Skip to main content
Log in

Impact of forced diuresis with furosemide and hydration on the halo artefact and intensity of tracer accumulation in the urinary bladder and kidneys on [68Ga]Ga-PSMA-11-PET/CT in the evaluation of prostate cancer patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

to assess the influence of intravenous hydration and forced diuresis with furosemide in two different dosages (20 vs 40 mg) on the intensity of tracer accumulation in the urinary collection system and on the occurrence of halo artefact surrounding the urinary bladder and kidneys in [68Ga]Ga-PSMA-11-PET/CT scans.

Materials and methods

Comparison of four groups with 50 patients each, receiving different preparation prior to [68Ga]Ga-PSMA-11-PET/CT. Group one, no preparation. Group two, 500 ml sodium chloride administered immediately after tracer injection. Group three, 500 ml sodium chloride and injection of 20 mg furosemide immediately after tracer administration. Group four, 500 ml sodium chloride and injection of 40 mg furosemide immediately after tracer injection. Images were judged visually whether halo artefact was present; semiquantitative measurements were performed with standardised uptake value (SUV).

Results

Halo artefact of the urinary bladder was present in twelve patients without preparation, in eight patients receiving only sodium chloride, in one patient injected with 20 mg furosemide/sodium chloride and in two patients receiving 40 mg furosemide/sodium chloride, showing a median SUVmean in the bladder of 45.8, 14.4, 4.6 and 5.8, respectively. Differences between patient group without preparation and the two groups with furosemide/sodium chloride were statistically significant. Patient groups receiving 20 mg furosemide and 40 mg furosemide did not differ significantly. Renal halo artefacts were observed in 15 patients of group one, in ten patients of group two, in 14 patients of group three and in 14 patients of group four, with corresponding median SUVmean values of 33.9, 32.0, 37.8 and 30.4 (no statistically significant differences).

Conclusion

Performing [68Ga]Ga-PSMA-11-PET/CT, intravenous injection of 20-mg furosemide and 500-ml sodium chloride significantly reduces the number of bladder halo artefacts and intensity of tracer accumulation in the urinary bladder. A total of 40 mg furosemide does not further improve results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Afshar-Oromieh A, Holland-Letz T, Giesel FL, Kratochwil C, Mier W, Haufe S, et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging. 2017;44:1258–68. https://doi.org/10.1007/s00259-017-3711-7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Caroli P, Sandler I, Matteucci F, De Giorgi U, Uccelli L, Celli M, et al. 68Ga-PSMA PET/CT in patients with recurrent prostate cancer after radical treatment: prospective results in 314 patients. Eur J Nucl Med Mol Imaging. 2018;45:2035–44. https://doi.org/10.1007/s00259-018-4067-3.

    Article  CAS  PubMed  Google Scholar 

  3. Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 2019;5:856–63. https://doi.org/10.1001/jamaoncol.2019.0096.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Virgolini I, Decristoforo C, Haug A, Fanti S, Uprimny C. Current status of theranostics in prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45:471–95. https://doi.org/10.1007/s00259-017-3882-2.

    Article  PubMed  Google Scholar 

  5. Uprimny C. Ga-PSMA-11 PET/CT: the rising star of nuclear medicine in prostate cancer imaging? Wien Med Wochenschr. 2019;169:3–11. https://doi.org/10.1007/s10354-017-0569-z.

    Article  PubMed  Google Scholar 

  6. Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, et al. Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2017;44:1014–24. https://doi.org/10.1007/s00259-017-3670-z.

    Article  PubMed  Google Scholar 

  7. Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95. https://doi.org/10.1007/s00259-012-2298-2.

    Article  CAS  PubMed  Google Scholar 

  8. Fanti S, Minozzi S, Morigi JJ, Giesel F, Ceci F, Uprimny C, et al. Development of standardized image interpretation for 68Ga-PSMA PET/CT to detect prostate cancer recurrent lesions. Eur J Nucl Med Mol Imaging. 2017;44:1622–35. https://doi.org/10.1007/s00259-017-3725-1.

    Article  CAS  PubMed  Google Scholar 

  9. Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging. 2014;41:887–97. https://doi.org/10.1007/s00259-013-2660-z.

    Article  CAS  PubMed  Google Scholar 

  10. Hofman MS, Hicks RJ, Maurer T, Eiber M. Prostate-specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. Radiographics. 2018;38:200–17. https://doi.org/10.1148/rg.2018170108.

    Article  PubMed  Google Scholar 

  11. Freitag MT, Radtke JP, Afshar-Oromieh A, Roethke MC, Hadaschik BA, Gleave M, et al. Local recurrence of prostate cancer after radical prostatectomy is at risk to be missed in 68Ga-PSMA-11-PET of PET/CT and PET/MRI: comparison with mpMRI integrated in simultaneous PET/MRI. Eur J Nucl Med Mol Imaging. 2017;44:776–87. https://doi.org/10.1007/s00259-016-3594-z.

    Article  CAS  PubMed  Google Scholar 

  12. Giesel FL, Will L, Lawal I, Lengana T, Kratochwil C, Vorster M, et al. Intraindividual comparison of 68Ga-PSMA-11-PET/CT and multiparametric MR for imaging of primary prostate cancer. J Nucl Med. 2018;59:1076–80. https://doi.org/10.2967/jnumed.117.204669.

    Article  CAS  PubMed  Google Scholar 

  13. Uprimny C, Kroiss AS, Fritz J, Decristoforo C, Kendler D, von Guggenberg E, et al. Early PET imaging with [68]Ga-PSMA-11 increases the detection rate of local recurrence in prostate cancer patients with biochemical recurrence. Eur J Nucl Med Mol Imaging. 2017;44:1647–55. https://doi.org/10.1007/s00259-017-3743-z.

    Article  CAS  PubMed  Google Scholar 

  14. Heußer T, Mann P, Rank CM, Schäfer M, Dimitrakopoulou-Strauss A, Schlemmer HP, et al. Investigation of the halo-artifact in 68Ga-PSMA-11-PET/MRI. PLoS One. 2017;12:e0183329. https://doi.org/10.1371/journal.pone.0183329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wangerin KA, Baratto L, Khalighi MM, Hope TA, Gulaka PK, Deller TW, et al. Clinical evaluation of 68Ga-PSMA-11 and 68Ga-RM2 PET images reconstructed with an improved scatter correction algorithm. AJR Am J Roentgenol. 2018;211:655–60. https://doi.org/10.2214/AJR.17.19356.

    Article  PubMed  Google Scholar 

  16. Lawhn-Heath C, Flavell RR, Korenchan DE, Deller T, Lake S, Carroll PR, et al. Scatter artifact with Ga-68-PSMA-11 PET: severity reduced with furosemide diuresis and improved scatter correction. Mol Imaging. 2018;17:1536012118811741. https://doi.org/10.1177/1536012118811741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prasad V, Steffen IG, Diederichs G, Makowski MR, Wust P, Brenner W. Biodistribution of [(68)Ga]PSMA-HBED-CC in patients with prostate cancer: characterization of uptake in normal organs and tumour lesions. Mol Imaging Biol. 2016;18:428–36. https://doi.org/10.1007/s11307-016-0945-x.

    Article  CAS  PubMed  Google Scholar 

  18. Afshar-Oromieh A, Wolf M, Haberkorn U, Kachelrieß M, Gnirs R, Kopka K, et al. Effects of arm truncation on the appearance of the halo artifact in. Eur J Nucl Med Mol Imaging. 2017;44:1636–46. https://doi.org/10.1007/s00259-017-3718-0.

    Article  CAS  PubMed  Google Scholar 

  19. Fennessy N, Lee J, Shin J, Ho B, Ali SA, Paschkewitz R, et al. Frusemide aids diagnostic interpretation of 68Ga-PSMA positron emission tomography/CT in men with prostate cancer. J Med Imaging Radiat Oncol. 2017;61:739–44. https://doi.org/10.1111/1754-9485.12625.

    Article  PubMed  Google Scholar 

  20. Haupt F, Dijkstra L, Alberts I, Sachpekidis C, Fech V, Boxler S, et al. Ga-PSMA-11 PET/CT in patients with recurrent prostate cancer-a modified protocol compared with the common protocol. Eur J Nucl Med Mol Imaging. 2020;47:624–31. https://doi.org/10.1007/s00259-019-04548-5.

    Article  CAS  PubMed  Google Scholar 

  21. Afshar-Oromieh A, Sattler LP, Mier W, Hadaschik BA, Debus J, Holland-Letz T, et al. The clinical impact of additional late PET/CT imaging with 68Ga-PSMA-11 (HBED-CC) in the diagnosis of prostate cancer. J Nucl Med. 2017;58:750–5. https://doi.org/10.2967/jnumed.116.183483.

    Article  CAS  PubMed  Google Scholar 

  22. Derlin T, Weiberg D, von Klot C, Wester HJ, Henkenberens C, Ross TL, et al. Ga-PSMA I&T PET/CT for assessment of prostate cancer: evaluation of image quality after forced diuresis and delayed imaging. Eur Radiol. 2016;26:4345–53. https://doi.org/10.1007/s00330-016-4308-4.

    Article  PubMed  Google Scholar 

  23. Perveen G, Arora G, Damle NA, Prabhu M, Arora S, Tripathi M, et al. Can early dynamic positron emission tomography/computed tomography obviate the need for postdiuresis image in 68Ga-PSMA-HBED-CC scan for evaluation of prostate adenocarcinoma? Indian J Nucl Med. 2018;33:202–8. https://doi.org/10.4103/ijnm.IJNM_32_18.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Uprimny C, Kroiss AS, Decristoforo C, Fritz J, von Guggenberg E, Kendler D, et al. Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging. 2017;44:941–9. https://doi.org/10.1007/s00259-017-3631-6.

    Article  CAS  PubMed  Google Scholar 

  25. Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47:583–621. https://doi.org/10.1080/01621459.1952.10483441.

    Article  Google Scholar 

  26. Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964;6:241–52. https://doi.org/10.1080/00401706.1964.10490181.

    Article  Google Scholar 

  27. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.

    Google Scholar 

  28. Scheirer CJ, Ray WS, Hare N. The analysis of ranked data derived from completely randomized factorial designs. Biometrics. 1976;32:429–34. https://doi.org/10.2307/2529511.

    Article  CAS  PubMed  Google Scholar 

  29. R Core Team. R: A language and environment for statistical computing. Austria: Vienna: R Foundation of Statistical Computing; 2018. https://www.r-project.org/

    Google Scholar 

  30. Gaertner FC, Beer AJ, Souvatzoglou M, Eiber M, Fürst S, Ziegler SI, et al. Evaluation of feasibility and image quality of 68Ga-DOTATOC positron emission tomography/magnetic resonance in comparison with positron emission tomography/computed tomography in patients with neuroendocrine tumors. Investig Radiol. 2013;48:263–72. https://doi.org/10.1097/RLI.0b013e31828234d0.

    Article  Google Scholar 

  31. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.

    CAS  PubMed  Google Scholar 

  32. Association WM. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2000;284:3043–5.

    Article  Google Scholar 

Download references

Acknowledgements

We want to express our gratitude to all the members of our PET staff for their contribution in performing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Uprimny.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and national research committee and with the principles of the 1964 Declaration of Helsinki and its subsequent amendments [32]. In accordance with our local regulations, ethical approval was waived, as the study was conducted retrospectively from data obtained for clinical purposes. Written informed consent was obtained from all patients prior to the exam, and the retrospective study was conducted according to institutional guidelines and is in compliance with the specific requirements of our country.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Genitourinary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uprimny, C., Bayerschmidt, S., Kroiss, A.S. et al. Impact of forced diuresis with furosemide and hydration on the halo artefact and intensity of tracer accumulation in the urinary bladder and kidneys on [68Ga]Ga-PSMA-11-PET/CT in the evaluation of prostate cancer patients. Eur J Nucl Med Mol Imaging 48, 123–133 (2021). https://doi.org/10.1007/s00259-020-04846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04846-3

Keywords

Navigation