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Abstract

Purpose To develop and validate a clinico-biological features and '*F-fluorodeoxyglucose (FDG) positron emission
tomography/computed tomography (PET/CT) radiomic-based nomogram via machine learning for the pretherapy prediction
of discriminating between adenocarcinoma (ADC) and squamous cell carcinoma (SCC) in non-small cell lung cancer (NSCLC).
Methods A total of 315 NSCLC patients confirmed by postoperative pathology between January 2017 and June 2019 were
retrospectively analyzed and randomly divided into the training (n =220) and validation (n=95) sets. Preoperative clinical
factors, serum tumor markers, and PET, and CT radiomic features were analyzed. Prediction models were developed using
the least absolute shrinkage and selection operator (LASSO) regression analysis. The performance of the models was evaluated
and compared by the area under receiver-operator characteristic (ROC) curve (AUC) and DeLong test. The clinical utility of the
models was determined via decision curve analysis (DCA). Then, a nomogram was developed based on the model with the best
predictive efficiency and clinical utility and was validated using the calibration plots.

Results In total, 122 SCC and 193 ADC patients were enrolled in this study. Four independent prediction models
were separately developed to differentiate SCC from ADC using clinical factors-tumor markers, PET radiomics, CT
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radiomics, and their combination. The DeLong test and DCA showed that the Combined Model, consisting of 2
clinical factors, 2 tumor markers, 7 PET radiomics, and 3 CT radiomic parameters, held the highest predictive
efficiency and clinical utility in predicting the NSCLC subtypes compared with the use of these parameters alone
in both the training and validation sets (AUCs (95% Cls)=0.932 (0.900-0.964), 0.901 (0.840-0.957), respectively)
(p<0.05). A quantitative nomogram was subsequently constructed using the independently risk factors from the
Combined Model. The calibration curves indicated a good consistency between the actual observations and nomo-
gram predictions.

Conclusion This study presents an integrated clinico-biologico-radiological nomogram that can be accurately and noninvasively
used for the individualized differentiation SCC from ADC in NSCLC, thereby assisting in clinical decision making for precision
treatment.

Keywords Squamous cell carcinoma - Adenocarcinoma - '*F-FDG PET/CT - Radiomics - Nomogram - Machine learning

Abbreviations Introduction
ADC adenocarcinoma
AFP alpha-fetoprotein Non-small cell lung cancer (NSCLC) accounts for approxi-
ALK anaplastic lymphoma kinase mately 85% of lung cancer that is the most common cause of
AUC area under curve cancer-related mortality worldwide, with an estimated 1.4 mil-
BMI body mass index lion deaths each year [1]. Adenocarcinoma (ADC) and squa-
CA carbohydrate antigen mous cell carcinoma (SCC) are the most common subtypes of
CEA carcinoembryonic antigen NSCLC [2]. Different pathological subtypes have distinct
CI confidence interval phenotypic and biological characteristics, which are directly
Clin-Lab Clinical-Laboratory related to the clinical treatment and outcome [3—5]. With ad-
CYFRA21-1 cytokeratin 19 fragment antigen vances in targeted therapies, molecularly targeted agents that
DCA decision curve analysis inhibit epidermal growth factor receptor (EGFR) and anaplas-
EGFR epidermal growth factor receptor tic lymphoma kinase (ALK) can significantly improve the
FERR ferritin efficacy and reduce the toxicity of NSCLC, as almost all these
FDG fluorodeoxyglucose gene mutations are found in ADC [6, 7]. Therefore, accurately
GLCM Gray Level Co-occurrence Matrix predicting the histological subtypes is essential for determin-
GLNIDM Gray Level Neighborhood ing better therapeutic strategies in NSCLC.
Intensity-difference Matrix An invasive biopsy for histological confirmation is com-
ICC intra- and inter-class correlation monly used in clinical practice [8]. However, with the devel-
coefficient opment of various detection technologies in recent years,
LASSO least absolute shrinkage and high-precision noninvasive detection has been paid more at-
selection operator tention and recognized by clinicians; moreover, biopsy is con-
NGLD Neighboring Gray Level Dependence traindicated for patients with severe cardiopulmonary insuffi-
NSCLC non-small cell lung cancer ciency, such as severe pulmonary arterial hypertension, or
NSE neuron specific enolase uncorrectable coagulopathy, or unable to cooperate with the
PET/CT positron emission operation [9, 10]. In addition, when the pathological tissue
tomography/computed tomography obtained from the first puncture is few and fails to meet the
Pre-score prediction score needs for an accurate diagnosis, it is more difficult to biopsy
Rad radiomics again [11]. Thus, it is clinically important and necessary to
ROC receiver operating characteristic explore a reliable, noninvasive, and practical method for the
SCC squamous cell carcinoma pre-therapy prediction of the histologic subtypes for treatment
SCCA squamous cell carcinoma antigen decision making and prognosis estimation in NSCLC patients.
SD standard deviation Radiomics based on conventional medical images has been
SUV standardized uptake value used to quantitatively assess tumor heterogeneity in more de-
TFC Texture Feature Coding tail than visual analysis by analyzing the distribution and re-
TFCCM Texture Feature Coding lationship of pixel or voxel gray levels in the lesion area [12,
co-occurrence matrix 13]. "8F-fluorodeoxyglucose (FDG) positron emission
VOI volume of interest tomography/computed tomography (PET/CT)-based
WHO World Health Organization radiomics have been shown to have potential in differentiating
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ADC from SCC [14, 15]. Further studies have revealed that
the discrimination performance could be further improved by
combining with clinical features, like sex and smoking history
(area under curve (AUC) = 0.859), which are higher than that
of radiomic alone [16, 17]. However, only PET radiomic pa-
rameters were extracted and analyzed in the above studies.
There is no single feature that can adequately describe the
pathological phenotype of lesions due to the tumor heteroge-
neity [18].

Hence, the aim of this study was to develop and validate a
prediction model, integrating the clinical characteristics, tu-
mor marker levels [19], and radiomic features extracted from
both the PET and CT images from the same volume of interest
(VOI), for differentiating SCC from ADC in NSCLC and to
provide a visually quantitative nomogram in clinical practice.

Materials and methods
Patients

We conducted a retrospective analysis of records from pa-
tients with NSCLC who were diagnosed by curative surgical
resection between January 2017 and June 2019. This retro-
spective study was approved by the ethics committee of
Shanghai Proton and Heavy Ion Center, and the requirement
for informed consent was waived. The inclusion criteria in-
cluded the following: (1) ADC or SCC that was confirmed by
postoperative pathology according to the 2015 World Health
Organization (WHO) classification [20], (2) standard routine
whole-body PET/CT less than 30 days before surgery, and (3)
single lesion with maximum standardized uptake value
(SUVmax) >2.50 and size > 1.00 cm. The exclusion criteria
included the following: (1) previous history of malignant tu-
mors and (2) anti-tumor therapy before PET/CT examination.
We excluded 1385 patients among the 1700 patients with lung
lesions initially recruited in our cancer center’s database to
ensure the relationship between single pathological subtype
and baselined clinico-biologico-radiological features. The pa-
tient recruitment process is presented in Fig. 1.

Finally, totally 315 consecutive NSCLC patients were en-
rolled in this study, comprising 200 males and 115 females
(mean age, 61.89+9.10 years, range, 27-84 years), as sum-
marized in Table 1. Patients were randomly divided into two
independent sets according to a 7:3 ratio: training set (n = 220)
and validation set (n = 95). Baseline data pertaining to clinical
characteristics, including gender, age, height, weight,
smoking status (never, ever/always), symptom (negative, pos-
itive chest symptoms), family history, the size, and location of
lesion and the levels of serum tumor markers, including ferri-
tin (FERR), squamous cell carcinoma antigen (SCCA), carbo-
hydrate antigen 199 (CA 199), alpha-fetoprotein (AFP),
carcinoembryonic antigen (CEA), cytokeratin 19 fragment
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antigen (CYFRA21-1), and neuron specific enolase (NSE)
of each patient, were reviewed and recorded.

'8F-FDG PET/CT image acquisition and tumor
segmentation

The "®F-FDG PET/CT scans were performed on a Biograph
16 PET/CT scanner (Siemens Healthcare, Erlangen,
Germany) according to standard clinical scanning protocols.
All patients fasted for at least 6 h before the scan, and none had
a blood glucose levels > 8.7 mmol/L. A whole-body scan was
acquired approximately 1 h after intravenous administering of
5.18 MBq/kg of '®*F-FDG. The CT scans were performed first
(120 kVp, 150 mAs, 0.33 s per rotation) using a slice thick-
ness of 3.0 mm and reconstructed to a 512 x 512 matrix (voxel
size: 0.98 x0.98 x 3.0 mm3). Then, PET scans were per-
formed with 2 min in each bed, a TrueX algorithm (2 itera-
tions, 24 subsets, and 2 mm full width at half maximum)
without filtering and smoothing was used to reconstruct the
PET images. For all PET reconstructions, the matrix size was
200 x 200, resulting in anisotropic voxels of 4.07 x 4.07 x

3.0 mm’. The PET images were converted into SUV units
by normalizing the activity concentration to the dosage of
injected "®F-FDG and patient body weight.

Tumor segmentation was performed using Inveon
Research Workplace (IRW, Siemens Healthcare, Erlangen,
Germany) software. Two experienced nuclear medicine phy-
sicians drew boundaries in the axial, coronal, and sagittal PET
scans that were large enough to include the primary tumor to
delineate the VOIs using a threshold of 40% of SUV .« With-
out knowing the pathology determined by consensus [21, 22].
To avoid the inclusion of areas with physiological '*F-FDG
uptake within the regions of interest, a joint reading of both the
CT and PET scans was performed side by side.

Quantitative radiomic feature extraction

The radiomic features were extracted using a voxel-based
methodology. First, the SUV values contained within the
VOIs were relatively resampled to 64 different values to yield
a limited range of values, with the goal of reducing the noise
and normalizing the images [23]. Then, totally 212 radiomic
features were automatically calculated and extracted from the
PET and CT images for each lesion using the Chang Gung
Image Texture Analysis (CGITA) that is compliant to the
Image Biomarkers Standardization Initiative, which is an
open-source software code with a graphical user interface
for radiomics running on MATLAB (version 2019a,
MathWorks Inc., Natick, MA) (supplementary data Fig. S1)
[24]. The details of radiomic features were described in sup-
plementary data (Table S1).
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Fig. 1 Flow chart showing the Patients with lung lesions undergone ®F-FDG PET/CT
patient selection and exclusion before surgery between January 2017 and June 2019
(n=1700)

patients with several metastatic lung lesions confirmed by
expert consultation, imaging follow-up, or biopsy (n=464)

Patients with single lung lesion (n=1236)

1) previous cancer history & anti-tumor therapy (n=217)
2) clinical stage: llIB-1V & skip surgery (n=450)
3) lesion size <1.00cm & SUVmax < 2.50 (n=126)

Patients received curative surgical resection and
pathological data eligibility (n=443)

pathological type except SCC and ADC (n=128)

Eligible patients including in the study (n=315)

A

Trainging Set
(n=220)

Statistical analysis

The R (version 3.60, http://www.r-project.org) software was

Validation Set
(n=95)

groups was performed using an independent ¢ test or a
Mann-Whitney U test for continuous variables and Fisher’s
exact test or x” test for categorical variables. A two-sided

used for the statistical analysis. A comparison between the  p <0.05 indicated statistical significance. Intra- and inter-
Table 1 Clinical and
demographic characteristics of Characteristics Total (n=315) SCC (n=122) ADC (n=193)
NSCLC patients
Sex
Male 200 (63.49) 109 (89.34) 91 (47.15)
Female 115 (36.51) 13 (10.66) 102 (52.85)
Age (mean + SD, year) 61.89+9.10 63.57+8.31 60.82+£9.43
TASLC stage
1A 71 (22.54) 13 (10.66) 58 (30.05)
IB 54 (17.14) 22 (18.03) 32(16.58)
mA 24 (7.62) 12 (9.84) 12 (6.22)
B 52 (16.51) 26 21.31) 26 (13.47)
A 114 (36.19) 49 (40.16) 65 (33.68)

Data in parentheses are percentages unless otherwise noted

NSCLC non-small cell lung cancer, SCC squamous cell carcinoma, ADC adenocarcinoma. SD standard deviation,
IASLC International Association for the Study of Lung Cancer
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class correlation coefficients (ICCs) were used to evaluate the
consistency and reproducibility of the intra- and inter-observer
agreements of the radiomic feature extractions. An ICC > 0.75
indicated good consistency.

Features selection and prediction model
establishment

Univariate analysis was applied to identify the relevant pre-
dictors of the NSCLC subtypes in the training set.
Multivariate analysis was performed by the least absolute
shrinkage and selection operator (LASSO) binary logistic re-
gression with 10-fold cross-validation, which was used to se-
lect the most useful factors [25, 26]. The prediction models
that were performed to differentiate ADC from SCC were
developed by the linear fusion of the selected non-zero fea-
tures weighted by their coefficients, with prediction scores
(Pre-scores) of each model calculated for each patient.

Prediction performance and clinical utility of
prediction models

The performance of the models was evaluated by the receiver-
operator characteristic curve (ROC) analysis and compared by
the DeLong test. The AUC with 95% confidence interval (CI),
sensitivity, specificity, and accuracy were calculated for each
model. The clinical application value of the prediction models
was determined and compared through the decision curve
analysis (DCA) by quantifying the net benefit to the patient
under different threshold probabilities in the queue.

Development and validation of individualized
nomogram

To provide a visually quantitative tool to predict the histologic
subtypes for NSCLC patients, we developed a nomogram on
the basis of the prediction model with the highest AUC and
clinical utility in the training set [27]. Calibration curves were
plotted to assess the calibration of the nomogram by
bootstrapping (1000 bootstrap resamples) based on the inter-
nal (training set) and external (validation set) validity.

Results
Clinical characteristics and tumor markers of patients

In total, 315 NSCLC patients comprising 122 SCC patients
and 193 ADC patients were eventually enrolled in this study.
The patients’ clinical characteristics and tumor markers of
training set are summarized and compared in Table 2, while
ones of validation set are provided in supplementary data
(Table S2). SCC patients were more likely to be elderly males

@ Springer

who had taller heights, a history of smoking, obvious symp-
toms, and larger lesions, while ADC patients were more likely
to be younger females who had never smoked, no obvious
symptoms, and smaller lesions (p <0.05). The levels of
FERR, SCCA, CYFRA2I-1, and NSE in SCC patients were
higher than those in ADC patients (p < 0.05). There were no
significant differences in patient’s weight, family history, le-
sion location, and levels of CA199, AFP, and CEA between
the SCC and ADC groups according to the univariate analysis
(p>0.05).

Features selection and prediction model
establishment

A total of 315 regions with an increased '*F-FDG uptake were
manually segmented, and 212 radiomic features were sepa-
rately extracted by the two physicians. The agreement be-
tween the two physicians was excellent (all ICCs > 0.85,
p<0.05). Thus, the mean measurement values of the two
physicians were used for further analysis.

For differentiating SCC from ADC, 4 independent predic-
tion models (Clinical-Laboratory (Clin-Lab) Model, PET-
Radiomic (Rad) Model, CT-Rad Model, and Combined
Model) were built separately on the basis of selected clinical
factors-tumor markers, PET radiomic parameters, CT
radiomic parameters, and the combination of above features
by LASSO regression in the training set (Fig. 2). The Pre-
scores of each model for each patient were calculated using
the following formulas:

Pre—score (Clin—Lab Model) = 1.8145 + 0.8597

*Sex (Male : 0, Female : 1)—0.0847*Symptoms
(Negative : 0, Positive : 1)—0.3202*Size (cm)
—0.0001 *FERR (ng/mL)—0.0020*SCCA (ng/mL).

Pre—score (PET—Rad Model) = 2.8790 + 1.4955
*PET_Coarsen eSSGray Level Neighborhood Intensity—difference Matrix (GLNIDM)
+ 0.0025*PET _StrengthS"NPM—0 0924
*PET,Normalized,EntropyG“‘y Level Co—occurrence Matrix (GLCM)
—0.4012#PET_SUV,;,—0.1108 *PET_SUV/ean—9.2039
*PET_Code SimﬂarityTexrure Feature Coding co—occurrence matrix (TFCCM)

4 0.6994 *PET,El’ltI'OpyNeigthﬁng Gray Level Dependence (NGLD)‘

Pre—score (CT—Rad Model) = 1.7783-0.0045*CT_Asphericity
—0.0024 *CT_Entropy_prod_surface_area

+ 0.4938*CT_Entropy™CLP.
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Pre—score (Combined Model) = 3.6745 + 1.3360*Sex
(Male : 0, Female : 1)—0.2273*Size (cm)—0.0212
*SCCA (ng/mL)—0.0010*CYFRA21.1 (ng/mL)
+ 0.0002*PET_Strength®™PM 4 0.0001
*PET_Normalized_Contrast®““™-0.0451
*PET_Normalized_Entropy®-“M—0.0498 *PET_SUV yin
=0.1138*PET_SUV 10an—0.0197*PET_Surface SUV pean 1
+ 0.0469*PET_Variance' e Feature Coding (TFC)_1 7315
*CT_Second angular moment™ ““M—0.4842
*CT_Correlation®"““™-0.0002

*CT_Entropy_prod_surface_area.

ADC patients generally had higher Pre-scores in all predic-
tion models than those in SCC patients (p < 0.001) (Figs. 3
and 4). The selected radiomic features of the prediction
models between ADC and SCC patients are summarized and
compared in supplementary data (Table S3).

Prediction performance and clinical utility of
prediction models

The performance of these 4 prediction models to dis-
criminate SCC from ADC is shown in Fig. 5. The
Clin-Lab Model consisted of 3 clinical factors and 2
tumor markers, the PET-Rad Model consisted of 7
PET radiomic parameters, and the CT-Rad Model
consisted of 3 CT radiomic parameters that were all
significantly associated with the NSCLC pathological
subtypes (AUCs (training set)=0.887, 0.835, 0.784;
AUCs (validation set)=0.860, 0.740, 0.710,
respectively).

The DeLong test showed that the Combined Model, which
consisted of 2 clinical factors, 2 tumor markers, 7 PET
radiomic parameters, and 3 CT radiomic parameters, present-
ed the optimal discrimination and best predictive sensitivity,
specificity, and accuracy among the 4 models in both the
training set (AUC (95% CI) =0.932 (0.900-0.964), sensitivi-
ty =96.25%, specificity =95.00%, accuracy = 84.09%) and
validation set (AUC (95% CI)=0.901 (0.840-0.957), sensi-
tivity = 93.55%, specificity = 81.25%, accuracy = 85.95%)
(both p <0.05) (Table 3).

The DCA also showed that the Combined Model was the
most reliable clinical treatment tool for predicting the histo-
logic subtypes in NSCLC when the threshold probability was
greater than 10% (Fig. 6).

Table 2 Comparison of clinical characteristics and tumor markers
between SCC and ADC patients in training set
Characteristics SCC (n = 80) ADC (n=140) P
Sex <0.001
Male 72 (90.00) 69 (49.29)
Female 8 (10.00) 71 (50.71)
Age (year) 63.99 + 8.99% 60.41 +9.65 0.007
Height (m) 1.67 +0.08* 1.64+0.08% 0.002
Weight (kg)  64.50+10.06" 62.13+10.29% 0.099
BMI 23.03 +3.00" 23.08+3.15" 0.908
Smoking <0.001
Never 20 (25.00) 83 (59.29)
Ever/Always 60 (75.00) 57 (40.71)
Symptom <0.001
Negative 14 (17.50) 68 (48.57)
Positive 66 (82.50) 72 (51.43)
Family history 0.743
Negative 56 (70.00) 95 (67.86)
Positive 24 (30.00) 45 (32.14)
Location 0.939
Right lung 45 (56.25) 78 (55.71)
Left lung 35 (43.75) 62 (44.29)
Location_1 0.327
Upper lobe 43 (53.75) 84 (60.00)
Middle lobe 6 (7.50) 11 (7.86)
Lower lobe 31 (38.75) 45 (32.14)
Size (cm) 5.56+1.98% 3.69 + 1.40% < 0.001
FERR (ng/mL) 290.60 (190.60, 203.65 (124.53, 0.001
43820 339.100°
SCCA 1.80 (1.30, 3.21)" 0.80 (0.50, 1.10)" 0.001
(ng/mL)
CA199 13.18 (6.94,23.26)"  10.19 (6.26, 18.66) 0.344
(U/mL) ‘ ,
AFP (ng/mL)  2.52 (1.92, 3.88)" 277 (2.19, 4.21)" 0310
CEA (ng/mL) 3.38 (2.42, 4.88)" 3.88 (2.17, 8.52)" 0.483
CYFRA21-1  6.00 (4.58,10.22)°  3.11(2.32,4.24)" <0.001
(ng/mL) . )
NSE (ng/mL) 12.31(10.75,15.29)" 11.14 (9.93, 12.62)" < 0.001

Data in parentheses are percentages unless otherwise noted

BMI body mass index, FERR ferritin, SCCA squamous cell carcinoma
antigen, CA carbohydrate antigen, AFP alpha-fetoprotein, CEA
carcinoembryonic antigen, CYFRA21-1 cytokeratin 19 fragment antigen,
NSE neuron specific enolase

#Values refer to mean + standard deviation

*Values refer to median (interquartile range). P values were the results of
univariate analysis of each characteristic, and the italics ones indicated
statistical significance

Development and validation of individualized
nomogram

According to the above results, we generated an individual-

ized nomogram based on the Combined Model’s risk factors
for the visualization (Fig. 7). The calibration curves of the
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nomogram for the probability of ADC demonstrated a  Discussion

good agreement between the prediction by the nomo-

gram and the actual observation in both the training
and validation sets (Fig. 8).

Fig. 3 Violin plot of 4 prediction
models for SCC and ADC
patients in training set. The white
dot represents the median. The
black rectangle is the range from
the lower quartile to the upper
quartile. The black line running
up and down through the violin
diagram represents the range from
the smallest non-outlier value to
the largest non-outlier value

Pre-scores of 4 prediction models for each patient

o

-5 4

In this study, we successfully constructed and validated a

Combined Model containing clinical factors, tumor markers,

04 99 ¢

B scc
2 Apc

Clin-Lab Model (Type) ~ PET-Rad Model (Type) ~ CT-Rad Model (Type) ~ Combined Model (Type)
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Fig. 4 Pre-scores of the
Combined Model for each patient
in training set

-5

Pre-score of Combined Model for each patient

and radiomic features extracted from both the PET and CT
images, which held an excellent performance in noninvasively
stratifying NSCLC patients according to their pathological
subtypes. In addition, we developed a visually quantitative
nomogram for conveniently using this prediction model in
clinical practice.

Of the clinical factors selected in the Combined Model, sex
differences among NSCLC patients have been widely report-
ed, with that SCC affecting more males than females [28]. The
lesions are generally bigger in SCC patients than in ADC
patients [29]. Tumor markers in serum are beneficial for the
diagnosis and prognosis of NSCLC [30]. The serum levels of
SCCA and CYFRAZ21-1 are highly sensitive in NSCLC and
significantly higher in SCC than in ADC [31]. The results of
this study are consistent with the conclusions of the above
reports.

Different pathological subtypes lead to various clinical
strategies and prognoses for NSCLC patients [5, 32]. The

< ]
© —
o
2 S
=3
7
S
<
o 3
~ AUC (Clin-Lab Model) = 0.887
° AUC (PET-Rad Model) = 0.835
AUC (CT-Rad Model) = 0.794
g AUC (Combined Model) = 0.932

T T T T T I
1.0 0.8 0.6 04 0.2 0.0

Specificity

Fig. 5 Receiver-operating characteristic analysis of prediction models for
predicting NSCLC subtypes in training set

M scc
M Aoc

PET/CT-based radiomic is a relatively new quantitative imag-
ing technique for the noninvasive assessment of tumors [33].
Ha S, et al. found that PET radiomic features were significant-
ly different between ADC and SCC with 0.90 linear separa-
bility, but the study population was only 30 people [34].
Koyasu S, et al. also showed that PET radiomics was indeed
useful in NSCLC subtypes with an AUC of 0.843 [15].
However, the radiomic approaches in the above studies were
not be validated in another independent dataset. In this study,
both the PET and CT radiomic approaches were applied
and validated to have a good performance in the classi-
fication of NSCLC subtypes (AUCs (PET-Rad Model
and CT-Rad Model)=0.835 and 0.784, respectively).
The above results indicated that the relationship be-
tween medical images and tumor molecular phenotypes
can be established by radiomics, and then the diagnostic
information of tumors can be obtained noninvasively

Table 3 Performance of prediction models for predicting subtypes in
NSCLC

Training set AUC (95% CI) Sen (%) Spe (%) Acc (%)
Clin-Lab Model  0.887 (0.843-0.931) 78.57 88.75 80.91
PET-Rad Model  0.835 (0.780-0.890) 90.00 62.50 78.64
CT-Rad Model ~ 0.784 (0.733-0.855) 69.29 81.25 75.00
Combined Model 0.932 (0.900-0.964) 96.25 95.00 84.09
Validation set AUC (95% CI) Sen (%) Spe (%) Acc (%)
Clin-Lab Model  0.860 (0.789-0.931) 80.65 76.56 72.63
PET-Rad Model  0.740 (0.639-0.840) 83.87 75.00 66.32
CT-Rad Model ~ 0.710 (0.606-0.815) 70.97 60.94 68.42
Combined Model 0.901 (0.840-0.957) 93.55 81.25 85.95

Clin-Lab Clinical-Laboratory, PET-Rad positron emission tomography-
radiomics, C7-Rad computed tomography-radiomics, AUC area under
the receiver operating curve, C/ confidence interval, Sen sensitivity, Spe
specificity, Acc accuracy
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Fig. 6 Decision curve analysis
(DCA) of prediction models in

training set. The X-axis repre- g 7
sented the threshold probability
that was where the expected ben-
efit of treatment was equal to the & ; —
expected benefit of avoiding 2
treatment. The Y-axis represented § —— Clin-Lab Model
the net benefit. The gray and QO ~ |
. Z S PET-Rad Model
black l.me represented the h){- —— CT-Rad Model
pothesis that all NSCLC patients —— Combined Model
were ADC and SCC, respectively o All
S| — None
I I I I I 1
0.0 0.2 0.4 0.6 0.8 1.0
High Risk Threshold
[ T T T T 1
1:100 1:4 23 32 4:1 100:1

Cost:Benefit Ratio

through medical images for some patients who are not  p <0.05). The high ability to reproduce and validate radiomic
eligible for biopsy. studies is vital to generating sufficient and convincing scien-
In addition, since radiomic extracts information from the tific evidence for translating potential applications into clinical
tumor, an appropriate tumor segmentation algorithm is impor-  practice [33, 36].
tant for measuring tumor image parameters [35]. Ideally, the This study also explored whether the prediction perfor-
chosen segmentation method is both accurate and robust. = mance based on radiomics could be further improved by com-
Bashir et al. had compared various segmentation algorithms  bining with clinical factors and tumor marker levels. The
(frechand, 40% of maximum intensity threshold, and fuzzy =~ Combined Model established in the present study not only
locally adaptive Bayesian algorithms) in terms of inter-  significantly improved the prediction efficiency for subtype
observer reproducibility and prognostic capability of texture ~ compared to these factors alone in both the training and vali-
parameters derived from NSCLC '8F-FDG PET/CT images  dation sets (AUCs =0.932 (training set), 0.901 (validation
[21]. They found that the models generated by all three seg-  set), respectively) but also had higher performance than pre-
mentation algorithms were of at least equivalent utility.  vious researches [14—17]. This discrepancy may be related to
Moreover, segmentation with 40% of maximum threshold  the complete and standard preoperative baseline data and post-
leads to the best reproducibility of image biomarkers when  operative pathological reports from a single center, as well as
used by different observers. In this study, the agreements of  the appropriate algorithm [37]. The results of this study con-
the radiomic feature extraction using semiautomatic  firm the hypothesis and indicate that the heterogeneity of tu-

threshold-based methods were excellent (all ICCs>0.85,  mors can be evaluated more comprehensively by combining
. 0 10 20 30 40 50 60 70 80 90 100
Points L 1 1 1 H i ! L 1 1 J
Sex female
male
SCCA.ng.mL . v T T T T v T v T T T T T .
70 65 60 55 50 45 40 35 30 25 20 15 10 5 0
CYFRA21.1.ng.mL
180120 60 0
Size.cm T
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Fig. 7 Developed the prediction nomogram based on Combined Model After adding up the corresponding prediction probability at the bottom of
in training set. The probability of each predictor could be converted into the nomogram was the risk of ADC
scores according to the first scale “Points” at the top of the nomogram.
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Fig. 8 Calibration curves of nomogram in training (a) and validation (b)
sets, respectively. The X-axis represented the predicted probability
estimated by nomogram, whereas the Y-axis represented the actual
observed rates. The solid line represented the ideal reference line that
predicted NSCLC subtypes corresponds to the actual outcome, the

with multiscale characteristics of tumors, consistent with the
report [38].

In addition, we generated an integrated nomogram on the
basis of the Combined Model for facilitating its use in clinical
practice. Clinical factors such as patient’s sex and age are re-
corded routinely at hospital admission. Moreover, we strongly
recommend that serum tumor marker levels should be evaluat-
ed in patients who are highly suspected of having NSCLC or
initially diagnosed with NSCLC, especially SCCA,
CYFRAZ21-1. Both physicians and patients could perform a
preoperative individualized prediction of the risk of ADC with
this easy-to-use scoring tool, which can provide a noninvasive
and accurate approach for patients who are unwilling or unable
to undergo biopsy to develop more reasonable and effective
treatment plans, especially the need of targeted therapy [39].
The DCA showed that if the threshold probability of a patient
or doctor is > 10%, using this nomogram to predict the subtype
adds more benefit than either the treat-all-patients as SCC or the
treat-all-patients as ADC, which is more valuable for the cur-
rent trend toward personalized medicine [40].

Although the results were encouraging, the present study
had several limitations. Firstly, the sample selection was biased
in this single-center retrospective study, and a new multicenter
prospective study is still necessary to be designed for the further
evaluation and verification of the generalization ability of the
models. Secondly, some NSCLC patients, especially ADC pa-
tients, were excluded from the radiomic analysis due to the faint
"E_FDG uptake or small tumor size to ensure the quality of
images and textural data. Small lesions are easier to be discov-
ered in the early stage with the increasing use of imaging
screening for lung cancer. Thus, a more sensitive tool that
adaptively detects small tumors will be an important direction
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short-dashed line represented the apparent prediction of nomogram, and
the long-dashed line represented the ideal estimation. Calibration curves
showed the actual probability corresponded closely to the prediction of
nomogram

for future work. Finally, the patients with non-primary lung
lesions were also excluded due to the purpose of this study.
Noticeably that both primary and metastatic pulmonary nod-
ules are very important for patients and clinical settings in the
cancer center. The prediction model that widely used for lung
lesions will be continually explored in future studies.

In conclusion, an integrated nomogram was constructed
and validated in our study, which could provide a relatively
accurate, convenient, and noninvasive method for the individ-
ualized discrimination between ADC and SCC in NSCLC
patients, assisting in clinical decision making for precision
treatment.
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