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Abstract
Purpose Epidermal growth factor receptor (EGFR) mutations and the anaplastic lymphoma kinase (ALK) rearrangement are the
two most common druggable targets in non-small cell lung cancer (NSCLC). However, genetic testing is sometimes unavailable.
Previous studies regarding the predictive role of 18F–FDG PET/CT for EGFR mutations in NSCLC patients are conflicting. We
investigated whether or not 18F–FDG PET could be a valuable noninvasive method to predict EGFR mutations and ALK
positivity in NSCLC using the largest patient cohort to date.
Methods We retrospectively reviewed and included 849 NSCLC patients who were tested for EGFR mutations or ALK status
and subjected to 18F–FDG PET/CT prior to treatment. The differences in several clinical characteristics and three parameters
based on 18F–FDG PET/CT, including the maximal standard uptake value (SUVmax) of the primary tumor (pSUVmax), lymph
node (nSUVmax) and distant metastasis (mSUVmax), between the different subgroups were analyzed. Multivariate logistic
regression analysis was performed to identify predictors of EGFR mutations and ALK positivity.
Results EGFR mutations were identified in 371 patients (45.9%). EGFR mutations were found more frequently in
females, non-smokers, adenocarcinomas and stage I disease. Low pSUVmax, nSUVmax and mSUVmax were signifi-
cantly associated with EGFR mutations. Multivariate analysis demonstrated that pSUVmax < 7.0, female sex, non-
smoker status and adenocarcinoma were predictors of EGFR mutations. The receiver operating characteristic (ROC)
curve yielded area under the curve (AUC) values of 0.557 and 0.697 for low pSUVmax alone and the combination of
the four factors, respectively. ALK-positive patients tended to have a high nSUVmax. Younger age and distant
metastasis were the only two independent predictors of ALK positivity.
Conclusion We demonstrated that low pSUVmax is associated with mutant EGFR status and could be integrated with other clinical
factors to enhance the discriminability on the EGFR mutation status in some NSCLC patients whose EGFR testing is unavailable.
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Introduction

Over the last decade, the introduction of tyrosine-kinase inhib-
itors (TKIs) has enabled a remarkable paradigm shift in the
treatment of non-small cell lung cancer (NSCLC), especially
in advanced adenocarcinoma (ADC). Epidermal growth factor
receptor (EGFR) mutations and the echinoderm microtubule-
associated protein-like 4 (EML4)-anaplastic lymphoma kinase
(ALK) rearrangement are the two most-prevalent druggable
targeting categories in NSCLC patients [1]. Randomized clin-
ical trials have demonstrated that progression-free survival
(PFS) is longer with TKIs than with chemotherapy when
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EGFR mutations [2, 3] or the ALK rearrangement [4, 5]are
present in advanced NSCLC. Furthermore, the TKI efficacy
is dependent on the presence of EGFR mutations or the ALK
rearrangement. These discoveries have led to the recommenda-
tion of molecular profiling as the standard of care for advanced
ADC patients [6, 7]. However, the acquisition of sufficient
good-quality tumor tissues for gene alteration analyses remains
challenging in many cases of advanced NSCLC.

18F–FDG PET is a widely used noninvasive diagnostic mo-
dality that is based on different rates of 18F–FDGuptake. EGFR
signaling regulates the glucose metabolic pathway in EGFR-
mutated lung cancer cells, and EGFR-TKIs decrease lactate
production and glucose consumption [8]. Another study has
also shown that EGFR-TKIs reverse the Warburg effect and
decrease 18F–FDG uptake in mice bearing H1975- EGFR mu-
tant or H1993-EGFR mutant tumors [9]. Thus, 18F–FDG avid-
ity on PET may be useful as a noninvasive biomarker for
predicting EGFR mutations and the ALK rearrangement.

Previous data concerning the association between 18F–
FDG uptake and EGFR mutations are conflicting [10–18],
and little is known about the correlation between 18F–FDG
avidity and the ALK rearrangement [19, 20]. Thus, this study
retrospectively reviewed patients in the last 5 years and in-
cluded 849 NSCLC patients to investigate whether or not
18F–FDG PET could be a valuable method for predicting
EGFR mutations and the ALK rearrangement in NSCLC.

Materials and methods

Patients and inclusion criteria

We retrospectively reviewed all NSCLC patients whose EGFR
or ALK statuses were analyzed and who underwent PET/CT
from January 2012 to September 2016. A total of 1042 patients
was identified. We excluded 193 patients from this study for one
of three reasons: (1) for 43 patients, the time interval between
sampling and PET/CT exceeded 1 month; (2) 26 patients had a
history of malignancy; and (3) 124 patients had been treated
before sampling for the gene alteration analysis. Hence, a total
of 849 patients were ultimately included in this study. Patient
clinical characteristics including age, sex, smoking history, his-
topathology, tumor size, nodal involvement, distant metastasis
and tumor stage were recorded. Non-smokers were defined as
patients who never smoked or smoked less than 100 cigarettes in
their lifetimes. The rest were categorized as ever-smokers.
Tumor node metastasis (TNM) staging was based on the
IASLC 8th TNM Lung Cancer Staging System.

18F–FDG PET/CT acquisition and analysis

PET/CT was performed on a Discovery LS PET/CT system
(GE Medical Systems). Patients fasted for at least 6 h before

examination. The blood glucose concentration was tested and
confirmed to be less than 6.6 mmol/L before intravenous in-
jection of 5.5 MBq/kg 18F–FDG. Imaging acquisition was
conducted 1 h after 18F–FDG administration. Attenuation cor-
rection CT was performed using the following parameters:
120 kV, 80 mA, and 4.25 mm collimation. Then the PET scan
was immediately acquired from the head to the upper leg in 2-
dimensional mode at 3 min per bed position. Typically, 6–8
bed positions were examined depending on the height of pa-
tient. The PET data were reconstructed using the ordered set
expectation maximization algorithm method. CT images were
used for attenuation correction of the PET data and anatomic
localization. The co-registered images were then displayed on
the Xeleris Workstation (GE Medical System) for evaluation.

All PET/CT data were independently reviewed by two ex-
perienced nuclear medicine physicians. All reviewers were
blinded to the EGFR and ALK status. A region of interest
(ROI) was placed over the primary tumor, nodal metastasis
and distant metastasis to measure each SUVmax. SUVmax was
calculated with the most commonly applied formula:
SUVmax = maximum pixel activity/ (injected dose/body
weight).

ALK Ventana immunohistochemistry (IHC)

Ventana IHC is a fully automated IHC assay that is based on a
monoclonal antibody, D5F3. Ventana IHC has been approved
by the US FDA and China FDA for the identification of pa-
tients with NSCLC who are eligible for treatment with ALK
TKIs. According to the manufacturer’s instructions and scor-
ing algorithm, the assay was conducted with 4 μm-thick for-
malin-fixed, paraffin-embedded tissue sections. The result
was dichotomous whereby the presence of any percentage of
positive tumor cells with strong granular cytoplasmic staining
was deemed ALK positive, while all other observations were
deemed ALK negative.

EGFR mutation analysis

EGFR mutations were analyzed based on the principle of
the amplification refractory mutation system (ARMS).
Briefly, resected, aspirated or biopsied primary tumor,
lymph node, or distant metastasis samples or pleural effu-
sion samples were fixed in 10% neutral buffered formalin
and embedded in paraffin wax. The DNA was extracted
from the formalin-fixed, paraffin-embedded tissue sections
using the QIAamp DNA FFPE tissue kit (Qiagen NV,
Venlo,Netherlands) according to the manufacturer’s instruc-
tions. Polymerase chain reaction was carried out with the
Mx3000PtM (Stratagene, La Jolla, USA) using the EGFR
29 Mutations Detection Kit (Amoy Diagnostics, Xiamen,
People’s Republic of China), and the result was interpreted
according to the manufacturer’s instructions.
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IHC analysis

The IHC analysis was conducted by pathologists from the
Department of Pathology of Wuhan Union Hospital. Briefly,
the 4 μm-thick formalin-fixed, paraffin-embedded tissue sec-
tions were analyzed using the following primary antibodies:
TTF-1 (clone 8G7G3/1, Maixin, Fuzhou, China), NapsinA
(multiclone, Maixin), CK-7 (clone OV-TL 12/30, Maixin),
and Ki67 (clone MX006, Maixin). Positive expression of
TTF-1 was defined as >5% of tumor cells with distinct cyto-
plasmic or nuclear staining. The presence of >50% of tumor
cells with diffuse and intense cytoplasmic staining was
deemed positive for Napsin-A and CK-7. The percentage of
tumor cells with distinct nuclear staining of Ki67 was denoted
with a Ki67 score.

Statistical analysis

Clinical characteristics including the PET/CT parameters were
compared according to the EGFR or ALK status using the chi-
squared test and Student’s t-test. A two-sided p value < 0.05
was defined as statistically significant. Receiver operating
characteristics (ROC) curves were constructed to obtain the
cutoff value of the primary tumor SUVmax (pSUVmax) for
predicting the EGFR mutations status. Logistic regression
analysis was performed to identify independent predictors of
the EGFR or ALK status. Clinical parameters and a pSUVmax

with p < 0.05 in the univariate analysis, as well as previously
reported factors associated with EGFR or ALK status, were
further analyzed by multivariate regression analysis. Variates
with p < 0.05 in the multivariate analysis were deemed inde-
pendent predictors, and the odds ratios and 95% confidence
intervals of the predictors were obtained. ROC curves were
constructed for the combined independent factors for
predicting mutant EGFR. All analyses were performed using
the SPSS software package (version 16.0; SPSS, Chicago, IL,
USA).

Results

Patient and tumor characteristics

Among the 849 NSCLC patients tested for EGFR and ALK
status in our hospital between January 2012 to September
2016, 808 were tested for EGFR, 223 were tested for ALK,
and 182 were tested for both. The clinical characteristics are
summarized in Table 1 based on whether the patients were
tested for EGFR or ALK.

Of the 808 patients tested for EGFR status, EGFR muta-
tions were identified in 371 (45.9%); the patient group includ-
ed 340 women (42.1%) and 468 men (57.9%) with a median
age of 58.7 years (range, 25–85), and 498 (63.6%) were non-

smokers. Seven hundred and thirty-one patients (90.5%), 58
patients (7.2%) and 19 patients (2.3%) were histologically
confirmed to haveADCs, squamous cell carcinomas and other
subtypes, respectively; the other subtypes included four large
cell carcinomas and 15 undefined NSCLCs. One hundred and
forty-two (17.5%), 49 (6.4%), 157 (19.4%) and 460 (56.8%)
patients had stage I, stage II, stage III and stage IV disease,
respectively. The median SUVmax of the primary tumor was
9.8 (range, 0.8–45.7).

Of the 223 patients tested for ALK, 17 (7.6%) were posi-
tive for ALK; the patient group included 101 women (45.3%)
and 122 men (54.7%) with a median age of 58.2 years (range,
29–85), and 139(62.3%) were non-smokers. One hundred and
ninety (85.2%), 25 (11.2%) and eight (3.5%) patients had
histologically confirmed ADCs, squamous cell carcinomas
and other subtypes, respectively; the other subtypes included
one large cell carcinoma and seven undefined NSCLCs. Forty
(17.9%), 11 (4.9%), 45 (20.2%) and 127 (57.0%) patients had
stage I, stage II, stage III and stage IV disease, respectively.
The median SUVmax of the primary tumor was 10.4 (range,
0.8–33.2).

Association between clinical characteristics and EGFR
mutations

The clinical characteristics of the NSCLC patients are sum-
marized in Table 1 based on the EGFR status. EGFR muta-
tions were found more frequently in women (60.6% vs.
35.3%; p < 0.001), non-smokers (55.8% vs. 30.0%;
p < 0.001), ADCs (50.2% vs. 9.1%; p < 0.001), and stage I
patients (61.3% vs. 32.7%, 38.9%, and 45.0%; p < 0.001).
Positive expression of IHC marker TTF-1 (47.7% vs.
14.1%; p < 0.001), NaspinA (45.8% vs. 16.5%; p < 0.001),
and CK7 (37.9% vs. 8.7%; p = 0.005) were significantly as-
sociated with EGFR mutations. The Ki67 scores (22.4 ± 21.2
vs. 33.4 ± 22.1; p = 0.002) were lower in the EGFR-mutant
NSCLC patients than in the EGFR wild-type patients. The
PET parameters of the pSUVmax (8.7 ± 4.8 vs. 10.7 ± 6.2;
p < 0.001) (Fig. 1 a), nodal metastases SUVmax (nSUVmax)
(7.3 ± 4.2 vs. 9.3 ± 5.5; p < 0.001) and distant metastases
SUVmax (mSUVmax)(8.0 ± 4.9 vs. 9.5 ± 5.7; p = 0.005) were
lower in the EGFR-mutant NSCLCs than in the EGFR wild-
type NSCLCs. There were no differences in the pSUVmax

results between the different EGFR mutation types, including
in-frame deletion in exon 19 and substitution mutation in exon
21 (Fig. 1 b). Representative PET/CT images of two patients
with EGFRmutant or wild-type NSCLC were shown (Fig. 2).
The ROC curve analysis revealed that the cutoff point for the
pSUVmax was 7.0; 72.8% sensitivity, 38.5% specificity, a
54.6% positive predictive value, a 58.2% negative predictive
value, and 57.1% accuracy were achieved, and the area under
curve (AUC) was 0.557 (95%CI, 0.517–0.596) with p =
0.001. Thus, although EGFR mutations were more frequently
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found in patients with pSUVmax < 7.0 (p = 0.001), pSUVmax

was only a marginal significant predictor of EGFR mutations.
Due to the large differences in the EGFRmutation rates and

18F–FDG avidity between ADC and non-ADC, the ADC-only
group was separately analyzed; the data are summarized in
Table 2. The results were similar to those of the NSCLC
group, except for CK7, which was not associated with
EGFR mutations.

Association between clinical characteristics and ALK
status

The ALK-positive NSCLC patients were more frequently
younger age (50.5 ± 9.7 vs. 58.8 ± 9.6; p = 0.001). Positive
ALK expression was observed only in the ADC patients
(17/190 vs. 0/33), although the p value was 0.083 because
the population of non-ADC patients was relatively small
(Table 1). Although there was no significant difference in
sex and smoking history between the ALK-positive and
ALK-negative groups, females (8.9% vs. 6.6%) and non-
smokers (9.4% vs. 4.8%) tended to have higher positivity rates
than men and ever-smokers. Interestingly, positive expression
of ALK was exclusively observed in TTF-1-, NaspinA- and
CK7-positive NSCLC patients regardless of ADC or non-
ADC status. The Ki67 scores (16.9 ± 9.6 vs. 38.4 ± 26.1;
p = 0.026) were lower in the ALK-positive group than in the
ALK-negative group. The nSUVmax was the only PET param-
eter that was higher in the ALK-positive patients than in the
ALK-negative patients (10.6 ± 3.5 vs. 8.6 ± 4.9), with a mar-
ginal p value (0.091). The pSUVmax and mSUVmax were not
significantly different between the two groups.

When the ADC group was separately analyzed, a young
age (50.6 ± 11.4 vs. 58.9 ± 9.5; p < 0.001), high nSUVmax

(10.7 ± 4.6 vs. 8.3 ± 5.2; p = 0.004) and low Ki67 score were
significantly associated with positive ALK expression
(Table 2).The other results were similar to those of the
NSCLC groups.

Prediction of the EGFR mutation status

For the NSCLC group (Table 3), the univariate logistic regres-
sion analysis showed that sex, smoking status, histology,
pSUVmax, tumor size, nodal involvement, distant metastasis,
and tumor stage were significantly correlated with EGFR mu-
tations. Then inclusion of these factors together in the multi-
variate regression analysis revealed that sex, smoking status,
histology and pSUVmax remained independent variables for
predicting EGFR mutations. Female sex (odds ratio [OR],
1.83; p = 0.003), non-smoker status (OR, 1.79; p = 0.006),
ADC (OR, 7.09; p < 0.001) and pSUVmax < 7.0 (OR, 1.48;
p = 0.041) were significant predictors of EGFR mutations.
Additionally, a ROC curve analysis was conducted to evaluate
the predictive value of these factors (Fig. 3), and the AUC ofT
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the categorical pSUVmax < 7.0 was 0.557. When the four
criteria were used together, the AUC was 0.697.

For the ADC-only group (Table 4), the univariate logistic
regression analysis showed that sex, smoking status,
pSUVmax, tumor size, nodal involvement and tumor stage
were associated with EGFR mutations. In the multivariate
logistic regression analysis, female sex (OR, 1.91; p =
0.002), non-smoker status (OR, 1.74; p = 0.010), and
pSUVmax < 7.0 (OR, 1.51; p = 0.036) were independent fac-
tors for predicting EGFR mutations in ADC patients.

Prediction for ALK status

For the NSCLC group (Table 5), which included 190 ADC
patients and 33 non-ADC patients, univariate regression
showed that a young age was the only statistically significant
variate that was associated with positive ALK expression
(OR, 0.92). Patients with distant metastasis also tended to be
ALK positive (OR, 1.66; 95% CI, 0.98–2.81), although the p
value was 0.058. In the multivariate analysis, sex, smoking
history, histology, and the pSUVmax were analyzed together
with age and distant metastasis. Younger age was still the only
independent predictor of ALK positivity, although the OR of
distant metastasis was 4.23 (p = 0.071). The pSUVmax was not
associated with ALK status.

The results of the separate analysis of the 190 ADC patients
were similar to those of the NSCLC group (Table 6). Notably,
the nSUVmax was not included the multivariate analysis be-
cause of the small sample size. Likewise, too few of the ADC

patients were negative for TTF-1, NaspinA and CK7, so TTF-
1, NaspinA and CK7 were also not included.

Discussion

TKIs have shown remarkable therapeutic effects and
prolonged PFS in NSCLC patients with EGFR mutations or
the ALK rearrangement [2–5]. These discoveries have led to
the recommendation of molecular profiling as the standard of
care for advanced NSCLC patients [6, 7]. However, the avail-
ability of sufficient good-quality tumor tissues for the gene
alteration analyses is often challenging in advanced NSCLC
patients. In this study, we demonstrate that NSCLC patients
with EGFR mutations had lower pSUVmax measurements
based on 18F–FDG PET than NSCLC patients with wild-
type EGFR and that low pSUVmax could be integrated with
other clinical factors to enhance the discriminability on the
EGFR mutation status in some NSCLC patients whose
EGFR testing is unavailable.

Data from previous studies that have investigated the value
of 18F–FDG PET for predicting EGFR status are conflicting.
Na et al. [18] and Cho et al. [21] revealed that a lower
pSUVmax was an independent variate for predicting EGFR
mutations. Two other groups reported the opposite result,
where a higher pSUVmax predicted EGFR mutations [10,
14]. Moreover, multiple groups reported no association be-
tween the pSUVmax and EGFR status [12, 22].

Our data were consistent with observation by Na et al.
[18]and Cho et al. [21], whereby a lower pSUVmax was an

Fig. 1 Comparison of non-small
cell lung cancer 18F–FDG uptake
according to EGFR mutation sta-
tus. Primary tumor SUVmax are
shown for subjects categorized
according to epidermal growth
factor receptor (EGFR) mutation
status including wild-type EGFR
(EGFRWT) and mutations in
EGFR exon 19 and exon 21
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independent variate for predicting EGFRmutations. Cho et al.
included 58 ADC and three non-ADC patients regardless of
tumor stage; the study was conducted in Korea, and the EGFR
mutation rate was 50%. The OR in the multivariate analysis
that assessed the predictive value of a low pSUVmax for EGFR
mutations was 12.97 (p = 0.005) [21]. The study by Na et al.
contained 100 NSCLC patients, including 53 ADC and 47
non-ADC patients regardless of tumor stage; the study was
also conducted in Korea, and the EGFR mutation rate was
21%. The OR of a low pSUVmax being predictive of EGFR
mutations in the study by Na et al. was 1.3 (p = 0.025), which
was similar to our result [18].

Several possible reasons may underlie these contradictory
results. Our study included NSCLCs of all stages and histo-
logical types. In a separate analysis of stage IV ADC, the
pSUVmax was not different between the EGFR-mutant and
wild-type stage IVADC patients, which was consistent with
the result from Lee’s group [13]. Hence, the tumor stage and
histological type of the studied patient population could sig-
nificantly influence the results concerning this topic. Only two
groups reported that a high pSUVmax was positively associat-
ed with EGFR mutations [10, 14]. However, all other studies
revealed that EGFR-mutant patients tended to have a lower
pSUVmax than EGFR wild-type patients, although the results
were not statistically significant in the studies by Huang et al.
[14] and Ko et al. [10]. Huang’s group included 77 stage III
and stage IV ADC patients (excluding the bronchoalveolar
subtype), and Ko’s group included 132 stage I-IV ADC pa-
tients who also had pretreatment serum CEA and CT

assessments. The high EGFR mutation rate (64%) may sug-
gest patient selection bias, and the patient population size in
Huang’s study was relatively small. In Ko’s study, the require-
ment for pretreatment serum CEA and CT assessments may
have promoted patient selection bias compared to other
studies.

The results from the studies by Chung et al. [23] and Mak
et al. [12] showed no statistically significant difference in the
pSUVmax between the EGFR-mutant and wild-type patients.
Lee et al. revealed that the pSUVmax was statistically signifi-
cant only in the univariate regression analysis but not in the
multivariate regression analysis. Our results showed that de-
spite the statistically significant predictive role of pSUVmax

for determining the EGFRmutation status, the pSUVmax mea-
surements between the EGFR-mutant and wild-type groups
substantially overlapped. Moreover, the AUC was only
0.557. The ADC patient population sizes were only 106, 90,
and 135 in the studies by Chung et al., Mak et al. and Lee
et al., respectively. Therefore, the small number of patients
and modest discriminating power of the pSUVmax can explain
these discrepant results.

Guan's group identified tumor size as a predictor for EGFR
mutation onmultivariate analysis, which is not consistent with
our study. The higher proportion of non-ADC patients in
Guan group’s data may cause this discrepancy. The primary
tumor size of ADC patients tend to be smaller than that of non-
ADC NSCLC patients. In our data, the average tumor size of
ADC patients was 3.28 cm vs. 5.13 cm in non-ADC NSCLC
patients. According to the cutoff value of 5 cm in Guan

Fig. 2 Representative EGFR status and 18F–FDG PET/CT findings. Top
panel,findings of a 53-year-old man with EGFR-wild type lung adeno-
carcinoma. CT (a) and PET (b) images show a 2.9-cm-sized hypermeta-
bolic mass in the right upper lobe (pSUVmax = 18.8). Hematoxylin-eosin
staining (c) shows histological type of adenocarcinoma and the ARMS
method (d) demonstrates wild type EGFR status. Bottom panel, findings

of a 62-year-old womanwith EGFR-mutant lung adenocarcinoma. CT (e)
and PET (f) show a 2.6-cm-sized mass with mild 18F–FDG uptake
(pSUVmax = 4.8) in the right lower lobe. Hematoxylin-eosin staining (g)
shows histological type of adenocarcinoma and the ARMS method (h)
demonstrates L858R substitution mutation in EGFR exon 21
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group’s study, the patients with primary tumor size >5 cmwas
46.6% in non-ADC patients vs. 13.6% in ADC patients in our
cohort. Thus, non-ADCNSCLC patient population composed
much higher proportion patients with primary tumor size
>5 cm and generally accepted much lower EGFR mutant rate
than ADC patient population. Thus, the proportion of non-
ADC patients in studied cohort will significantly affect the
statistical result of the correlation between tumor size and
EGFR mutation status. The proportion of non-ADC patients
in Guan group’s study was 23.4% vs. 9.5% in our data.
Actually, when ADC patients and non-ADC NSCLC patients
were analyzed as a whole in our study, the primary tumor size
of EGFR mutant patients was also smaller than that of EGFR
wild-type patients (p = 0.02). However, there was no signifi-
cant difference of tumor size between EGFR mutant patients
and EGFR wild-type patients when ADC-only group was
separately analyzed. Thus, the higher proportion of non-
ADC NSCLC patients in Guan group’s data compared with
our included population may cause this discrepancy.

In our study, the pSUVmax was associated with mutant
EGFR status. The AUC was 0.697 when the four criteria,
including pSUVmax < 7.0, female, non-smoker and histologic
type of ADC were analyzed together for predicting EGFR
mutation status. The result of the separate analysis of the
ADC group was similar. An important notable issue is that
the clinicians preferred to select ADC patients for EGFR mu-
tation analysis, resulting in the included patient population is
quite different with actually clinical status. The non-ADC
NSCLC patient population accounted for only 77 patients
(9.5%) of the 808 NSCLC population in our study population
compared with about 38.9% in the actually clinical practice
from the Chinese National Office for Cancer Prevention and
Control data [24–26]. The pSUVmax of non-ADC patients was
much higher than that of ADC population in our study (14.30
vs. 9.29, p < 0.001) and previously published studies [27, 28].
The EGFR mutant rate of non-ADC NSCLC patients was
universally accepted much lower than ADC population.
Thus the discriminability of pSUVmax for EGFR mutation

Table 3 Univariate and
multivariate analysis of various
predictive factors for the EGFR
status in NSCLC

Characteristics Univariate Analysis
OR (95% CI)

p value Multivariate Analysis
OR (95% CI)

p value

Age 1.00 (0.99–1.01) 0.908

Sex <0.001 0.003

Male Reference Reference

Female 2.82 (2.12–3.77) 1.83 (1.23–2.73)

Smoking status <0.001 0.006

Never smoker 2.95 (2.18–3.98) 1.79 (1.18–2.72)

Ever smoker Reference Reference

Histology <0.001 <0.001

Adenocarcinoma 9.92 (4.50–21.86) 7.09 (2.93–17.17)

Non-adenocarcinoma Reference Reference

Primary tumor SUVmax Reference 0.001 0.041

< 7.0 1.68 (1.25–2.26) 1.48 (1.02–2.16)

≥ 7.0 Reference Reference

Tumor size 0.92 (0.86–0.99) 0.021 0.862

Nodal involvement 0.031 0.246

0

1 0.71 (0.38–1.33) 0.279

2 0.8 (0.56–1.21) 0.318

3 0.62 (0.45–0.85) 0.003

Distant metastasis 0.601 1.000

0 Reference

1 0.93 (0.70–1.23)

Stage <0.001 0.347

I Reference

II 0.31 (0.15–0.60) 0.001

III 0.40 (0.25–0.64) <0.001

IV 0.52 (0.35–0.76) 0.001

Abbreviations: NSCLC, non-small-cell lung cancer; EGFR, epidermal growth factor receptor; SUVmax, maximal
standard uptake value; OR, odds ratio; CI, confidence interval
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may be underestimated in our study population as compared
to actually clinical practice due to extremely small proportion
of non-ADC patients. As commonly applied method to imitate
the actually ratio between ADC and non-ADC NSCLC in
clinic, the SPSS software enabled us to randomly select 122
ADC patients (16% of those total 731 ADC patients). Then
we combined those 122 ADC patients with 77 non-ADC pa-
tients for analysis. When pSUVmax, smoking status, sex and
histology of ADC were used together, the AUC of ROC anal-
ysis increased from 0.697 to 0.782 (data not shown), which
indicated that those four factors could provide relative good
performance for predicting EGFR mutation status.

EGFR mutant status from the tissue genetic analysis was
the gold standard for first-line treatment with EGFR-TKIs.
The guidelines for NSCLC treatment of China [29], ESMO
[30], ASCO [31] and NCCN [32] all suggest EGFR mutation
testing from tissue assays prior to first-line treatment with
EGFR-TKIs. However, EGFR mutation testing was some-
times unavailable for oncologists to decide the therapeutic
regimen. In European and North America approximate one-
quarter advanced NSCLC patients were not available with
EGFR mutation testing in 2015 [33]. In China, EGFR testing
rate was only 9.6% in 2010 from a national survey [34],
18.3% in 2011 from nine sites including 12,086 NSCLC pa-
tients [35], and 42.5% in 2014 from a non-interventional real
world study on EGFR testing in patients with IIIB/IV NSCLC
in northern China [36]. An unpublicized investigation from

our institution including 4062 NSCLC patients revealed the
EGFR mutation testing rate was 45.2% in 2015 and 49.6% in
2016.

Several reasons may account for the low EGFR mutation
testing rate in China. First, many patients were not available
with tumor tissues. The Health and Social Care Information
Centre recorded that about 23% patients were not available
with tumor tissues in the United Kingdom [37]. From our
clinical experience, about 30% of patients cannot obtain sam-
ples owing to personal subjective refusal of invasive exami-
nation or several objective reasons resulting in ineligible for
sampling including coagulation abnormalities, severe cardio-
pulmonary insufficiency, arterial and venous pulmonary hy-
pertension, high risk of pneumothorax, usage of anticoagulant
drugs and patient uncooperativeness. Second, the diagnosis of
NSCLC has been more and more relying on small biopsy or
cytologic specimens which however sometimes were not of
good quality or sufficient number of tumor cells for EGFR
mutation testing. The data from a study concerning Breal-
world^ EGFR mutation testing practices in Asia in 2011
showed that 53.8% sample tested for EGFR mutation were
small biopsy or cytology specimens in China [35]. The data
from our institute in the last 5 years showed that small biopsy
and cytology specimens account for 68.4% of all samples
tested for EGFR (data not shown). Minimally invasive exam-
inations for diagnosis of lung cancer included fine-needle as-
piration (FNA), core biopsy, bronchoscopy with biopsy and

Fig. 3 Receiver operating
characteristic curves of primary
tumor SUVmax and combination
of four factors (pSUVmax, sex,
smoking history and histological
type) for predicting EGFR
mutation
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transbronchial needle aspiration (TBNA), endobronchial ul-
trasound (EBUS)-guided biopsy, and the cytologic specimen
from bronchial washing, bronchial brushing, sputum, bron-
choalveolar lavage fluid (BALF) and pleural effusion [38].
Those minimal invasive examinations have significantly im-
proved lung cancer diagnosis; however, small samples and
cytologic specimens were sometimes not sufficient of quality
or quantity for EGFR mutation testing in which the reported
failure rates are about 5% to 30% [39–41]. Third, limited
medical resource and incomplete implementation of guide-
lines in some medical institutions may also result in low
EGFR mutation testing rate.

Thus, a natural question is how to select the patients poten-
tially benefited from EGFR-TKIs treatment among the pa-
tients without available EGFR testing and those who cannot
tolerate chemotherapy. Two previous randomized head-to-
head clinical trials showed that among patients with unknown
EGFR status, patients selected by only clinical factors had a
greater response and better PFS with EGFR-TKI treatment
than with chemotherapy in the first-line treatment [42–44].
The aim of our study is to investigate whether 18F–FDG
PET/CT could be a useful modality to enhance patient

stratification in some NSCLC patients whose EGFR testing
is unavailable. Our result showed that low pSUVmax is asso-
ciated with mutant EGFR status. It could be integrated with
other clinical factors to enhance the discriminability on the
EGFR mutation status and be used by oncologists to decide
the treatment strategy in some NSCLC patients without avail-
able EGFR testing.

Different EGFR mutation types can drive distinct down-
stream signaling, TKI affinities and treatment responses [45,
46]. In-frame deletion in exon 19 and L858R substitution
mutation in exon 21 account for most EGFR mutations in
NSCLC [47]. A previous study indicated that exon 19 in-
frame deletions showed longer PFS following an EGFR TKI
treatment [45]. The 18F–FDG avidity of these two mutation
types was also evaluated previously. Choi et al. showed that
the pSUVmax of NSCLC patients with the L858R mutation
was significantly higher than that of NSCLC patients with the
exon 19 mutation (11.6 vs. 8.2) [48]. However, Lee’s group
revealed no difference between the two mutation types [22].
Consistent with the result by Lee et al., the pSUVmax measure-
ments of the two mutation types were not significantly differ-
ent in our study.

Table 4 Univariate and
multivariate analysis of various
predictive factors for the EGFR
status in adenocarcinoma

Characteristics Univariate Analysis
OR (95% CI)

p value Multivariate Analysis
OR (95% CI)

p value

Age 1.01 (0.99–1.02) 0.366

Sex <0.001 0.002

Male Reference Reference

Female 2.59 (1.92–3.50) 1.91 (1.29–2.87)

Smoking status <0.001 0.010

Never smoker 2.64 (1.93–3.61) 1.74 (1.14–2.66)

Ever smoker Reference Reference

Primary tumor SUVmax 0.006 0.036

< 7.0 1.53 (1.13–2.09) 1.51 (1.03–2.21)

≥ 7.0 Reference Reference

Tumor size 0.96 (0.89–1.04) 0.302

Nodal involvement 0.034 0.250

0

1 0.76 (0.39–1.46) 0.407

2 0.87 (0.57–1.31) 0.492

3 0.61 (0.44–0.85) 0.004

Metastasis 0.223 1.000

0 Reference

1 0.83 (0.62–1.12)

Stage 0.011 0.547

I Reference

II 0.44 (0.21–0.91) 0.026

III 0.50 (0.31–0.81) 0.005

IV 0.55 (0.37–0.82) 0.003

Abbreviations: EGFR, epidermal growth factor receptor; SUVmax, maximal standard uptake value;OR, odds ratio;
CI, confidence interval
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The EML4-ALK rearrangement is another driver mutation
and druggable target in NSCLC. The ALK rearrangement in
NSCLC patients shows a dramatic response and prolonged
PFSwith an ALKTKI treatment [4, 5]. Our study investigated
the metabolic features of ALK-positive NSCLC patients.
Among the ADC patients, the nSUVmax was higher in the
ALK-positive group than in the ALK-negative group.
However, there was no difference in the pSUVmax between
the two groups. Jeong et al. reported that a higher pSUVmax

was an independent predictor of ALK positivity [19]. There
are two possible explanations for this discrepancy. First, 53
previously treated patients were included in the study by
Jeong et al. Second, selection bias may have influenced the
results; the ALK analysis was conducted after evaluating the
EGFR and K-ras status, and the ALK positivity (18.6%) of the
patient population in the study may have strengthened the
statistical significance. Another study that included 5.4%
ALK-positive ADCs also showed a higher pSUVmax in

ALK-positive patients than in ALK-negative patients [20].
These two studies identified ALK-positive patients by FISH,
whereas the Ventana IHC system was used to determine the
ALK status in our study. The different detection methods may
explain the discrepant results. However, the Ventana IHC sys-
tem is a fully automated IHC assay, with a sensitivity of 100%
and specificity of 98%, that has been approved by the US
FDA and China FDA for the identification of NSCLC patients
who are eligible for treatment with ALKTKIs [49].Moreover,
multiple studies have reported that Ventana ALK IHC is a
better predictor of the ALK inhibition outcome than ALK-
FISH for advanced NSCLC [50]. The response rates to the
ALK inhibitors were 100% in the FISH-negative/IHC-posi-
tive cases (7/7) and 46% in the FISH-positive/IHC-negative
cases (13/28) [51].

There are several limitations to this study. First, the retro-
spective design may have introduced bias, including patient
selection bias and sample availability bias. Second, the Asia-

Table 5 Univariate and
multivariate analysis of various
predictive factors for the ALK
status in NSCLC

Characteristics Univariate Analysis OR
(95% CI)

p value Multivariate Analysis OR
(95% CI)

p
value

Age 0.92 (0.88–0.97) 0.001 0.93 (0.88–0.99) 0.014

Sex 0511 0.528

Male Reference Reference

Female 1.39 (0.52–3.76) 1.51 (0.42–5.40)

Smoking status 0.219 0.594

Never smoker 2.06 (0.65–6.6) 0.67 (0.16–2.88)

Ever smoker Reference Reference

Histology 0.117 0.998

Adenocarcinoma 5.13 (0.66–39.65)

Non-adenocarcinoma Reference

Primary tumor SUVmax 0.96 (0.87–1.06) 0.455 0.97 (0.86–1.10) 0.615

Nodal metastasis
SUVmax

1.08 (0.97–1.22) 0.173

Distant metastasis
SUVmax

1.03 (0.94–1.13) 0.561

Tumor size 1.09 (0.87–1.38) 0.445

Nodal involvement 0.846

0 Reference

1 0.76 (0.17–3.37) 0.999

2 0.933 (0.21–4.01) 0.927

3 1.54 (0.49–4.80) 0.460

Metastasis 0.058 0.071

0 Reference Reference

1 1.66 (0.98–2.81) 4.23 (0.89–20.20)

Stage 0.234

I Reference

II 1.53 (0.43–5.45) 0.508

III 1.58 (0.62–4.08) 0.340

IV 2.24 (0.98–5.11) 0.056

Abbreviations: NSCLC, non-small-cell lung cancer; ALK, anaplastic lymphoma kinase; SUVmax, maximal stan-
dard uptake value; OR, odds ratio; CI, confidence interval
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Pacific region NSCLC/ADC subgroup have the highest
EGFR mutation frequency at 47% compared with other re-
gions [52]. The patients in our study were all Chinese and thus
had a genetic alteration pattern that was distinct from other
races, which may impede the application of our results to other
races. Although two studies from Spain and the U.S. also
showed lower pSUVmax in EGFR mutant NSCLC patients
than that in EGFR wild-type patients [11, 12], it is still neces-
sary to note the potential difference between different regions
and races. Third, many lymph nodes and distant metastases
were not histologically verified. Hence, we did not include
nSUVmax and mSUVmax in the multivariate analysis. Fourth,
18F–FDG uptake is actually nonspecific and is a net result of
microvasculature for delivering nutrients, glucose transporter
of transporting 18F–FDG into the cell, HK for entering 18F–
FDG into glycolysis and the number of tumor cells [53]. Any
factors that can regulate those steps will influence 18F–FDG
uptake. For example, intracellular pH is an important factor
influencing glycolysis and 18F–FDG uptake [54]. An alkaline
intracellular pH could promote glycolysis which depends on
the pH-sensitive activity and abundance of several glycolytic
enzymes including lactate dehydrogenase [55, 56], phospho-
fructokinase 1 [57, 58], phosphorylase kinase [56] and fruc-
tose-1,6-bisphosphatase [56]. However, different driver

mutations may also result in distinct pathways activation and
glycolytic features [59–61]. Moreover, driver mutations in-
cluding K-ras mutation, EGFR mutation, ALK rearrange-
ment, ROS1 rearrangement, PI3K mutation et al. are almost
mutually exclusive in NSCLC patients [62]. So it is still rea-
sonable to use 18F–FDG uptake to distinguish different driver
mutations in NSCLC. A study by Carlos group showed that
pSUVmax of NSCLC patients with K-ras mutation was much
higher than that of NSCLC patitents with EGFR mutation
[11].

In conclusion, our study aimed to investigate whether or
not 18F–FDG PETcould be a valuable noninvasivemethod for
predicting EGFR mutations and ALK positivity in NSCLC
using the largest patient population to date. We identified that
pSUVmac < 7.0 was associated with EGFR mutation in
NSCLC patients The AUC of the ROC curve analysis of four
factors, including pSUVmax < 7.0, female sex, non-smoker
status and histologic type of ADC was 0.697. When the ratio
between ADC and non-ADC NSCLC patients mimicked the
actually clinic status, the AUC increased to 0.782 indicating
that those four factors could provide relative good perfor-
mance for predicting EGFR mutation status. The pSUVmax

measurements were not different between the ALK-positive
and ALK-negative groups in our study. Other noninvasive

Table 6 Univariate and
multivariate analysis of various
predictive factors for the ALK
status in adenocarcinoma

Characteristics Univariate Analysis
OR (95% CI)

p value Multivariate Analysis
OR (95% CI)

p value

Age 0.92 (0.90–0.95) <0.001 0.93 (0.89–0.99) 0.014

Sex 0.174 0.583

Male Reference Reference

Female 1.45 (0.85–2.48) 0.70 (0.19–2.54)

Smoking status 0.213 0.647

Never smoker 1.45 (0.81–2.61) 1.41 (0.32–6.16)

Ever smoker Reference Reference

Primary tumor SUVmax 1.02 (0.98–1.07) 0.332 0.97 (0.86–1.09) 0.615

Tumor size 1.04 (0.90–1.19) 0.611

Nodal involvement 0.225

0

1 0.48 (0.06–3.76) 0.487

2 1.58 (0.75–3.31) 0.225

3 1.77 (0.94–3.33) 0.079

Metastasis 0.158 0.071

0 Reference Reference

1 1.49 (0.86–2.58) 4.22 (0.88–20.0)

Stage 0.235

I Reference

II 1.99 (0.47–8.36) 0.350

III 2.37 (0.87–6.42) 0.091

IV 2.52 (1.04–6.11) 0.041

Abbreviations: ALK, anaplastic lymphoma kinase; SUVmax, maximal standard uptake value; OR, odds ratio; CI,
confidence interval
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biomarkers could be investigated and integrated with 18F–
FDG PET in the future to optimize the predictive power for
the EGFR and ALK status when tissues for genetic analysis
are unavailable. For example, exquisite algorithms for analyz-
ing diagnostic CTs and PET/CTs have already been developed
to obtain more information for predicting genetic alterations in
NSCLC patients [16, 17, 63]. Radiolabled EGFR-TKI and
anti-EGFR antibody for TKI-PET and immuno-PET are also
very promising modalities for predicting EGFR mutation sta-
tus and clinical efficiency of TKI treatment [64]. Exnograft
mouse models and several clinical studies [65–67] have
showed exciting results and two clinical trials are ongoing.
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