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Impulse control disorders (ICDs) affect approximately one
seventh of patients with Parkinson’s disease (PD) [1].
Common ICDs include gambling disorder, hypersexuality,
compulsive shopping, and binge eating. These disorders have
been strongly linked to dopamine replacement therapy and,
especially gambling disorder, share many clinical features
with substance addictions [1, 2]. However, not all patients
develop ICDs with dopamine replacement therapy, but the
reasons for this and the neurobiological mechanisms underly-
ing ICDs are still relatively poorly understood.

In this issue of European Journal of Nuclear Medicine and
Molecular Imaging, Dr. Navalpotro-Gomez and colleagues
report a very interesting study investigating striatal dopamine
transporter (DAT) availability and its association with cortical
glucose metabolism in ICDs associated with PD [3]. The au-
thors scanned 16 PD patients with ICDs (PD-ICDs) and 16 PD
patients without ICDs (PD-noICDs) using 123I-FP-CITsingle-
photon emission computed tomography and 18F-FDG posi-
tron emission tomography (PET) (only PD-ICDs). They re-
port that PD-ICDs had reduced DAT binding in the ventral
striatum, which is further associated with lower glucose me-
tabolism in several cortical regions, including the motor cor-
tex, anterior cingulate cortex, right anterior prefrontal cortex,
bilateral entorhinal cortex, and subgenual area.

With some exceptions, previous molecular imaging studies
in PD-ICDs have focused on the brain dopamine system

because of the link with dopaminergic treatment and the cen-
tral role of dopamine in reward processing and addiction dis-
orders in general [4]. The present findings add to the cumula-
tive and fairly consistent data showing reduced DAT binding
in the ventral striatum in the PD-ICDs compared with PD-
noICDs [5–10]. There is also evidence of lower dopamine
D2 and D3 receptor binding in PD-ICDs, although these find-
ings are not entirely consistent across studies [11–16].

As pointed out by the authors, reduced mesolimbic DAT
binding has been reported to predate ICDs, indicating that it
may be a predisposing factor for the development of these
disorders [10]. However, the interpretation of altered DAT
binding is not straightforward because DAT binding may not
correlate with dopaminergic neuron counts in PD [17, 18].
Given that striatal dopamine synthesis capacity in PD-ICDs
is not reduced when compared with matched PD-noICDs
[19], the reduction in DAT binding is likely to reflect changes
in DAT expression rather than reduced dopamine function. In
fact, reduced DAT in combination with normal dopamine syn-
thesis capacity would result in increased synaptic dopamine
levels, consistent with findings in individuals with non-PD
gambling disorder [20–23]. Accordingly, increased dopamine
release has been reported in PD-ICDs in response to a gam-
bling task or reward-related cues [11, 12, 15]. However, it is
important to note that there are also some recent data showing
a negative correlation between ventral striatal dopamine syn-
thesis capacity and ICD severity, indicating that the relation-
ship between dopamine function and the neurobiological
mechanisms of PD-related ICDs is likely to be more complex
than simply too much dopamine [24, 25].

Navalpotro-Gomez et al. reported a positive correlation
between ventral striatal DAT binding and 18F-FDG uptake in
multiple cortical brain regions in the PD-ICD group. As the
authors acknowledge, these findings did not survive correc-
tion for multiple comparisons and should be interpreted with
caution, as use of uncorrected thresholds has been shown to
result in inflated type I error rates [26]. The PD-noICD group
was not studied with 18F-FDG PET, preventing a direct

This article is part of the Topical Collection on Neurology

* Joonas Majuri
joeema@utu.fi

1 Department of Neurology, Päijät-Häme Central Hospital,
Keskussairaalankatu 7, FI-15850 Lahti, Finland

2 Turku Brain and Mind Center and Department of Neurology,
University of Turku, Turku, Finland

3 Division of Clinical Neurosciences and Turku PET Centre, Turku
University Hospital, Turku, Finland

European Journal of Nuclear Medicine and Molecular Imaging (2019) 46:2220–2222
https://doi.org/10.1007/s00259-019-04459-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s00259-019-04459-5&domain=pdf
http://orcid.org/0000-0001-9144-2653
mailto:joeema@utu.fi


comparison between the PD-ICDs and PD-noICDs. One pre-
vious 18F-FDG PET study investigated regional brain glucose
metabolism in PD-ICDs [27]. In this study, the authors mea-
sured resting 18F-FDG uptake in 18 PD-ICDs and 18 PD-
noICDs and found decreased glucose metabolism in the right
middle and inferior temporal gyri in PD-ICDs, highlighting
different cortical regions compared to the study by
Navalpotro-Gomez et al. and warranting further studies to
characterize the full meaning of these findings.

PD-ICDs are a heterogeneous group of patients consider-
ing that they all have an underlying neurodegenerative disor-
der (PD) with different disease stages, symptoms and treat-
ments, and ICDs (type and number of ICDs). This is likely to
result in increased variance in the data. Thus, it is not surpris-
ing that there is some heterogeneity in the published findings.
We are happy to see active research in this field and hope to
see further studies verifying and building on these findings to
be better able to characterize the neurobiology of PD-related
ICDs.
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