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Introduction

One should always be cautious of undertaking a rigorous
examination of a subject lest hubris interferes with balance
and the confidence of “experience” undermines the rigor of
facts. Notwithstanding these caveats, this missive seeks to cast
a critical light on what, to date, has proven to be a contentious
subject: the utility of peptide receptor radionuclide therapy
(PRRT) in the management strategy of neuroendocrine tumors
(NETs). Mindful of the Einsteinian adage—“whoever under-
takes to set himself up as a judge of Truth and Knowledge is
shipwrecked by the laughter of the gods” [1]—we propose to
provide a balanced assessment of the matter from the perspec-
tive of evaluators of the therapy as opposed to purveyors.

In NET management, a plethora of therapeutic options
(some in nascent form, others in “developing phase,” and a
few with “clinically approved” status) has emerged. The sur-
feit reflects two issues: firstly the multifaceted challenges
posed by NETs (heterogeneous, functional, and protean in
their behavior [2]) and secondly the substantial limitations of
each of the different therapeutic strategies [3, 4]. This has led
to a change in the “end point” of efficacy of a treatment
thereby accommodating different visions of efficacy [5]. No
longer is the overall survival (OS) of homo sapiens “with

NET” a principal matter of concern rather how long can a
“drug/agent” contest the biological menace of NETs {euphe-
mistically referred to as progression-free survival (PFS) has
taken the centre stage [5]}. The paradox of increased PFS
without increase in OS remains to be explained!

In the eyes of a clinician (or subjected to the scalpel of a
surgeon), NETs are generally not dissimilar to other cancers,
except in their production of biologically active agents that
generate distant and often protean symptoms [2]. These symp-
toms can be controlled by agents directed towards somatostat-
in (SST) receptors which are over expressed in 80–85 % of
well to moderately differentiated NETs [6–8]. The available
agonists against these receptors have an “excellent” effect on
the symptom control, by inhibiting the release of bioactive
agents and exhibit a relatively good therapeutic index [9].
However, response is not durable and resistance/
tachyphylaxis may evolve over time [10], necessitating dose
adjustment or alternative therapies. In addition, the antitumor
effects of SST analogs have been reported in a prospective
study [11]. These effects are, purportedly due to increased
apoptosis, decreased growth and proliferation through
mitogen-activated protein kinase, inhibition of insulin-like
growth factor receptor signaling, and inhibition of protein
synthesis caused by decreased transcription [12–16]. The
antitumor effect (measured by an increase in PFS), as shown
prospectively in the PROMID study, is, however, only evident
in tumors with a proliferation rate (Ki-67) <2 % and<10 %
liver involvement (the method of assessment of 10 % liver
involvement was at best ambiguous) [11]. More recently, a
study (CLARINET) using an alternative SST analog has sup-
ported the assertion of proliferative regulation by this class of
agents [17].

The other two novel targeted therapies, mTOR inhibitors
and tyrosine kinase inhibitors, face a substantial challenge in
their general acceptance despite approval for clinical use by
the regulatory authorities [4, 18]. These include substantial
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toxicity rates, a lack of clear understanding of the mechanism
of action, questionable (unproven) omnipresence of the targets
in NETs, and sometimes tachyphylaxis [19]. As a conse-
quence, physicians have exhibited restraint in using these
agents as first-line therapy in advanced pancreatic NETs.

Nonspecific chemotherapeutic regimes including
streptozotocin in combination with 5-fluorouracil (FU) or
temozolomide in combination with capecitabine have yielded
promising results in a “select” subgroup of pancreatic NETs
[20, 21]. For grade 3 neuroendocrine cancers, even fewer
treatment options are available, and conventional archaic cy-
totoxic chemotherapy schemes are usually applied [5, 22].

PRRT, a targeted therapy, has been available for almost
20 years. If pretreatment assessment establishes the presence
of adequate SST receptors on tumors, either by use of SST
receptor scintigraphy or 68Ga SST receptor positron emission
tomography (PET)/CT, treatment can be considered feasible
[23]. Under such circumstances, radionuclide-labeled SST
analogs, e.g., 177Lu-DOTATATE, can be used to deliver cyto-
toxic radiation doses to the tumor with consistent cumulative
absorbed doses, reaching, in several cases, values up to 250–
300 Gy. The absorbed doses required to eradicate a human cell
range widely depending on a series of variables. These include
the phase of the cell cycle (dividing cells being the most
radiosensitive) but also the intrinsic radiosensitivity of the cell
type, the proliferation kinetic, the proportion of clonogenic
stem cells, and the DNA repair capacity [24]. For NETs
undergoing PRRT, it has been calculated that an absorbed
dose of at least 70–80 Gy is required to obtain an objective
response [25]. Thus, the combination of a docking mechanism
(SST receptors) and a lethal radiation dose theoretically en-
ables effective selective killing of well to moderately differ-
entiated NETs.

PRRT: the facts

Effectiveness

“Only the one who does not question is safe from
making a mistake” (A. Einstein, letter to Gustav Bucky,
1945).

Efficacy

Amongst the cytotoxic systemic therapeutic options currently
available, PRRT appears to outperform others in terms of
efficacy measurable in terms of symptom control to prolon-
gation of life. With 177Lu-DOTATATE, patients are expected
to live for a median duration of 46months after first treatment,
and disease progression from the time of first PRRT can be

delayed for a median duration of 33 months. An even more
relevant parameter for efficacy of any treatment, i.e., OS,
indicates a survival benefit of 40–72 months from the time
of first diagnosis compared to historical controls (suboptimal,
albeit only available reference point) [26]. Patients are expect-
ed to live for 96.4 months after the first diagnosis if treated
with 90Y-DOTATOC [27]. Additionally, patients responding
to PRRT (morphological, clinical, or biochemical) and quali-
fied for re-treatment are expected to have a benefit of
20 months in OS after first diagnosis; using the time of first
treatment as the reference point, patients showing a response
were likely to live for approximately 2.8 times longer than the
nonresponders [27].

Safety

“A ship is always safe at the shore—but that is NOT
what it is built for” (A. Einstein).

As is true for any cytotoxic therapy, PRRT is not without
adverse events. Most are self-limiting and reversible, and are
either subacute or acute, such as nausea (or more rarely
vomiting), fatigue, mild hair loss (with Lu peptides), impair-
ment of male fertility, and, occasionally, exacerbation of clin-
ical syndromes [31]. The long-term chronic and permanent
effect of radiation on kidney and bone marrow is, however, a
major concern especially because NET patients have a rela-
tively high OS.

Nephrotoxicity

The high incidence of renal toxicity, which is especially
prominent for 90Y peptides (3–9 % G4 toxicity [27, 32], is
less of a clinical problem after 177Lu-octreotate (0.4 % inci-
dence of G4 toxicity) [26]. Several postulates have been
proposed to explain PRRT nephrotoxicity. 90Y, based on its
beta emission profile, has a longer path length compared
to 177Lu. In the kidney, radiopeptides are filtered, absorbed
in the proximal tubular cells, and transported into the intersti-
tium. Beta particles from 90Y have a maximum path length of
11mm and an effective path length of 5.3 mm, thus 90% of its
energy is absorbed within a sphere with a 5.3-mm radius [33].
This path length corresponds to 100–200 cell diameters, mak-
ing it more probable for them to reach the glomerulus from the
proximal tubule. The possibility of damage to the glomerulus
with 90Y-labeled radiopeptides is thus higher. The risk of
radiation-induced nephrotoxicity is to a minor extent predict-
able based on preexisting factors including age (>70 years),
uncontrolled diabetes mellitus and hypertension, and a de-
creased renal function prior to treatment (e.g., prior treatment
with chemotherapies) [34]. Studies correlating dosimetry with
clinical results indicate without these risk factors a cumulative
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kidney absorbed dose of up to 40 Gy can be administered. In
the presence of risk factors, reduction to 28 Gy is considered
prudent and reasonable [35]. These data have shown that
information derived from external radiation therapy cannot
be applied to PRRT, given the different rate of dose delivery
and the different mechanism(s) of renal irradiation. An indi-
vidualized PRRT approach based upon dosimetry has been
suggested as the optimal strategy if 23 Gy is maintained as the
upper renal limit since this cumulative dose may be achieved
in two therapy cycles in somewhile in others the therapy cycle
can be extended up to ten cycles [36].

Hematotoxicity

The most common subacute side effect is transient and mild
hematological toxicity, usually occurring with a nadir of 4–
6 weeks after therapy. Severe, grade 3 or 4 hematological
toxicity occurs in less than 15 % [26, 27, 37, 38]. A high-
grade potentially life-threatening bone marrow toxicity
(myelodysplasia) is reported in up to 2 % [39–41]. An asso-
ciation with prior chemotherapy or radiotherapy has been
implicated and may represent a confounding factor in
assigning a causal relationship [31]. A sufficient time interval
between chemotherapy and PRRT is currently recommended
to avoid such complications. However, mathematical model-
ing of clinical factors predictive of toxicity indicates that such
analysis is less than 50 % accurate [42]. It seems likely
therefore that genomic analysis will be required to identify
and predict specific organ sensitivity to irradiation [42].

PRRT: myths

“Once we accept our limits, we go beyond them” (A.
Einstein).

Mechanism of action of radionuclides

According to the principles of radiobiology, free radicals
produced during interaction of radiation in and around cells
are effective in inducing double-stranded DNA break and
consequent apoptosis by targeting G2/M cells. At this time
point in the cell cycle, the DNA repair mechanism is least
effective. In indolent and slowly progressive tumors, like
NETs, a minority of tumor cells are in this phase. A prolon-
gation of the targeted absorbed dose (over several days) has,
therefore, a higher probability of reaching radiosensitive cells.

Nuclear medicine therapy owes its success and existence to
the presence of a sodium iodide symporter (NIS) on thyroid
cells and to the availability of isotopes of iodine, like 131I,
synthesized in 1938 [43]. In metastasized differentiated thy-
roid cancers, two thirds of which exhibit radioiodine uptake

following thyroid-stimulating hormone (TSH) stimulation,
radioiodine therapy can achieve a complete remission in at
least one third [44]. Radioimmunotherapy with anti-CD20
antibodies in B-cell non-Hodgkin’s lymphomas also achieves
complete responses in 75 % of patients [45].

In stark contrast, PRRT has an objective response rate of
around 30 % (4–38 %) and is associated mostly with partial
and minor remission [26, 38]; complete remission is extreme-
ly rare. It is likely that differences in tumor biology and
particularly the microenvironment are of critical relevance in
defining the efficacy of a radiation-targeted therapy. Clearly,
the presence of a target (mainly SST receptor subtype 2) and
application of a continuous (albeit decreasing) irradiation are
insufficient to ensure radiation-induced cell death. The re-
sponse rate to PRRT varies significantly depending on the
location of the primary tumor. For example, an SST receptor-
positive metastasized ileal NETexhibits a response rate which
is much lower than SST receptor-positive metastasized pan-
creatic NET [26, 27, 29]. Given these observations, the con-
cept of utilizing PRRT in all well to moderately differentiated
gastroenteropancreatic NETs requires critical reassessment.

Treatment protocol

“A perfection of means, and confusion of aims,
seems to characterize our age” (A. Einstein, The common
language of science) [1].

The Rotterdam group advocates four therapeutic cycles of
7.4 GBq 177Lu-DOTATATE/cycle at 8-week intervals, while
the Basel group recommend two to three cycles of 100 mCi/
m2 90Y-DOTATOC at 4- to 6-week intervals [26, 27]. Some
centers suggest a combination of both 90Y-DOTATOC and
177Lu-DOTATATE in sequence or as a cocktail to deal with
small and large metastases synchronously [40]. Increase in
radiosensitivity as a measure to increase the objective re-
sponse rate has shown some promising results [46].
Alternatively, new agents have been proposed including the
alpha particle emitting radionuclide 213Bi [47]. Overall, how-
ever, there exists no general consensus on the treatment pro-
tocol, as is evident in the ambiguity of the consensus guide-
lines on PRRT by the European Neuroendocrine Tumor
Society (ENETS) or from the International Atomic Energy
Agency (IAEA) [23].

There are some major unresolved issues with PRRT proto-
cols. These include: (a) choice of radionuclide (90Y vs 177Lu
vs 213Bi), (b) the cumulative and per-cycle administered ac-
tivity, (c) the frequency of fractionation of radiolabeled pep-
tides, (d) the time interval between two therapy cycles, (e) the
possibility of a dosimetry-guided adaptation in administered
activity, and (f) the most appropriate kidney protection regime
(the options are only amino acid or in combination with
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plasma expander Gelofusine®). In the absence of homoge-
neous appropriately powered prospective randomized studies,
the uncertainties and unanswered questions associated with
the aforementioned issues remain an obfuscating issue in the
establishment of PRRT as a first-line therapy for metastasized
progressive good to moderately differentiated NETs. These
factors have for the most part limited PRRTadministration to a
handful of centers in Europe.

Response evaluation

“As the area of light expands, so does the perimeter of
darkness” (attributed to A. Einstein).

Most of NET patients live with tumors for 5–10 years,
making it difficult to objectively compare the efficacy of a
treatment based on their survival after first diagnosis. An
objective method of assessment of response based on imaging
methods plays a central role in the treatment algorithm to
avoid undue toxicity, improve QOL, and intervene in a timely
fashion with alternative therapies in case of treatment failure.

However, an accurate measurement of response assess-
ments, as based on two-dimensional changes in size in slow
growing tumors, is a major issue. The RECIST criteria are not
applicable to indolent tumors because the changes in tumor
size, in response to cytotoxic or cytostatic treatment, do not
become appreciable despite clinical or biochemical responses
[48, 49]. To overcome this issue, nuclear medicine physicians
have advocated the use of PET-based response criteria, as a
better indicator of active disease [7, 50]. Decrease in SST
receptor expression on tumors as measured on 68Ga-
DOTATOC/DOTATATE has been proposed as a superior
predictor of response compared to an alteration in size.
However, tumor expression of SST receptors may diminish
independent of response to PRRT as for example due to trans-
formation of G1 or G2 NET in more aggressive G3 NETs. This
is one of the reasons for the lack of enthusiasm and acceptance
of SST receptor expression-based response criteria by non-
nuclear medicine physicians. Proponents of PRRT need to
examine deeply and diligently the optimal method of response
assessment to avoid the same confusion presented in the results
of the Rotterdam groupwhere the tumor-free patients (complete
remission) had the same median OS as the patients with
responding or stable tumor burden after PRRT [26].

Conclusion

“We can’t solve problems by using the same kind of
thinking we used when we created them” (A. Einstein).

The introduction of a novel therapy is always beset by
difficulties: firstly, the need to persuade stakeholders in the
disease space that a new option has an advantage; secondly,
the need to ensure that there is clinical benefit to patients and

that this is not outweighed by any downside toxicity; and
thirdly, the requirement that rigorous information is provided
to allow for a rational understanding of the mechanisms of
action of the agent. This should be coupled to a robust assess-
ment of efficacy. Lastly, there is the necessity to ensure that
judicious interface of the new therapy with the previous
modality maximizes the opportunity to provide care delivery
to patients and results in accrual of advantage in disease
management. PRRT has regrettably failed to meet many of
these benchmarks and therefore despite its potential advan-
tages if appropriately deployed has, for the most part, failed to
completely satisfy the numerous stakeholders in the NET
field. A carefully planned and judiciously managed clinical
and research program by the nuclear medicine societies is
needed to transform the current status of PRRT. It is clear that
a diligent and judicious use of this potent therapeutic option
with a proven and reliable mechanism of action, and a rela-
tively safe toxicity profile, could potentially become the first-
line therapy option for patients with metastasized progressive
mild to moderately differentiated NETs.
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