ-

(Low SUVr) 

Fig. 3 T1-weighted, T2-weighted FLAIR, and original PET images of
patients visually classified as Aβ+, Aβ +, and Aβ− with high (top),
medium (middle), and low (bottom) SUVr values. The NS images

estimated from ScaleNet and cGAN, as well as derived SAβL volumes,
are also shown. The PET and estimated images were set to the same
image intensity range of 0–4 in hot-metal color-scale

Fig. 4 a MSE and b MRE (%)
computed between actual PET
scans and the NS estimated with
ScaleNet (green) and cGAN (red)
in the GM, WM, and reference
region. (t) refers to measurements
obtained from the 40 scans used
for training and evaluation, while
(u) refers to measurements ob-
tained from 132 remaining unseen
scans. ROI forWMwas eroded to
avoid contamination from specif-
ic uptake from the GM
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Fig. 5 (Top and middle) NS
measured in the GM from the
ScaleNet and cGAN estimates of
100 subjects (40 training and 60
unseen) with low SUVr (< 1.3).
The red line gives the
corresponding SUVr values
measured from the actual PET
scans. (Bottom) Specific activity
computed for the whole cohort
using the NS estimates generated
by ScaleNet and cGAN. Subjects
were ordered on the X-axis with
increasing SUVr values

Table 2 Association of PET
amyloid markers and NS
estimates with MRI-derived
markers of CeVD and neurode-
generation (Spearman ρ, p value
< 0.1; * < 0.05; ** < 0.01, *** <
0.001)

All subjects (n = 172) SUVr NS (SN) SAβL(SN) NS (cGAN) SAβL(cGAN)

Number of CMBs − 0.02 − 0.09 0.02 − 0.15* 0.02

Number of cortical infarcts − 0.17* − 0.22** − 0.11 − 0.08 − 0.15 .

Number of lacunes − 0.18* − 0.25*** − 0.12 − 0.15. − 0.13 .

WMH 4.58E-03 − 0.2** 4.79E-02 − 0.09 0.02

Hippocampal volume − 0.38*** 0.3*** − 0.43*** 0.13 . − 0.38***

Cortical atrophy grade 0.10 − 0.47*** 0.19* − 0.20** 0.13 .

No CeVD (n = 21)

Hippocampal volume − 0.67** 0.53* − 0.69*** 0.33 − 0.71***

Cortical atrophy grade 0.43 * − 0.79*** 0.44* − 0.59** 0.44*

SUVr < 1.2 (n = 82)

Number of CMBs − 0.12 0.034 − 0.14 − 0.11 − 0.02
Number of cortical infarcts − 0.33** − 0.32** − 0.13 − 0.12 − 0.27*

Number of lacunes − 0.37*** − 0.39*** − 0.13 − 0.23* − 0.18 .

WMH − 0.12 − 0.20 . 0.04 − 0.05 − 0.09
Hippocampal volume 0.19. 0.34** − 0.02 0.06 0.22*

Cortical atrophy grade − 0.26* − 0.51*** 0.06 − 0.11 − 0.21 .
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associated with a reduction of the Aβ level when measured
with the classical SUVr. The negative impact of CeVD on
SUVr was even stronger in the subset with low Aβ.
Contrary to cGAN, ScaleNet generated NS estimates showing
the same negative associations with the various CeVD
markers. SUVr was also positively correlated with atrophy
in the whole cohort. This was expected as Aβ is very likely
one explanatory factor of neurodegeneration. The association
was stronger in the subset with no CeVD in which other likely
sources of neurodegeneration are discarded. However, a neg-
ative association was found between SUVr and atrophy in the
group with low SUVr values. The new biomarker, SAβL(SN),
computed from the subtraction of the ScaleNet’s NS images to
the SUVr images did not show any associations with CeVD.
In addition, the new biomarker showed a substantial increase
in the positive association with neurodegeneration in groups
containing Aβ + subjects while, contrary to SUVr, no associ-
ation was found in the subset containing Aβ- subjects only, a
group in which Aβ should not play a role. Finally, most of
these unwanted associations remained with SAβL(cGAN) due
to lower associations of the cGAN NS estimates with CeVD
and atrophy than the ScaleNet estimates.

Figure 6 shows that compared to SUVr and AβL, substan-
tially higher associations and confidence were obtained be-
tween SAβL(SN), the novel amyloid marker computed using
the ScaleNet estimates, and cognitive scores as well as neuro-
degeneration markers, with increase in Spearman ρ coeffi-
cients ranging from 13 to 49%. Association increases by up
to 67% were observed when the analysis was limited to sub-
jects with CeVD (see Supplemental Fig. 3). However, the
average association increase was 4.69% only when the anal-
ysis was limited to subjects with moderate to high level of

amyloid (see Supplemental Fig. 4). SAβL(cGAN) followed
the same trend, but with lower ρ values and confidence than
with SaβL(SN).

Discussion

Current methods to quantify Aβ burden from Aβ-PET scans
can be sensitive to variations of the tracer’s NS binding to the
myelin that influenced by the presence of CeVD. In this work,
we proposed a novel Aβ-PET quantification approach that
harnesses the intermodal image translation capability of
convolutional networks to remove this undesirable source of
contamination and variability.

Neural networks were rarely applied in structural MRI to
PET image translation tasks compared to other image modal-
ity translation such as from MRI to CT [10–13] due to the
more complex—and very often non-existent relationship be-
tween the information conveyed by both modalities. Most
published works on MRI to PET translation used models to
produce pseudo [18F]FDG-PET images with cortical uptake
variations driven by structural features such as cortical thick-
ness and gyrus morphology [30–33]. Closer to our subject,
Wei et al. [34] proposed a multimodal Sketcher-Refiner
GAN to capture the relationship between various sequences
of diffusion tensor imaging as well as of T1-weighted MR
images and the myelin map obtained with [11C]PiB PET in
multiple sclerosis patients. Contrary to most published works
where neural networks are trained to directly produce the im-
age of interest, in this work, we used deep learning networks
to estimate, from the subject’s structural MRI, its correspond-
ing Aβ- PET image, showing only the NS binding of the Aβ

Fig. 6 Association (Spearman’s
ρ) and confidence (p values) of 4
tested PET biomarkers of the
brain Aβ burden with cognition
and neurodegeneration using the
whole cohort (n = 172). The novel
biomarkers SAβL (cGAN) and
SAβL (SN) can be compared with
the standard approach using
SUVr measured in MRI-space, or
with AβL, the previously pro-
posed Aβ load computed inMNI-
space using generic NS and spe-
cific templates
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tracer and its variation due to different CeVD markers. This
NS binding presents an unwanted source of contamination
and variability to the measurement of Aβ level. In order to
produce images of the specific Aβ-binding only, we proposed
to remove this NS binding from the actual Aβ-PET image
using the NS estimate. This is conceptually close to the work
of Yaakub et al. [31] in which pseudo-normal [18F]FDG-PET
images of epileptic patients were generated to improve the
detection of epileptogenic zones from the actual [18F]FDG-
PET images. Our hypothesis in this work was that
convolutional networks are able to learn the complex mapping
from myelin content and CeVD manifestation in MRI to the
NS uptake image of the Aβ tracers. Results showed that out of
the 3 tested networks, multimodal ScaleNet using both T1-
weighted and T2-weighted FLAIR sequences as inputs was
the most suitable candidate for this multimodal translation
task. The numbers of training and evaluation scans were lim-
ited by the number of Aβ- scans in the cohort. We decided to
select the first 40 scans with the lowest SUVr (< 1.13), leaving
34 scans for training and only 6 for evaluation. Note that this
selection criterion was based on the measured SUVr values,
the markers we aimed to challenge with the new marker. A
retroactive analysis demonstrated that some of the scans that
were selected for training contained some level of Aβ accord-
ing to their corresponding SAβL. Nevertheless, our results
showed that during the training phase, ScaleNet produced
NS estimates with MRE (%) below 1% in the GM. When
the model was applied to the 6 evaluation scans that it had
not been exposed to during the training, the MRE (%) in GM
of the resulting estimates remained below 2%. We also veri-
fied that NS estimates in GM for the remaining 132 unseen
(Aβ+) scans were of the same level and contained the same
magnitude of intersubject variations as the training scans.
More importantly, NS estimated with ScaleNet conveyed the
same variations as in SUVr, with significant negative associ-
ations with the number of cortical infarcts, lacunes, andWMH
grade. Once NS was subtracted from the SUVr, and contrary
to the latter marker, the resulting novel biomarker SAβL(SN)
did not show any association with CeVD. NS also showed
strong negative associations with markers of neurodegenera-
tion: cortical and hippocampal atrophies (i.e., positive associ-
ation with hippocampal volume). The removal of NS to SUVr
increased the positive association of SAβL(SN) with these
markers. In the subset of subjects with low SUVr (< 1.2), the
subtraction of the NS corrected the contradictory situation in
which higher atrophy was associated with lower SUVr.
Finally, the novel biomarker SAβL(SN) showed increased
monotonic associations with cognitive test scores by up to
67% compared to the conventional biomarker, meaning the
new ranking of the scans based on their increasing SAβL(SN)
values is more associated with reduced cognitive and func-
tional test scores. The removal of the NS can be seen as an
efficient spillover correction that not only removes the source

of contamination and variability originating from the WM but
also the NS binding in the GM. As a matter of fact, no attempt
was made in this work to correct the data for partial volume
effects as most correction approaches rely on having a seg-
mented MRI spatially registered with the PET image, and
segmentation methods do not always perform well in the pres-
ence of CeVD [7]. In addition, these methods often assume a
homogeneous activity uptake within each region, an assump-
tion that would be often violated with the manifestation of
CeVD. Our approach does not require the segmentation of
the MRI. While this was not observed with our cohort, we
however suspect its accuracy depends on the quality of the
MR images and their spatial registration with the PET images,
and visual inspection for artifacts and spatial mismatches
should be performed beforehand.

Overall, CeVD and atrophy play a detrimental role in the
accuracy of SUVr measurement and leads to its dependence
on these conditions. Independence of predictor variables is an
important criterion in data modeling in general, including ma-
chine learning-based methods for diagnosis and disease tra-
jectory prediction. Linear regression is often used in mixed-
type cohorts to investigate the joint effect of CeVD and Aβ
burden on neurodegeneration and cognition. In a side analysis,
we found that the dependence of SUVr on CeVD led to the
following aberrations using the subset with low Aβ load: lin-
ear regression with MMSE as the outcome, age, SUVr, and
number of cortical infarcts independent variables showed
SUVr as a significant predictor (p < 0.05), with an unintuitive
positive effect while the number of cortical infarcts was not.
Replacing SUVr by SAβL(SN) led to a significant negative
effect (p < 0.05) of the number of cortical infarcts on cognition
and no effect of Aβ load in this group where it should not play
any role. This dependence could also have a detrimental effect
in longitudinal studies in which longitudinal variations of the
Aβ and CeVD markers are used to explain cognitive decline.
In situations where the actual Aβ burden remained un-
changed, any increase of CeVD burden and atrophy over the
duration of the study would lead to a decline of the measured
subject’s SUVr.

Our previous attempt to reduce the NS contribution and
variation to the Aβ burden measurement relied on the model-
ing in the standardized MNI-space of the SUVr as a linear
combination of 2 templates representing the NS specific and
Aβ deposition pattern [7]. This approach has advantages over
the original implementation proposed by Whittington et al.
[35] in that the templates are derived from a cross-sectional
study using principal component analysis in lieu of parametric
modeling of longitudinal Aβ PET data. Our newly proposed
novel biomarker, SAβL, outperformed AβL in association
analyses with cognitive and functional tests when the cohort
consisted of all the subjects or when it was limited to subjects
with CeVD. However, AβL showed higher associations when
the analyses were performed on subjects with moderate to
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high amyloid levels only (supplemental Fig. 4). AβL and
SAβL computations follow very different processes. For in-
stance, our SAβL implementation uses reference and target
regions from the subject’s parcellated MRI to compute first
the SUVr image and then to measure in native space the mean
cortical SAβL, while AβL computation uses generic regions
defined in MNI space. Segmentation of the cortical gray mat-
ter from structural MRI of subjects with CeVD or with severe
atrophy can be challenging and inaccurate. Further investiga-
tions are required to find definite answers, but measuring the
mean cortical SAβL from the SAβL images in MNI space is
conceptually feasible and will be tested in future
developments.

The three networks underestimated the NS uptake in some
central WM areas (Fig. 2 top) however without having a pos-
sible impact on the Aβ quantification in the GM. Additional
analyses were conducted to understand the cause (see
Supplementary Fig. 4). They revealed that the training dataset
contained mostly PET scans with low NS binding (SUVr be-
low 2), while most of the unseen scans exhibit higher NS
binding. The reason behind this difference in NS binding in
these central areas between training and unseen Aβ-PET
scans is still unclear and will require further investigations.
The limited number of training scans may partially explain
this inhomogeneous repartition. The small sample size of the
whole cohort (n = 172) definitively constitutes a limitation of
this study. The training dataset was built using the 40 scans
with the lowest amyloid levels. Increasing this number would
expose the networks during the training phase with scans with
higher specific amyloid uptakes. Inter-subject variations of the
level of specific binding are unpredictable from the structural
MRI. We suppose that in order to minimize the RMSE, net-
works such as ScaleNet produce estimates with a small posi-
tive offset that is constant across subjects and which corre-
sponds to the average specific uptake across training data.
This may explain why ScaleNet overestimates the NS in the
reference region as this region does not contain specific up-
take. Further investigations need to be done, however, if this
compensation mechanism is demonstrated; this mean offset
could be deduced using estimated NS uptakes in the reference
region and removed globally from the NS estimates.

Finally, Aβ-PET radiotracers, such as [18F]Amyvid,
[18F]Neuraceq, [18F]Vizamyl, [18F]Flutafluranol, and
[11C]PiB, are known to differ from each other by their levels
of NS and specific binding, making direct quantitative com-
parisons impossible. Removing the NS binding using net-
works specifically trained for each of these tracers and then
normalizing the resulting specific images to a common scale
(i.e., 0%–100%) could pave the way for optimal data harmo-
nization in multicenter studies using various Aβ-PET tracers.

In conclusion, removing the undesirable NS uptake from
the Aβ load measurement is possible using deep learning
networks and substantially improves its accuracy.

Multimodal ScaleNet outperformed other networks in
predicting the NS content in cortical GM with a MRE below
2%. Compared to SUVr, the resulting Aβ load measurements
with SAβL showed increases of up to 67% in its association
with cognitive and functional test scores. This novel analysis
approach paves the way for improved statistical analysis, data
modeling, and data harmonization in AD, especially with
CeVD with mixed pathological changes, and potentially for
other neurodegenerative diseases that utilize PET imaging.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00259-020-05131-z.
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