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Abstract

Purpose The standardized uptake value (SUV) is widely used for quantitative evaluation in oncological FDG-PET but has
well-known shortcomings as a measure of the tumor’s glucose consumption. The standard uptake ratio (SUR) of tumor SUV
and arterial blood SUV (BSUV) possesses an increased prognostic value but requires image-based BSUV determination,
typically in the aortic lumen. However, accurate manual ROI delineation requires care and imposes an additional workload,
which makes the SUR approach less attractive for clinical routine. The goal of the present work was the development of a
fully automated method for BSUV determination in whole-body PET/CT.

Methods Automatic delineation of the aortic lumen was performed with a convolutional neural network (CNN), using the U-
Net architecture. A total of 946 FDG PET/CT scans from several sites were used for network training (N = 366) and testing
(N = 580). For all scans, the aortic lumen was manually delineated, avoiding areas affected by motion-induced attenuation
artifacts or potential spillover from adjacent FDG-avid regions. Performance of the network was assessed using the fractional
deviations of automatically and manually derived BSUVs in the test data.

Results The trained U-Net yields BSUVs in close agreement with those obtained from manual delineation. Comparison of
manually and automatically derived BSUVs shows excellent concordance: the mean relative BSUV difference was (mean
4+ SD) = (- 0.5 & 2.2)% with a 95% confidence interval of [—5.1, 3.8]% and a total range of [—10.0, 12.0]%. For four test
cases, the derived ROIs were unusable (<1 ml).

Conclusion CNNs are capable of performing robust automatic image-based BSUV determination. Integrating automatic
BSUYV derivation into PET data processing workflows will significantly facilitate SUR computation without increasing the
workload in the clinical setting.

Keywords FDG-PET - Standardized uptake value - SUV - Standardized uptake ratio - SUR - Convolutional neural network

Introduction oncological FDG-PET and assumed to be a reasonable
surrogate for the metabolic rate of FDG and, ultimately, for
tumor glucose consumption. However, the SUV falls short
of closely reflecting the latter quantities due to a number
of well-known shortcomings. Among these are a notable

uptake time dependence, interstudy variability of the arterial

The standardized uptake value (SUV) is currently still the
de facto standard for quantitative evaluation in clinical
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input function, and susceptibility to scanner calibration
errors [1-3]. Recently, it was shown that the uptake time
normalized tumor to blood SUV ratio (standardized uptake
ratio, SUR) essentially removes most of these shortcomings
which leads to a distinctly improved correlation of this
modified uptake measure with the metabolic uptake rate [4—
6]. This in turn leads to improved test-retest stability [7] and
significantly better prognostic value compared with tumor
SUV [8-11].
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From a clinical perspective, however, widespread use of
SUR is hampered by the fact that its calculation requires
knowledge of the image-based blood SUV (BSUV). So
far, this value is typically derived from a region-of-
interest (ROI) located within the aortic lumen that is
manually delineated in the CT image volume of the given
PET/CT data while observing crucial constraints such as
the necessity to avoid the vicinity of high tracer uptake
areas that could induce spillover into the aorta ROI when
finally evaluated in the PET data for BSUV determination.
This manual ROI delineation requires care and time, thus
imposing an additional workload on the clinician. So far,
this makes the SUR approach less attractive for clinical
routine than the easier to use SUV approach. This situation
will only change if the BSUV determination can be
automated. We have addressed this issue in the present
work.

The task at hand is obviously related to (but distinct
from) the similar task of automatic delineation of the whole
thoracic aorta in non-contrast-enhanced CT which is a topic
that is covered quite extensively in the literature. Traditional
approaches to the latter problem exploit the roundness of
the aortic cross-section and employ the Hough transform to
detect circular shapes in the images [12, 13], utilize labeled
multi-atlases [14], or rely on pre-computed anatomy label
maps to assist cylinder tracking of the aorta [15]. The major
drawback of these methods is their heavy reliance on the
used assumptions about aorta position and shape. Therefore,
any deviation from these assumptions caused by anatomical
abnormalities, implants, or image artifacts can compromise
the quality of the results.

Another approach to the aorta delineation problem takes
advantage of recent developments in deep learning methods
for medical image segmentation. Utilization of convolu-
tional neural networks (CNN) of various architectures—
such as 2D and 3D fully convolutional networks [16, 17] and
U-Net [18]—Ileads to state-of-the-art results for the given
task. Hybrid approaches have also been described, e.g., the
CNN-guided Hough transform-based delineation algorithm
[19]. Finally, it was shown [18] that utilization of multiple
modalities (e.g., CT and MRI) for fused image segmentation
might improve training speed and prediction accuracy.

It is important to realize that automated BSUV deter-
mination is not solvable by resorting to existing solutions
for CT-only whole-aorta delineation. Specific complications
are caused by the inferior spatial and temporal resolution
of PET in comparison with CT which can cause substan-
tial partial volume and spillover effects as well as motion
artifacts. This would invalidate BSUVs derived from full
aorta delineations obtained with established techniques. For
these reasons, a dedicated algorithm is necessary, taking into
account the full PET/CT data set.
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There are three specific constraints that have to be
observed during delineation (either manually or algorithmi-
cally). First, the delineation needs to be restricted to the
central region of the aortic lumen in order to rule out partial
volume effects (spill out) that would reduce the measured
BSUV. Second, the vicinity of highly FDG-avid regions
(such as tumor lesions) must be excluded from the delin-
eation in order to prevent any (even fractionally small) spill
in from those regions. Third, the delineation has to avoid
areas affected by breathing-induced motion and mismatch
between PET and CT that easily can cause attenuation
artifacts in abdominal regions.

In this work, we present results obtained with a
CNN trained on combined PET/CT data according to
the abovementioned requirements and used for automated
BSUYV determination in a test cohort.

Methods
Patients and data acquisition

Altogether, 946 whole-body '8F-FDG PET/CTs of 685
patients (445 men, 165 women, 75 unspecified, age 6418
years) with different tumor diseases (323 lung cancer, 374
esophageal cancer, 249 other) were included. Data acquisi-
tion started 76 £ 35 min after injection of 305 + 66 MBq
BE_FDG. 781 out of these 946 scans were contributed
by the four clinical sites collaborating in the present
study (Germany: Berlin (N =156), Dresden (N =216),
Magdeburg (N =119); China: Xiamen (N =290)) using
their respective PET/CT systems: Biograph 16 and Bio-
graph mCT 64 (Siemens Medical Solutions, Knoxville, TN,
USA), Gemini-TF (Philips Healthcare, Best, The Nether-
lands), and Discovery STE (GE Medical Systems, Milwau-
kee, WI, USA).

In addition, data from two prospective multicenter trials
conducted by the American College of Radiology Imaging
Network (ACRIN 6678, now the ECOG-ACRIN Cancer
Research Group, N =67) and by Merck & Co Inc. (MK-
0646-008, shared with ACRIN, N =80) were included.
Details on patient groups and PET imaging in these tri-
als can be found in [20]. Furthermore, 18 patients from
four Canadian institutions available on the cancer imag-
ing archive (https://wiki.cancerimagingarchive.net) were
included [21, 22].

Ground truth definition
For all 946 datasets, manual delineation of ROIs for BSUV

determination within the aortic lumen was performed by
an experienced observer (F.H.) who participated in a
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recent study addressing the interobserver variability of
manual BSUV determination [23]. Compared with the latter
investigation, delineation was extended to the ascending
thoracic aorta as well, otherwise the delineation strategy was
identical:

— Both the ascending and descending thoracic aorta were
delineated.

— A distance of approximately 8 mm between ROI
boundary and aortic wall was required.

— Transaxial planes containing highly FDG-avid struc-
tures in close vicinity to the aorta were excluded.

— Aortic arch and abdominal aorta were excluded to avoid
motion-induced artifacts.

This strategy ensures avoidance of potentially serious bias
in derived BSUV values due to partial volume effects
(spill out of aorta signal as well as spill in from the
neighbourhood) and motion-induced attenuation artifacts.
See the Supplementary Materials for examples of how
these effects would otherwise compromise accurate BSUV
determination.

Data preprocessing, network architecture, and
training procedure

The image data processed by the convolutional neural
network were prepared as follows. First, PET and CT
were resampled to a common voxel grid. For transaxial
resampling, the transaxial (x/y) voxel dimensions were
set to 2.73 x 2.73 mm in order to reduce the image
size (and computational burden during training) while
maintaining sufficient spatial sampling and object coverage
for the task at hand even after subsequent cropping. The
axial (z) voxel dimension was defined by the respective
CT data and the corresponding PET data where axially
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Fig. 1 Architecture of the utilized CNN. Numbers above and beside
each block designate number of feature channels and matrix size at
the given state, respectively. The images on the left are exemplary CT
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resampled accordingly. After resampling, the image data
were transaxially cropped to the central 128 x 128
voxels (corresponding to a transaxial field of view of
approximately 35 x 35cm) in order to further reduce
computational burden, especially during training. Finally,
all transaxial images were separately normalized such that
voxel intensities remain within the [0, 1] range. An example
of typical resulting PET, CT, and label images is shown in
Fig. 1.

The available 946 datasets were split into non-overlapping
training (N = 293), validation (N = 73), and evaluation sub-
sets (N =580). The training subset was used for optimi-
zation of the network model parameters while the valida-
tion subset was used for monitoring the training process
and selection of the best performing model. The evaluation
subset was used for assessing the trained network’s perfor-
mance. Notably, the ACRIN 6678 and Canadian datasets
were completely included in the evaluation subset (i.e.,
completely excluded from the training data). These data
were used to investigate potential performance differences
when the trained network is applied to data with character-
istics potentially different from those used in the training
process.

In this work, we employed a modified U-Net architecture
[24] as shown in Fig. 1. The network consists of encoder
and decoder paths and skip connections which transfer the
feature maps from the encoder to the decoder (copy and
concatenate). In our implementation, we use 3 x 3 zero-
padded convolutions followed by batch-normalization and
ReLU activation layers. A 2 x 2 max-pooling with stride 2
was used for downsampling and 3 x 3 deconvolution was
employed for upsampling. Each downsampling operation
is accompanied by a factor of two increase in the feature
channel number while upsampling decreases this number
by the same factor. We found it sufficient to use 32 output
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Concatenation

(top) and PET (bottom) images (input) and the image on the right
is the corresponding output image (probability map of aorta lumen
membership)
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feature channels in the first convolution and to perform
a total of 3 downsampling and upsampling operations,
respectively.

The network was implemented and trained with the
Apache MXNet (version 1.5.1) package for the R lan-
guage and environment for statistical com-
puting (version 3.6.3). The training was performed with
RMSprop optimizer (learning rate = 0.001, mini-batch
size = 64) for 250 epochs. The logistic loss function was
optimized in the training. The training process was mon-
itored with a dedicated metric designed to estimate the
mean plane-wise BSUV error as follows. For each PET
image i, the averages BSUV! ,, and BSUV"CNN Over man-
ual and CNN ROI delineation are computed. For images
where either of these two delineations is missing (unla-
beled in the test data or not delineated by network), the
respective mean BSUV in the given batch is used instead
(if both delineations are missing the respective image is
skipped). Finally, the absolute relative BSUV differences,
}(BSUVENN—BSUanan) / BSUV/ .|, are averaged within
and over the batches to yield the final score. The model
which achieved the lowest score on the validation dataset
was considered the optimally trained network. In order to
prevent fast overfitting, data augmentation in the form of
non-rigid warp transforms was applied during the training.

The values of the hyperparameters were selected among
other possible choices as offering the highest BSUV
concordance and smallest number of failed delineations
(yielding ROI volumes < 1ml). Also, the chosen U-
Net architecture outperformed the dilated CNN [25, 26].
Especially, the latter architecture caused larger BSUV
deviations in test data from sites not contributing to the
training dataset and was therefore discarded.

Model evaluation

For each study in the evaluation dataset, a probability
map for ROI membership of the individual voxels was
generated with the trained network model. ROIs were

derived from the probability maps by applying a threshold
of 0.5. If the resulting ROI volume was <I1ml, the
delineation was considered unusable. For the remaining
ROIs (and the corresponding manual delineations), BSUVs
were determined as ROI averages using the ROVER software
(version 3.0.51; ABX GmbH, Radeberg, Germany). We
quantify the relative difference of both BSUV predictions
according to:
BSUVcenn — BSUVian

ABSUV = )
BSUVman

ey

where BSUV an and BSUV NN are manually and automat-
ically derived BSUV values, respectively.

Results

Training of the network was performed on a dual-socket
CPU computational node (2 x 14 cores Intel Xeon ES5-
2690 v4, 392 GB RAM). Total training time using
our training (N =60190 image planes) and validation
(N = 14525 image planes) PET/CT datasets amounted to
about 80 h for the finally selected network architecture.
Processing time for a single PET/CT dataset using the
trained network amounted to about 4 s on 8 CPU cores.
Figure 2 provides an exemplary visual comparison of
the automatically and manually delineated ROIs for two
typical test cases of patients suffering, respectively, from
esophageal and lung cancers. In both cases, malignant
lesions exhibiting high FDG uptake in the PET images
are located adjacent to the aortic wall. As can be seen,
the trained network is capable of mimicking rather closely
the decision of the human observer to exclude these areas
as well as the potentially breathing motion-affected region
near and below the diaphragm from the aorta lumen
ROIL. Consequently, the manually and automatically derived
BSUVs are virtually identical in these two examples.
Figure 3 shows an untypical test case (from a patient with
pleural effusion and atelectasis in the left lung and ectasia
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Fig. 2 Comparison of manual and CNN-based aortic lumen delin-
eation for two patients with a lung cancer (coronal view) and b
esophageal cancer (sagittal view). CT (top) and corresponding PET
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(bottom) images are overlaid by the respective delineations (shown
in red). Note that the CNN excludes the vicinity of the lesions from
delineation in a way similar to the human observer



Eur J Nucl Med Mol Imaging (2021) 48:995-1004

el
O

9

Fig.3 Comparison of manual
and CNN-based aortic lumen
delineation for a patient with
pleural effusion, atelectasis of
the left lung and ectasia of the
ascending aorta. Coronal CT
(top) and corresponding PET
(bottom) images are overlaid by
the respective delineations
(shown in red). Note that the
CNN struggles to fully identify

1000

the aortic lumen for this
untypical test case, resulting in a
distinctly smaller volume of the
resulting ROI than is the case
with manual delineation
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BSUV = 1.33
SuvV
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of the ascending aorta) that is not adequately represented
in the training data. As can be seen, the CT image is
heavily altered, accordingly. While the human observer can
abstract from these confounding image characteristics and
define a ROI similar to other, more typical test cases, the
network yields a distinctly smaller number of voxels in
the generated probability map that exceed the chosen 0.5
threshold. Consequently, the resulting ROI has only a rather
small volume of 1.65 ml near the chosen limit of 1 ml below
which delineation would have been considered a failure.
Despite the significant deviation of the network’s ROI from
the manual delineation in this case, the resulting BSUV
difference remains modest (ABSUV= —2.6%) reflecting
the fact that both ROIs still can be considered acceptable
choices regarding the BSUV determination task.
Considering the pooled results for all test cases, the
observed frequency distribution of relative differences
between manual and automatic BSUV determination is
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shown in Fig. 4. Corresponding summary statistics are
provided in Table 1 and the related frequency distribution
of Dice coefficients is shown in Fig. 5. As can be seen,
differences between manual and automatic BSUV never
exceeded 15% and the 95% confidence interval of observed
differences stays within (047)%. There is a notable
tendency for somewhat larger deviations for test cases from
sites that were completely excluded from contributing to
the training and validation data: all cases exceeding 10%
deviation are found in this subset. Nevertheless, the effect
size is only modest.

Discussion

The present proof-of-concept study demonstrates that a
suitable convolutional neural network, trained on combined
PET/CT data, does allow fully automated image-based
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Fig.4 ABSUYV histograms for the evaluation datasets. Results for sites selected to contribute to the training dataset (left) are shown separately
from those which were not (middle). Pooled results (right) represent the data from all participating sites
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Table 1 Evaluation results. The results for data from sites included and sites not included in the training set are shown separately

Site contributing Sample size Failed (< 1 ml) ABSUV (%)
to training data

Mean + SD 95% C1 Range
Yes 415 —04+1.7 [—4.1,2.8] [—8.3,9.7]
No 165 —-0.8+3.0 [—6.7,6.1] [—10.0, 12.0]
Pooled 580 —-05+22 [—5.1,3.8] [—10.0, 12.0]

BSUV determination with a performance that is overall
comparable with that of a typical experienced human
observer. This assessment follows from the fact that the
trained network achieves concordance with the given human
observer (that also defined the ground truth delineation used
for network training) at a level that is comparable with the
concordance achieved between different human observers.
It is important to realize in this context that the
delineation’s objective, as outlined in the Methods section,
is somewhat less precisely defined than e.g. delineation of
the aortic wall or the full aortic lumen since the focus is on
accurate and reproducible BSUV determination rather than
on exact delineation of a well-defined anatomical structure.
Moreover, the criterion used for optimal network selection
is chosen in such a way as to optimize concordance of
derived BSUVs rather than to achieve optimal geometrical
concordance of the resulting ROI delineations. Both factors
combined explain the modest Dice coefficients observed in
the present study (around 0.6-0.7, see Fig. 5) which are
distinctly smaller than what is achievable with networks
optimized for classical organ segmentation tasks. This is
also in accord with the observation that there is only
a rather weak negative correlation (r = —0.45) between
achieved Dice coefficient and |[ABSUV|, demonstrating the
intuitively obvious fact that similar BSUV values can be

obtained from somewhat differing ROI delineations within
the given aortic lumen (see Fig. 3).

The residual delineation ambiguities inherent in the given
task are also reflected in the results of a recent study
comparing interobserver variability of manual aorta lumen
delineation and BSUV determination: the results shown
in Table 2 of [23] might be compared with the results
of the present investigation as summarized in Table 1. In
the former work, ABSUV, represents the interobserver
variability of BSUV determination within a group of
8 experienced observers using the observer-averaged
BSUV for each patient as the ground truth. The results
reported there (SD = 2.77%, 95%CI = [—5.87,5.50]%,
range = [—10.6, 10.8]%) rather closely compare with the
corresponding pooled results in Table 1.

This situation might be paraphrased in this way: for
the given task, the interobserver variability of image-based
BSUV determination in a group of experienced human
observers is very similar to the deviations observed in the
present study between the automated observer (the trained
CNN) and the human observer which defined the ground
truth used for training of the CNN (and which also took part
in the mentioned interobserver study). In this sense, it can
be stated that the automated observer performs comparable
with a representative experienced human observer.
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Fig. 5 Dice coefficient histograms for the evaluation datasets. Results for sites selected to contribute to the training dataset (left) are shown
separately from those which were not (middle). Pooled results (right) represent the data from all participating sites
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This statement holds true even if closer inspection of
Table 1 demonstrates that agreement between CNN and
human observer is somewhat reduced in the subset of test
data from sites that did not contribute any training data
(which thus are different regarding details of imaging
protocols, image quality, and spatial resolution of both PET
and CT). In comparison with the other subset (test data from
sites also contributing training data), standard deviation
of ABSUV increases from 1.7 to 3.0% and the 95%
confidence interval from about +4 to +7%. Nevertheless,
the level of agreement between CNN and human observer
is completely sufficient in both subsets keeping in mind that
the ultimate objective of BSUV determination is its use in
SUR computation in order to account for inter-patient BSUV
variability which is characterized by a typical standard
deviation of about 16% [9, 23, 27]. It is also worth to re-
emphasize that the spurious patient-dependent BSUV bias
which would be introduced by a solely CT-based anatomical
whole-aorta delineation (be it algorithmically or manually)
would be of the same order of magnitude as the actual inter-
patient BSUV variability and, therefore, such an approach
would be completely unsuitable for the task at hand (also
see the examples provided in Supplementary Materials).

Regarding usefulness for actual application in a clinical
research setting (or even in clinical routine), it is especially
important that the trained network is able to reliably
mimic the human observer regarding omission of certain
areas from the delineation that could otherwise lead to
serious errors in BSUV determination. Notably, the good
performance of our model is tightly related to its ability
to exclude the vicinity of FDG-avid regions from the
delineation as illustrated in Fig. 2. Depending on considered
tumor entity, such cases can make up a sizable fraction of
all investigated patients. The ability to handle these cases
correctly is achieved by utilizing combined PET/CT data
rather than CT data alone for training despite the fact that
the anatomical information regarding location of the aortic
lumen is mostly provided by the CT data. Indeed, while
training based on the CT data alone—keeping the objective
to exclude regions excluded by the human observer based
on consideration of the PET data—is possible (since many
FDG-avid tumors also are identifiable in the CT data),
the resulting networks perform inferior (data not shown)
to the one trained on the combined PET/CT images: the
PET information clearly is not redundant as far as optimal
training of the network is concerned.

Manifest failure of the automatic BSUV determination
(signaled by ROI volumes below 1ml) was observed in
only 4 out of 580 test datasets. A closer look at these
4 cases reveals that all of them are associated with
significant anatomic abnormalities affecting size, shape, and
appearance of one or both lungs and/or location and shape
of the aorta. Reliable handling of such unusual cases by

the network would require their adequate representation
in the training data which, given their rare occurrence,
would require to increase the total size of the training data
set substantially in order to represent the extreme margins
of anatomical variability in sufficiently large numbers.
However, a failure rate of <0.7% (and the concomitant
rare necessity for human intervention and handling of these
cases) seems already quite acceptable for use of such a
network for BSUV determination in a clinical context.

The current work has some obvious limitations. First
of all, the number of studies (N =293) and, consequently,
the number of separate 2D image slices used for network
training (N = 60190) are comparatively small considering
the typical demands of deep learning applications. This is
a common problem of utilizing deep learning techniques
for delineation tasks in tomographic medical imaging,
since manual labeling of volumetric image data is a
very time-consuming process. However, as many previous
investigations were able to demonstrate, it is possible to
achieve impressive results with limited numbers of training
datasets if proper approaches to diminish the data scarcity
effects are used [28, 29]. In our work, we employed data
augmentation via non-rigid image deformations and over-
fitting control using the validation dataset to minimize
the consequences of limited training data. Nevertheless,
it definitely would be desirable to successively augment
the training dataset and to retrain the network. This might
especially help to further reduce the fraction of failed
delineations to negligible levels and also to reduce the
magnitude of the maximally observed deviations between
network and human observer which currently still are
somewhat larger (although not critically so) than those
between two human observers.

Another principal issue is the quality of the ground
truth, i.e., the aorta lumen delineations provided in the
training data. These were performed by a single experienced
observer which introduces a certain level of subjectivity.
The modest extent of this subjectivity and case-to-case
variability is characterized in the mentioned interobserver
study [23]. It would nevertheless have been desirable
to train the network based on delineations performed by
multiple observers but this was not doable considering the
given time resources for the present study.

The presented network model, therefore, can not be
expected to provide objectively optimal results (which in
the present context would mean to act as the average
of many experienced human observers). Rather, the model
is trained to mimic the single human observer that defined
the training data delineations and served as reference in
the evaluation data as well. In view of the actually quite
small interobserver variability demonstrated in [23] this
is, however, not a relevant shortcoming in our opinion.
Nevertheless, our approach will have to prove its viability
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in dedicated future studies to demonstrate that superior
prognostic value of SUR in comparison with SUV is
maintained even if SUR computation is utilizing automated
BSUYV determination as proposed in the present work.

Conclusion

CNNSs are capable of performing robust automatic image-
based BSUV determination. The U-Net model used in this
work performs comparable with an experienced human
observer. Integrating automatic BSUV determination into
PET data processing workflows will significantly facilitate
SUR computation and might allow its use as a superior
drop-in replacement for SUV-based quantitation without
increasing the workload in the clinical setting.
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