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Abstract

Purpose High-dimensional image features that underlie COVID-19 pneumonia remain opaque. We aim to compare feature engineer-
ing and deep learning methods to gain insights into the image features that drive CT-based for COVID-19 pneumonia prediction, and
uncover CT image features significant for COVID-19 pneumonia from deep learning and radiomics framework.

Methods A total of 266 patients with COVID-19 and other viral pneumonia with clinical symptoms and CT signs similar to that of
COVID-19 during the outbreak were retrospectively collected from three hospitals in China and the USA. All the pneumonia lesions
on CT images were manually delineated by four radiologists. One hundred eighty-four patients (n =93 COVID-19 positive; n =91
COVID-19 negative; 24,216 pneumonia lesions from 12,001 CT image slices) from two hospitals from China served as discovery
cohort for model development. Thirty-two patients (17 COVID-19 positive, 15 COVID-19 negative; 7883 pneumonia lesions from
3799 CT image slices) from a US hospital served as external validation cohort. A bi-directional adversarial network-based framework
and PyRadiomics package were used to extract deep learning and radiomics features, respectively. Linear and Lasso classifiers were
used to develop models predictive of COVID-19 versus non-COVID-19 viral pneumonia.

Results 120-dimensional deep learning image features and 120-dimensional radiomics features were extracted. Linear and Lasso
classifiers identified 32 high-dimensional deep learning image features and 4 radiomics features associated with COVID-19 pneumonia
diagnosis (P <0.0001). Both models achieved sensitivity > 73% and specificity > 75% on external validation cohort with slight
superior performance for radiomics Lasso classifier. Human expert diagnostic performance improved (increase by 16.5% and
11.6% in sensitivity and specificity, respectively) when using a combined deep learning-radiomics model.

Conclusions We uncover specific deep learning and radiomics features to add insight into interpretability of machine learning algorithms
and compare deep learning and radiomics models for COVID-19 pneumonia that might serve to augment human diagnostic performance.

Keywords Coronavirus disease 2019 pneumonia - CT chest - Machine learning - Al interpretability - Explainable Al

Introduction

The coronavirus disease (COVID-19) pandemic has caused
more than 10.1 million infections and 503,000 deaths worldwide
Jiangdian Song and Kristen W. Yeom are co-senior authors of this study.  as of June 30, 2020 [1]. The virus nucleic acid real-time reverse

Hongmei Wang and Lu Wang contributed equally to this work. transcriptase chain reaction (RT-PCR) test is the current recom-
This article is part of the Topical Collection on Infection and mended method for COVID-19 diagnosis [2, 3]. However, with
inflammation the rapid increase in the number of infections, RT-PCR tests may
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[4-6], including reports of diagnostic accuracy of chest CT >
80% using deep learning (DL) approaches [7, 8].

While these studies often report classification performance,
i.e., positive or negative for COVID-19 pneumonia [8, 9],
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investigations on specific high-dimensional features unique to
COVID-19 pneumonia compared to other similar-appearing
lung diseases remain relatively unexplored. Furthermore, there
is paucity of research that directly compares predictive perfor-
mance of feature engineering (e.g., radiomics), deep learning,
and other machine learning approaches [10]. While it is generally
accepted that deep learning performs robustly with large datasets
for image discrimination, its performance compared to radiomics
is not closely examined, a relevant topic in medicine where sample
sizes are much smaller than non-medical image datasets, such as
ImageNet. The types of machine leaming approaches that most
optimally augment clinician performance also remain unknown.

A recently described neural network using large-scale bi-di-
rectional adversarial network (BigBiGAN) has shown potential
for an end-to-end COVID-19 pneumonia diagnosis [11]. In this
network, CT chest images are taken as the input and high-
dimensional semantic features representing specific characteris-
tics of each image are produced based on the modules of image
encoding, image generation, and image discrimination. A recent
study has shown a potential utility of this method for
distinguishing COVID-19 pneumonia from other viral pneumo-
nias [12].

In this study, we aim to uncover image features of COVID-19
lung disease and further compare radiomics versus deep learning
model performance using chest CT. Specifically, we target
COVID-19 and non-COVID-19 viral pneumonia of patients
who presented with similar clinical symptoms and CT chest
findings and compare the performance of deep learning features,
radiomics features, and combined approaches for COVID-19
pneumonia diagnosis.

Material and methods
Study cohort

The inclusion criteria of this retrospective study were patients
with symptoms suspicious for COVID-19 and diagnosed with
COVID-19 or non-COVID-19 viral pneumonia during the
COVID-19 outbreak; patients obtained CT chest with or without
contrast at time of diagnosis; patients obtained RT-PCR tests
(based on samples of bronchoalveolar lavages, endotracheal as-
pirates, nasopharyngeal swabs, or oropharyngeal swabs) to de-
termine COVID-19 status. Only those patients who tested posi-
tive or negative on at least two RT-PCR tests were included.
Patients who were confirmed to have PCR-confirmed COVID-
19 pneumonia with underlying lung diseases (e.g., lung cancer)
were included. Lesion segmentation was performed only on lung
lesions suspicious for pneumonia, excluding known sites of lung
cancer or other chronic lung lesions. For non-COVID-19 pneu-
monia patients, we included patients clinically suspected to have
viral source of infection. Tuberculosis, fungal, or bacterial pneu-
monia patients were excluded to examine specific image features

of non-COVID-19 viral pneumonia. This retrospective study
was approved by the institutional review board of University of
Science and Technology of China (IRB no.2020-P-038) and
Stanford University (IRB n0.51059), with waiver of informed
consent or assent.

Chest CT technique and image annotations

Chest CT was performed at slice thickness range 1.25-5 mm
(NeuViz 64 or 128, Neusoft, Shenyang, China) with or with-
out contrast. CT parameters of the external dataset were 1—
3 mm slice thickness with or without contrast (LightSpeed
VCT and Revolution, GE Healthcare, Milwaukee, WI;
Aquilion, Toshiba Medical Systems, Otawara, Japan;
SOMATOM, Siemens, Erlangen, Germany).

Four blinded attending radiologists in China (>
5 years’ experience) independently segmented the
boundary of all lung lesions slice-by-slice using ITK-
Snap software (v.3.6.0). Detailed segmentation proce-
dure is presented in Supplementary Figure S1. All seg-
mentations underwent quality control for proper annota-
tion by an expert chest radiologist (> 10 years’ experi-
ence). Images were not segmented if the radiologists did
not detect lung lesions.

Feature extraction and model development

Open access Google Colab platform [13] and PyRadiomics
[14] were used for DL and radiomics feature extraction, re-
spectively. CT data from two hospitals from China were ran-
domly divided into a training, validation, and test datasets
(80:10:10), and the data was processed on servers in China.
Dataset from a US hospital served as an external
evaluation and processed on servers in the USA.

High-dimensional deep learning features

We used a BigBiGAN-based architecture to train and extract
high-dimensional deep learning features of COVID-19 versus
non-COVID-19 pneumonia lesions. Two different data inputs
were used: (1) original CT with segmentation masks, where
the pixels of the pneumonia lesions were retained as the orig-
inal CT intensity and the pixels outside were set to zero
(Supplementary Figure S2); (2) CT images of the whole lung
without segmentation mask. The batch size and epoch of the
BigBiGAN training were set as 20 and 200, respectively. The
120-dimensional deep learning features were extracted by the
encoder module of BigBiGAN when the loss was minimum in
the last training epoch, which then served as input for the
subsequent classifier models.
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Radiomics features

We used PyRadiomics [14], an open source package recom-
mended for standardized radiomics analysis workflow [15], to
extract 120-deminsional radiomics features of the segmented
lung lesions. We extracted the following radiomics features: 19
first-order statistics features, 16 shape-based 3D features, 10
shape-based 2D features, 24 gray-level co-occurrence features,
16 gray-level run length features, 16 gray-level size zone fea-
tures, five neighboring gray tone difference features, and 14
gray-level dependence features. Details of the feature extraction
are presented on the webpage of PyRadiomics [16].

Classifier models

To determine performance of DL and radiomics-
extracted features, we used two widely used classifiers:
a linear classifier typically used in supervised learning,
and least absolute shrinkage and selection operator
(Lasso) often used in radiomics [17—-19]. In addition,
we combined both the DL and radiomics features as a
single input to determine performance for each of the
two models. Model performance was evaluated on hold-
out test set, as well as external validation set. The over-
all study design is illustrated in Fig. 1.

Al augmentation for clinical diagnosis

Three blinded radiologists from an independent hospital
in China reviewed the CT images from the test dataset
and external validation dataset and performed the first
round of diagnosis for COVID-19 versus non-COVID-
19 pneumonia. The radiologists were blinded to clinical
diagnosis and RT-PCR test results. After a 2-week wash
out period, the reviewers were provided model predic-
tions of combined deep learning and radiomics features
for a second round of review. Clinical performance with
and without model was calculated.

Statistics analysis

The receiver operating characteristic (ROC) curve and
area under curve (AUC), sensitivity, and specificity
were used to evaluate the diagnostic accuracy for
COVID-19 pneumonia. All statistical computing was
performed using R language (version 3.4.3, Vienna,
Austria). Based on the image features extracted by
PyRadiomics and BigBiGAN, the linear classifier and
Lasso were implemented by the “lm()” and “glmnet(),”
respectively, for the significant feature selection. Chi-
square and ANOVA tests were used to evaluate the
differences in demographics. To determine interobserver
variability of radiomics features regarding manual
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segmentation, a new radiologist performed manual seg-
mentation of lung lesions in 10 random patients. Mann-
Whitney U test was performed on the radiomics features
extracted from the two set of manual segmentations.
P <0.05 was considered a significant difference.

Results
Study cohort

A total of 266 patients were initially collected in this
study. Ninety-three consecutive COVID-19-positive and
91 COVID-19-negative pneumonia patients from The
First Affiliated Hospital of University of Science and
Technology of China and The Lu’an Affiliated
Hospital of Anhui Medical University in China
(January 18-February 29, 2020) met the inclusion
criteria. Seventeen patients with COVID-19 pneumonia
and 15 patients with COVID-19-negative viral pneumo-
nia from Stanford University Hospital (February 1-May
30, 2020) served as external validation. The flowchart
of patient enrollment is shown in Fig. 2.

The mean patient age was 45 years (standard devia-
tion 15.6) with no significant difference between male
(n=128) and female (n=88) (P>0.05). The median
time interval from symptom onset to CT was 8 days
for both COVID-19-positive and -negative patients.
The chief complaints of the patients were cough and
fever, comprising 95.4%. Detailed demographics are
shown in Table 1.

Chest CT dataset

CT scan details of the study population are shown in
Supplementary Material Appendix A. Within the discov-
ery cohort, ten COVID-19-positive and 12 COVID-19-negative
patients who did not have visible lung lesions and were excluded
from segmentation. Two patients’ lesion segmentations were
controversial in radiologists and were excluded. This resulted
in a total of 12,001 CT slices (7173 of COVID-19 positive and
4828 of COVID-19 negative) and 24,216 pneumonia lesion seg-
mentations. All slices were randomly divided into training (9,
573), validation (1209), and test (1219 images). The external
validation comprised 3799 images (2349 COVID-19 positive
and 1450 COVID-19 negative) containing 7883 lesion segmen-
tations of 17 COVID-positive and 15 COVID-negative pneumo-
nia patients. No significant difference was found in the radiomics
features extracted from the two sets of manually segmented
pneumonia images of the 10 random patients by Mann-
Whitney U test (P> 0.05).
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Fig. 1 Radiomics and artificial intelligence neural network workflow in this study

Image features and model performance

The AUCs (sensitivity and specificity) of linear and Lasso
classifiers using 120-dimensional DL features, 120-
dimensional radiomics features, and combined 240-
dimensional DL and radiomics features are shown in Fig. 3.
Individual DL performances using the whole lung images as
inputs are also shown in Supplementary Figure S3. Although

Fig. 2 Patient enrollment in our
study. Asterisk denotes the
exposure history defined in our
study (for patients from China):
history of travel to Wuhan in the
last 14 days, history of contact

the AUCs (sensitivity and specificity) using the whole lung
were higher than the pneumonia lesion on the training dataset
(linear classifier 0.98 [91.8%, 93.4%] vs. 0.91 [80.0%, 87.2%]
and Lasso classifier: 0.97 [93.0%, 92.1%] vs. 0.91 [80.8%,
86.3%]), its performance on the external validation dataset
was slightly inferior (linear classifier 0.84 [75.7%, 76.8%]
vs. 0.86 [76.5%, 80.9%], and Lasso classifier 0.83 [71.2%,
81.0%] vs. 0.87 [73.5%, 81.8%)]).

266 patients were enrolled

retrospectively from the three hospitals

with confirmed COVID-19 pa-
tient(s), and history of being in a
dense crowd. The relevant expo-

129 patients positive for
COVID-19 test

137 patients negative for
COVID-19 test

sure history was selected as an
inclusion criterion since these pa-
tients were high-risk of COVID-
19 infection during this period

8 patients had no CT scan or

11 patients had no CT scan or
complete clinical data in our
hospitals

A4

complete clinical data in our
hospitals

11 patients’ lesions were

7 patients had no related
"| exposure history* and CT signs

undetectable/controversial

A

13 patients’ lesions were
undetectable/controversial

A

110 patients with COVID-19
positive were finally included

106 patients with COVID-19
negative were finally included
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Table1 Demographics of the patients enrolled from the three hospitals Clinical use
in this study
Hospital 1 ~ Hospital 2 Hospital 3 Diagnostic sensitivity and specificity of 3 radiologists on two test
datasets were 74.7% and 80.3%, respectively. With the predic-
Patients (total) 144 40 32 tion outputs from combined deep learning and radiomics
No. of COVID-19 positive 73 20 17 features, their performance increased with sensitivity and speci-
No. of COVID-19 negative 71 20 15 ficity of 91.2% and 91.9%, respectively, as shown in Fig. 5.
Age median (SD) 43 (12.0) 37 (12.1) 59 (15.0)
Sex
Male 84 28 16 Discussion
Female 60 12 16
Related exposure history In this study, we uncover some of the deep learning and
History to Wuhan 45 15 NA radiomics features that contribute to differentiation of COVID-
Contact with infection 21 11 NA 19 from non-COVID-19 viral pneumonia. Features extracted
Contact with dense crowd 70 30 NA from both deep learning and radiomics showed similar perfor-
Time interval (median) 5 4 12 mance with linear and Lasso classifiers, with sensitivity >73%
IlIness classification and specificity > 75% on the external cohort. DL features extract-
Mild 6 0 NA ed from pneumonia lesion performed superior to the whole lung
Common 47 18 NA on the external validation dataset. Prediction outputs generated
Severe 20 2 NA from our combined deep learning-radiomics model further aug-
Critical illness 0 0 NA mented human expert performance.
Basic disease (yes) 53 5 15 To our knowledge, this is the first study to compare perfor-
Radiologists” label slices 11,071 930 3799 mance of DL versus radiomics models for differentiation of

NA, not applicable

Based on the two classifiers, 32 high-dimensional deep learn-
ing features were filtered as the significant features (P < 0.0001)
for the classifying COVID-19 pneumonia, and four radiomics
features (P <0.0001), specifically, mean intensity values of the
lesion and texture features (RMS: feature of
“original firstorder RootMeanSquared; Uniformity: feature of
“original_firstorder Uniformity; NGTDMB: feature of
“original_ngtdm_ Busyness) were associated with COVID-19
differentiation. The loss curve of the BigBiGAN training is
shown in Supplementary Figure S4. Details of the significant
features are shown in Supplementary Material Appendix B and
C. When using the combined 240-dimensional DL and
radiomics features, the following features were selected by both
classifiers (P<0.0001): five radiomics features
(diagnostics Image-original Mean,
original shape Maximum2DDiameterSlice,
original firstorder Skewness, original firstorder Uniformity,
and original ngtdm Busyness) and 6 deep learning features
(18th, 24th, 35th, 50th, 65th, and 79th feature). The distribution
of the values of these features in COVID-19-positive and -
negative images is shown in Supplementary Material Appendix
D. The signatures constructed by the linear classifier and Lasso
classifier based on the combined features are shown in
Supplementary Figure S5; CT images of COVID-19 and non-
COVID-19 with significant image signature values are shown in
Fig. 4.

@ Springer

COVID-19 pneumonia. Various studies have described perfor-
mance of DL models for COVID-19 pneumonia [20, 21].
However, specific image features relevant to COVID-19 classi-
fication remain opaque. While it is well-known that with large
datasets, DL models perform superior to hand-crafted feature
extraction [22, 23], large data are not always possible in medicine
and may be limited by disease prevalence, obstacles to data pro-
curement, and other clinical factors. For smaller data, studies
have suggested feature engineering may be a more suitable ma-
chine learning strategy with notable advantages of radiomics for
medical imaging analysis [15, 24, 25]. At present, studies that
directly compare radiomics and deep learning clinical model
performance are relatively unexplored [26]. In this study, we
address these questions and further aim to enhance interpretabil-
ity of such machine learning models.

Recent studies have shown image features learned from a
BigBiGAN framework can achieve state-of-the-art performance
for image classification [11, 12, 27]. Unlike traditional generative
adversarial network typically used for image synthesis, de-nois-
ing, or generation of high-quality images, BigBiGAN has shown
robust performance for learning high-dimensional semantic fea-
tures. We identified 32 deep leaming features that differed sig-
nificantly between COVID-19-positive and -negative lesion im-
ages (P<0.0001). Using PyRadiomics analysis, four radiomics
features were selected by the two classifiers (P < 0.0001) to dif-
ferentiate COVID-19 from other types of viral pneumonia. When
we combined both approaches, 6 deep learning features and 5
radiomics features were selected (P < 0.0001) by the two classi-
fiers. These results might suggest more distinguishing features
were learned on neural network. Although ROC might suggest
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Fig. 3 The pneumonia lesions on the CT image were used as the input of
the BigBiGAN and PyRadiomics. Receiver operating characteristic
curves (ROC) and area under curve (AUC) of the linear classifier and
Lasso classifier for the differentiation of COVID-19 from other forms of

slightly more robust performance for radiomics models, sensitiv-
ity and specificity did not differ among deep learning, radiomics,
and combined features.

Among the four significant radiomics features, we found
mean intensity of COVID-19 (— 665.9) lesions to be higher than
non-COVID-19 lesions (— 887.0) which might reflect more dif-
fuse opacities or greater degree of fluid or debris affecting the
airspaces. Based on NGTDMB, which measures the rate of
change in intensity between pixels and its neighborhoods, we
also found less intense change between adjacent pixels for
COVID-19 (0.39) compared to non-COVID-19 (0.72), which
might also indicate that within an affected lung region, there is
more diffuse airspace process, sparing fewer of the neighboring
alveoli in COVID-19 compared to other types of viral pneumo-
nia. This might also explain why RMS, which measures the
magnitude of the image values by calculating contributions of
each gray value (absolute), was higher for non-COVID-19
(660.8 vs. 563.1), where greater number of spared alveoli, i.e.,
air-filled, rather than alveoli fluid-filled by disease, could

viral pneumonia with clinical symptoms and CT signs similar to those of
COVID-19. The four ROC curves in each chart represent the training
(red), validation (green), test (blue), and external validation datasets (yel-
low), respectively

contribute to a wider magnitude of absolute gray values in the
pixels. Uniformity was lower for COVID-19 (0.03) compared to
non-COVID-19 (0.06) lesions, with a larger range in irregular
texture for COVID-19 and suggested a more heterogeneous lung
texture possibly due to diversity in airspace disease phenotypes
(consolidation, ground-glass opacities, etc.) that combine varying
degrees of edema and vascular and interlobular septal thickening,
sometimes described as “crazy paving” on visual inspection [28].

Although it is difficult to directly map image phenotype
from DL features alone, signatures from combined DL and
radiomics features provide some clues to image-based dis-
crimination for COVID-19 versus non-COVID-19 lung dis-
ease. COVID-19 patients showed higher signature scores for
irregular intensity changes, heterogeneous intensities, and
wider range in textures within the lung lesions compared with
non-COVID-19 patients. For example, despite a large area of
mixed opacity that might raise suspicion for COVID-19 on
visual inspection (Fig. 4b(2)), feature extraction revealed in-
tensity changes that were relatively regular within the lesion,
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Fig. 4 The CT images of COVID-19 positive (a) and COVID-19 nega-
tive (b) with significant different signature values based on the combined
feature matrix. Figure a(1) represents a 35-year-old male and CT mani-
fested as bilateral opacities, and linear signature score of 1.32 and Lasso
signature score of 0.99; figure a(2) denotes a 43-year-old female and CT
manifestation are bilateral ground-glass opacities, vascular thickening,
and interlobular septal thickening, with signature scores of 1.23 and
0.99; figure a(3) denotes a 62-year-old male and CT manifestation is
bilateral multifocal consolidations. Signature scores are 1.24 and 0.98;
figure a(4) represents a 45-year-old female and CT manifested as bilateral

a pattern that was associated with non-COVID-19. In another
example, although multiple, nodular opacities in peripheral
consolidative pattern on CT might raise suspicion for
COVID-19 (Fig. 4b(3)), strong uniformity of CT intensity
values within the lesions suggested a non-COVID-19 process.
This was supported by the linear signature score (0.07) that
was consistent with non-COVID-19.

When predictions from a combined deep learning-
radiomics model were available, we observed improved radi-
ologist diagnostic performance with increase in both sensitiv-
ity and specificity by 16.5% and 11.6%, respectively, suggest-
ing a potential role for machine learning for augmenting cli-
nician decision support.

Fig. 5 Sensitivity and specificity Sensitivity (%)

of the radiologists’ diagnosis on
the test datasets without (first
round of diagnosis) and with
(second round of diagnosis) the
assistance of our Al semantic
features plus radiomics features

96.4
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Diagnosis of first round® vs. second round

peripheral multifocal lesions with signature scores of 1.25 and 0.97; fig-
ure b(1) represents a 29-year-old male and CT manifestation is multifocal
ground-glass opacities in the left lung. Signature scores are —0.14 and
0.04; figure b(2) represents a 30-year-old female and CT manifestation is
multifocal, mixed ground-glass opacity and consolidation in the right
lung. Signature scores are —0.11 and 0.08; figure b(3) represents a 30-
year-old male and CT manifestation is bilateral multifocal consolidation.
Signature scores are 0.07 and 0.70; figure b(4) represents a 29-year-old
male and CT manifested as mixed densities in the right lung. Signature
scores are —0.17 and 0.03, respectively

There are several limitations to this study. While we used
the high-dimensional, semantic features from the encoder
module of the BigBiGAN framework, we did not examine
other features that can be produced in the framework or by a
different architecture. Since there is no specific definition of
these deep learning semantic features, in the future, we will
explore image encoding processes used to generate each of the
deep learning semantic features to further enhance interpret-
ability of these features. While deep learning and
radiomics approaches performed comparably with a
training cohort of around 180 patients with 9500 im-
ages, larger dataset could show more robust perfor-
mance for deep learning. Finally, while we used

Specificity (%)
Diagnosis of first roundMvs. second round®
95.4

91.3 91.2 91.1 91.9
85.9 85.3 ge2
79. 80.3 80.! 80.
74.
i |
R1 R2 R3 Ave. R1 R2 R3 Ave.
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features when the loss was minimum in the last training
epoch, “deep learning features” might vary over training
parameters or change with other experimental settings.

In conclusion, we uncover specific deep learning and
radiomics features relevant to COVID-19 pneumonia to assist
interpretability of machine learning algorithms and contribute
to understanding of COVID-19 pneumonia imaging pheno-
types. Furthermore, we compare performance of deep learning
and radiomics models for COVID-19 pneumonia diagnosis
using chest CT and show potential for augmenting radiologist
diagnostic performance with the aid of machine learning
predictions.

Authors’ contributions Author list: Hongmei Wang, Lu Wang, Edward
H. Lee, Jimmy Zheng, Wei Zhang, Safwan Halabi, Chunlei Liu, Kexue
Deng, Jiangdian Song, and Kristen W. Yeom.

(1) Guarantor of integrity of the entire study: Jiangdian Song and
Kristen W. Yeom.

(2) Study concepts and design: All authors.

(3) Literature research: All authors.

(4) Clinical studies: All authors.

(5) Experimental studies/data analysis: All authors.

(6) Statistical analysis: Hongmei Wang and Lu Wang.

(7) Manuscript preparation: All authors.

(8) Manuscript editing: All authors.

Funding This study has received funding by National Natural Science
Foundation of China (82001904), and China Postdoctoral Science
Foundation (2018M630310), and China Scholarship Council
(201908210051). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Data availability The data link: http://dx.doi.org/10.17632/yn7vpd7bxk.
1

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of
interest.

Ethics approval  All procedures performed in studies involving human
participants were in accordance with the ethical standards of the institu-
tional and/or national research committee and with the 1964 Helsinki
Declaration and its later amendments or comparable ethical standards.
The study was approved by the institutional review board of University
of Science and Technology of China and Stanford University.

Code availability The code of this study is publicly accessible at https://
github.com/MI-12/Comparison-of-Al-Semantic-features-and-radiomics-
features. The source code and instruction on the use of BigBiGAN,
radiomics, and classifiers can be found at: https://github.com/MI-12/
Comparison-of-Al-Semantic-features-and-radiomics-features.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article
are included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the

article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. WHO. Coronavirus disease (COVID-2019) situation reports.
Coronavirus disease (COVID-2019) situation reports. World
Health Organization; 2020. https://www.who.int/emergencies/
diseases/novel-coronavirus-2019.

2. LiZ, YiY, Luo X, Xiong N, Liu Y, Li S, et al. Development and
clinical application of a rapid IgM-IgG combined antibody test for
SARS-CoV-2 infection diagnosis. ] Med Virol. 2020. https:/doi.
org/10.1002/jmv.25727.

3. Rivett L, Sridhar S, Sparkes D, Routledge M, Jones NK, Forrest S,
et al. Screening of healthcare workers for SARS-CoV-2 highlights
the role of asymptomatic carriage in COVID-19 transmission. Elife.
2020;9. https://doi.org/10.7554/eLife.58728.

4. FangY,Zhang H, Xie J, Lin M, Ying L, Pang P, et al. Sensitivity of
chest CT for COVID-19: comparison to RT-PCR. Radiology.
2020;200432.

5. AiT, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of
chest CT and RT-PCR testing in coronavirus disease 2019
(COVID-19) in China: a report of 1014 cases. Radiology.
2020;200642.

6. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al.
Chest CT findings in coronavirus disease-19 (COVID-19): relation-
ship to duration of infection. Radiology. 2020;200463.

7. Bai HX, Hsieh B, Xiong Z, Halsey K, Choi JW, Tran TML, et al.
Performance of radiologists in differentiating COVID-19 from viral
pneumonia on chest CT. Radiology. 2020;200823. https://doi.org/
10.1148/radiol.2020200823.

8. WangsS,ZhaV,LiW, WuQ, Li X, NiuM, etal. A fully automatic
deep learning system for COVID-19 diagnostic and prognostic
analysis. Eur Respir J. 2020. https://doi.org/10.1183/13993003.
00775-2020.

9. LiL,QinL, XuZ, Yin Y, Wang X, Kong B, et al. Artificial
intelligence distinguishes COVID-19 from community acquired
pneumonia on chest CT. Radiology. 2020;200905. https://doi.org/
10.1148/radiol.2020200905.

10. Zhang L, Wang DC, Huang Q, Wang X. Significance of clinical
phenomes of patients with COVID-19 infection: a learning from
3795 patients in 80 reports. Clin Transl Med. 2020;10:28-35.
https://doi.org/10.1002/ctm2.17.

11. Donahue J, Simonyan K. Large scale adversarial representation
learning. Adv Neural Inf Proces Syst; 2019. p. 10541-51.

12. Song J, Wang H, Liu Y, Wu W, Dai G, Wu Z, et al. End-to-end
automatic differentiation of the coronavirus disease 2019 (COVID-
19) from viral pneumonia based on chest CT. Eur J Nucl Med Mol
Imaging 2020. doi:https://doi.org/10.1007/s00259-020-04929-1.

13.  Google Colaboratory. GOOGLE; 2017. https://colab.research.
google.com/.

14.  van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N,
Narayan V, et al. Computational radiomics system to decode the
radiographic phenotype. Cancer Res. 2017;77:¢104—7. https://doi.
org/10.1158/0008-5472.CAN-17-0339.

15. Lambin P, Leijenaar RT, Deist TM, Peerlings J, De Jong EE, Van
Timmeren J, et al. Radiomics: the bridge between medical imaging
and personalized medicine. Nat Rev Clin Oncol. 2017;14:749.

16. Joost van Griethuysen AF, Aucoin N, Fillion-Robin J-C, Hosny A,
Pieper S, Aerts H. PyRadiomics: radiomic features. 2020.

@ Springer


http://dx.doi.org/10.17632/yn7vpd7bxk.1
http://dx.doi.org/10.17632/yn7vpd7bxk.1
https://github.com/MI-Comparisonf-I-emanticeaturesnd-adiomicseatures
https://github.com/MI-Comparisonf-I-emanticeaturesnd-adiomicseatures
https://github.com/MI-Comparisonf-I-emanticeaturesnd-adiomicseatures
https://github.com/MI-Comparisonf-I-emanticeaturesnd-adiomicseatures
https://github.com/MI-Comparisonf-I-emanticeaturesnd-adiomicseatures
https://doi.org/
https://doi.org/10.1002/jmv.25727
https://doi.org/10.1002/jmv.25727
https://doi.org/10.7554/eLife.58728
https://doi.org/10.1148/radiol.2020200823
https://doi.org/10.1148/radiol.2020200823
https://doi.org/10.1148/radiol.2020200905
https://doi.org/10.1148/radiol.2020200905
https://doi.org/10.1002/ctm2.17
https://doi.org/10.1007/s00259-020-04929-1
https://colab.research.google.com/
https://colab.research.google.com/
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1158/0008-5472.CAN-17-0339

1486

Eur J Nucl Med Mol Imaging (2021) 48:1478-1486

17.

19.

20.

21.

22.

Jiang Y, Chen C, Xie J, Wang W, Zha X, Lv W, et al. Radiomics
signature of computed tomography imaging for prediction of sur-
vival and chemotherapeutic benefits in gastric cancer.
EBioMedicine. 2018;36:171-82. https://doi.org/10.1016/j.ebiom.
2018.09.007.

Jiang Y, Wang W, Chen C, Zhang X, Zha X, Lv W, et al.
Radiomics signature on computed tomography imaging: associa-
tion with lymph node metastasis in patients with gastric cancer.
Front Oncol. 2019;9:340. https://doi.org/10.3389/fonc.2019.
00340.

Wei W, Liu Z, Rong Y, Zhou B, Bai Y, Wei W, et al. A computed
tomography-based radiomic prognostic marker of advanced high-
grade serous ovarian cancer recurrence: a multicenter study. Front
Oncol. 2019;9:255. https://doi.org/10.3389/fonc.2019.00255.

Mei X, Lee HC, Diao KY, Huang M, Lin B, Liu C, et al. Artificial
intelligence-enabled rapid diagnosis of patients with COVID-19.
Nat Med. 2020. https://doi.org/10.1038/s41591-020-093 1-3.
Belfiore MP, Urraro F, Grassi R, Giacobbe G, Patelli G,
Cappabianca S, et al. Artificial intelligence to codify lung CT in
Covid-19 patients. Radiol Med. 2020;125:500—4. https://doi.org/
10.1007/s11547-020-01195-x.

Korotcov A, Tkachenko V, Russo DP, Ekins S. Comparison of
deep learning with multiple machine learning methods and metrics
using diverse drug discovery data sets. Mol Pharm. 2017;14:4462—
75. https://doi.org/10.1021/acs.molpharmaceut.7b00578.

Affiliations

23.

24.

25.

26.

27.

28.

Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D.
Deep learning for cellular image analysis. Nat Methods. 2019;16:
1233-46. https://doi.org/10.1038/s41592-019-0403-1.

Song J, Shi J, Dong D, Fang M, Zhong W, Wang K, et al. A new
approach to predict progression-free survival in stage IV EGFR-
mutant NSCLC patients with EGFR-TKI therapy. Clinical cancer
research : an official journal of the American Association for
Cancer Research. 2018;24:3583-92. https://doi.org/10.1158/1078-
0432.CCR-17-2507.

Colen RR, Fujii T, Bilen MA, Kotrotsou A, Abrol S, Hess KR, et al.
Radiomics to predict immunotherapy-induced pneumonitis: proof
of concept. Investig New Drugs. 2018;36:601-7. https://doi.org/10.
1007/s10637-017-0524-2.

Choi JY. Radiomics and deep learning in clinical imaging: what
should we do? Nucl Med Mol Imaging. 2018;52:89-90. https://doi.
org/10.1007/s13139-018-0514-0.

Mozafari M, Reddy L, VanRullen R. Reconstructing natural scenes
from fMRI patterns using BigBiGAN. arXiv preprint arXiv:
200111761. 2020.

Han R, Huang L, Jiang H, Dong J, Peng H, Zhang D. Early clinical
and CT manifestations of coronavirus disease 2019 (COVID-19)
Pneumonia. AJR Am J Roentgenol. 2020:1-6. https://doi.org/10.
2214/AJR.20.22961.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Hongmei Wang' - Lu Wang? - Edward H. Lee® - Jimmy Zheng? - Wei Zhang* - Safwan Halabi - Chunlei Liu>® -

Kexue Deng’ - Jiangdian Song”"®

1

- Kristen W. Yeom?

Department of Radiology, The First Affiliated Hospital of University
of Science and Technology of China (USTC), Division of Life
Sciences and Medicine, USTC, Hefei 230036, Anhui, China

School of Medical Informatics, China Medical University,
Shenyang 110122, Liaoning, China

Department of Radiology, School of Medicine Stanford University,
725 Welch Rd MC 5654, Palo Alto, CA 94305, USA

Department of Radiology, The Lu’an Affiliated Hospital, Anhui
Medical University, Luan 237000, Anhui, China

@ Springer

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720, USA

Helen Wills Neuroscience Institute, University of California,
Berkeley, CA 94720, USA

College of Medical Informatics, China Medical University,
Shenyang 110122, Liaoning, China

Department of Radiology, School of Medicine Stanford University,
1201 Welch Rd Lucas Center PS055, Stanford, CA 94305, USA


https://doi.org/10.1016/j.ebiom.2018.09.007
https://doi.org/10.1016/j.ebiom.2018.09.007
https://doi.org/10.3389/fonc.2019.00340
https://doi.org/10.3389/fonc.2019.00340
https://doi.org/10.3389/fonc.2019.00255
https://doi.org/10.1038/s41591-020-0931-3
https://doi.org/10.1007/s11547-020-01195-x
https://doi.org/10.1007/s11547-020-01195-x
https://doi.org/10.1021/acs.molpharmaceut.7b00578
https://doi.org/10.1038/s41592-019-0403-1
https://doi.org/10.1158/1078-0432.CCR-17-2507
https://doi.org/10.1158/1078-0432.CCR-17-2507
https://doi.org/10.1007/s10637-017-0524-2
https://doi.org/10.1007/s10637-017-0524-2
https://doi.org/10.1007/s13139-018-0514-0
https://doi.org/10.1007/s13139-018-0514-0
https://doi.org/10.2214/AJR.20.22961
https://doi.org/10.2214/AJR.20.22961
http://orcid.org/0000-0002-3355-9930

	Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Material and methods
	Study cohort
	Chest CT technique and image annotations
	Feature extraction and model development
	High-dimensional deep learning features
	Radiomics features
	Classifier models

	AI augmentation for clinical diagnosis
	Statistics analysis

	Results
	Study cohort
	Chest CT dataset
	Image features and model performance
	Clinical use

	Discussion

	This link is https://www.who.int/emergencies/diseases/noveloronavirus-,",
	This link is 10.1183/13993003.00775-,",
	References


