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Abstract
Purpose In pinhole SPECT, attenuation of the photon flux
on trajectories between source and pinholes affects quanti-
tative accuracy of reconstructed images. Previously we
introduced iterative methods that compensate for image
degrading effects of detector and pinhole blurring, pinhole
sensitivity and scatter for multi-pinhole SPECT. The aim of
this paper is (1) to investigate the accuracy of the Chang
algorithm in rodents and (2) to present a practical Chang-
based method using body outline contours obtained with
optical cameras.
Methods Here we develop and experimentally validate a
practical method for attenuation correction based on a

Chang first-order method. This approach has the advantage
that it is employed after, and therefore independently from,
iterative reconstruction. Therefore, no new system matrix
has to be calculated for each specific animal. Experiments
with phantoms and animals were performed with a high-
resolution focusing multi-pinhole SPECT system (U-
SPECT-II, MILabs, The Netherlands). This SPECT system
provides three additional optical camera images of the
animal for each SPECT scan from which the animal contour
can be estimated.
Results Phantom experiments demonstrated that an average
quantification error of –18.7% was reduced to –1.7% when
both window-based scatter correction and Chang correction
based on the body outline from optical images were applied.
Without scatter and attenuation correction, quantification
errors in a sacrificed rat containing sources with known
activity ranged from –23.6 to –9.3%. These errors were
reduced to values between –6.3 and +4.3% (with an average
magnitude of 2.1%) after applying scatter and Chang
attenuation correction.
Conclusion We conclude that the modified Chang correction
based on body contour combined with window-based scatter
correction is a practical method for obtaining small-animal
SPECT images with high quantitative accuracy.
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Introduction

Pinhole SPECT provides high-resolution images of small
animals that can be used to quantitatively study the in vivo
distribution of a new tracer or drug, for example to
determine whether and how molecules reach the target area
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or what receptors are available in the animal. SPECT can
also be employed for function or lesion detection with the
help of a wide range of available radiolabelled molecules.
In many cases far fewer animals need to be sacrificed in
SPECT studies than in post-mortem tissue distribution
studies, because SPECT allows for dynamic imaging and
longitudinal studies and provides 3-D images with slices
that are perfectly aligned to each other.

Several dedicated small-animal SPECT systems have
been proposed. Most of them (e.g. [1–9]) employ (multi-)
pinhole collimation instead of parallel-hole collimation that
is used clinically, taking advantage of the magnification of
pinholes to improve resolution [1, 10]. Small-animal
SPECT images are typically much less degraded by photon
scattering and absorption than clinical SPECT images
because of smaller body dimensions. Nevertheless, the
degradation in small-animal SPECT images is not negligi-
ble. For example in the centre of a rat-sized cylinder of
water, photon attenuation can reduce the measured concen-
tration of activity up to 25% when imaging with 99mTc [11].
For clinical SPECT devices several attenuation correction
[12–15] and scatter correction methods [14–20] have been
developed. Several of these systems are now commercially
available and their accuracy has been improved by the
availability of integrated SPECT/CT devices [21, 22].
There are few publications about quantitative small-animal
SPECT however (e.g. [11, 23, 24]). Recently, Vanhove et
al. [25] presented their studies with an average error of
–7.9±10.4% between the activity concentrations measured
on their scatter- and attenuation-corrected pinhole SPECT
mouse images and in a dose calibrator. They used
microCT imaging for producing attenuation maps, which
has the advantage that non-uniformities can be taken into
account but at the cost of increased dose to animals and
need for additional hardware. Furthermore, the attenuation
correction was incorporated in the iterative reconstruction
process, which in some reconstruction algorithms may
cause problems since they require a new system matrix for
each subject to be imaged.

Post-reconstruction attenuation correction algorithms, such
as the Chang method, had been proposed decades ago [26].
Their big advantage is that they do not need new system
matrices. The first-order correction provided by the Chang
algorithm is often not accurate enough for clinical use
because effects of attenuation in patients are very strong. The
aim of this paper is (1) to investigate the accuracy of the
Chang algorithm in rodents and (2) to present a practical
Chang-based method using body outline contours obtained
with optical cameras. The method was tested for the case of
focusing pinhole SPECT [5, 27] and in combination with
correction of other effects such as scatter and distance-
dependent collimator blurring and sensitivity.

Materials and methods

U-SPECT-II: a focusing pinhole small-animal SPECT system

U-SPECT-II [9] is a stationary focusing multi-pinhole
SPECT system for small-animal organ and total-body
imaging studies. Exchangeable cylindrical collimators con-
taining 75 focusing pinholes can be mounted in the centre
and are surrounded by three NaI gamma cameras. Optical
photos are acquired by three integrated optical cameras for
volume of interest (VOI) selection before SPECT acquisi-
tion (Fig. 1). With an XYZ stage, an animal can be moved
inside the collimator during imaging in order to also enable
obtaining total-body images.

The U-SPECT-II system can reach sub-half-millimetre
resolution. With 99mTc, the image resolution is better than
0.35 mm in any part of a mouse-sized object or better than
0.8 mm in any part of a rat-sized object [9]. With the
scanner hardware and acquisition software, the information,
including scintillation time, position and photon energy,
etc., of every scintillation event is recorded in list mode [9].
This offers great flexibility for image reconstruction, such
as implementing decay and spectrum- (e.g. window-) based
scatter correction. More detailed descriptions, evaluations
and examples of applications of the U-SPECT systems were
given in [5, 9, 28, 29].

Image reconstruction

The scanning focus method (SFM) described in [30] was used
for acquisition. With the SFM, a total-body scan can be
carried out with a sequence of bed positions, and its image
can be reconstructed with a single series of iterations. The
system matrix used for computing re-projections and back-
projections during iterative reconstruction with pixel-based
ordered subset expectation maximization (POSEM [31]) is
derived from point spread function (PSF) measurements
[32]. Within these PSF-based matrices, the effects of the
detector blurring, pinhole blurring and pinhole sensitivity are
compensated.

Calibration factor

We define the calibration factor to be the ratio of the
activity concentration to the voxel value in reconstructed
SPECT images. Since the various distance-dependent
pinhole sensitivities are already modelled in the system
matrix and subsequently compensated in the reconstruction
process [32], the calibration factor should be theoretically
homogeneous throughout all voxels of reconstructions if
attenuation and scatter can be neglected. It means that the
calibration factor is a global scaling factor; thus we can
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obtain the factor by measuring and reconstructing a point
source that is almost attenuation free.

We prepared a 99mTc point source. The activity of the
source was 69.0 MBq measured in a VIK-202 dose calibrator.
The calibration scan lasted for 200 min, and then a volume of
10×10×10 mm3 containing the point source in the centre was
reconstructed by running 6 POSEM iterations with 16 subsets.
Decay effect was compensated during the reconstruction.

The calibration factor, CF, was given by

CF ¼ A

V �PR
; ð1Þ

where A is the activity of the point source measured in the
dose calibrator, ∑R is the summation of voxel values all
over the image and V is the volume of a voxel. If A has a
unit of MBq, V is expressed in millilitres, and voxel value R
is considered to be dimensionless, then the CF has a unit of
MBq/ml.

For scatter- and attenuation-free acquisitions and recon-
structions, after scaling by the CF, the voxel values directly
represent the activity concentration in those voxels’ local
regions. However, in practice, scatter correction and
attenuation correction should be carried out apart from the
global scaling of voxel values.

(a) (b)

(c)

Fig. 1 U-SPECT-II. a Overview
of system. b Three integrated
optical cameras. c User interface,
showing optical photos for VOI
selection
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Scatter correction

In the U-SPECT-II system, scatter correction is integrated
into the reconstruction step. Since data are acquired in list
mode, scatter and photopeak windows can be set after
acquisition. We employed the triple energy window (TEW)
technique [33] in both phantom and animal experiments for
this paper. A photopeak window (140 keV, 20% width) was
used. Two background windows (centred at 117 keV, 10%
width and centred at 163 keV, 7% width, respectively) were
set adjacent to the photopeak for estimating the number of
scattered photons of which the energies ranged inside the
photopeak window. The scatter images were scaled by the
ratio of the window widths, and added to the estimated
scatter-free projections in the denominator of the POSEM
formula along the lines proposed in Bowsher et al. [34]. In
this way the contributions of scattered photons in projec-
tions were taken into account in order to eliminate their
detriment to the images as much as possible.

This scatter correction scheme was also performed during
the reconstruction of the point source used for obtaining the
calibration factor. That scatter needs to be taken into account
here is because although probability of scattering inside the
point source is quite small, the amount of scattering by the
imaging system, especially by the collimator, is not negligible
[35, 36]. In a reconstruction of the point source without
scatter correction, we found that the calibration factor is
4.35% smaller than the one with scatter correction.

Attenuation correction

The Chang method [26] is a very practical first-order
attenuation correction algorithm. It can be implemented as a
post-reconstruction processing method, so that no new
system matrix is needed. In recent clinical SPECT software,
it has often been replaced by more accurate iterative
attenuation correction. However, due to the small amount
of attenuation in rodents, the Chang algorithm could be
sufficient. If the over- and/or undercorrection problems of
the Chang algorithm can be ignored, the attenuation
correction process may benefit from the method’s simplicity
and high computation speed.

The consequence of attenuation is a reduction in the
number of gamma photons which can arrive directly at the
detectors, caused by photon scattering and absorption. The
amount of attenuation depends on the photon energy,
medium properties and the travelling distance of gamma
photons in the medium. The transmitted fraction (TF) is
therefore represented as

TFL ¼ exp �
Z
L

mðlÞdl
0
@

1
A; ð2Þ

where L denotes the travelling path of a gamma photon
inside the attenuation medium, and μ is the attenuation
coefficient. The number of counts detected in that path is
then reduced to

N ¼ N0TFL; ð3Þ
where N0 represents the number of counts detected without
attenuation.

Chang [26] provided an approximation here: the TF of a
voxel over all possible projection paths is the average of all
TFLs, or

TF ¼ 1

M

XM
m¼1

exp �
Z

Lm

mðlÞdl

0
B@

1
CA; ð4Þ

where M is the total number of projections taken in
acquisition. In small-animal SPECT, a small M could be
sufficient due to the small amount of attenuation. To
estimate a sufficiently large M for a rat-sized object, we
calculated the TFs with different M on a single slice with
an attenuation coefficient of 0.151 cm–1 (= μ of 140 keV
photon travelling in water) inside an area of an ellipse
with its major and minor axes equal to 4 and 2 cm,
respectively. Then we took the TFs of the voxels
calculated with M=1,024 as reference data and inspected
the normalized root mean square deviation (NRMSD)
when M is smaller. The results are listed in Table 1. We
found that by increasing M above 32 gamma ray
directions, the NRMSDs are below 0.2%. Therefore, we
considered M=32 as sufficiently large for a rat-sized
object and applied it in our studies.

An attenuation map was needed to determine the
attenuation coefficient μ in different locations of the image
volume. In order to simplify the process, we considered the
μ to be homogeneous and equal to 0.151 cm–1 (= μ of
140 keV photon travelling in water) inside the regions of
the objects scanned. In this scheme, only the contour
information of the objects was required.

An application program was developed for defining top
view and side view 2-D contours of animals on the optical
photos that standardly are taken before U-SPECT acquisi-
tion, e.g. for the purpose of VOI selection and activity
localization. As shown in Fig. 2a, the three optical photos
are displayed on the graphical user interface of the
software, with a closed Bézier spline curve lying on top
of each. The curves are initialized with standard shapes and
can be deformed to fit animal outlines by dragging several
anchor points. After proper 2-D contours were made, the
software measured the width p and height q of the animal
on the top view and side view contours, respectively, in
each position of those transverse slices (Fig. 2b). Then it
created an ellipse of which the horizontal and vertical axes

2130 Eur J Nucl Med Mol Imaging (2010) 37:2127–2135



were equal to p and q, respectively, determined by the
following equation:

x2

p2
þ y2

q2
¼ 4: ð5Þ

All those ordered ellipses were stacked together to form a
3-D contour of the object (Fig. 2c).

Quantification

With this 3-D contour and some extra information, such as
voxel size and attenuation coefficient μ, the software was
able to compute the TF of every voxel:

TF ¼ 1

32

X32
m¼1

exp �mLmð Þ: ð6Þ

It is important to compute TFs for not only the voxels
inside a 3-D contour, but also the ones outside. A source can
exist outside an attenuation medium, e.g. due to an overly
tight body contour, and gamma rays emitted by that source
and penetrating the medium will still be attenuated, so that
the TFs for that source outside the 3-D contour should not be
simply set to 1. Another advantage is that it makes the TF
change continuously across the border of the contour, which
reduces the error brought in by an inaccurate contour.

Finally we computed the activity concentration AC at the
location of every voxel of the reconstructed image, with the
equation

AC ¼ R � CF
TF

; ð7Þ

in which R was the scatter-corrected voxel value.

M 4 8 16 32 64 128 256 512 1,024

NRMSD(%) 10.63 1.31 0.29 0.14 0.08 0.04 0.02 0.00 0

Table 1 NRMSD of TFs on an
elliptic cross section between
different M and M=1,024

(a)

(b) (c)

p q q

p

Fig. 2 Generating a 3-D con-
tour. a Graphical user interface.
b 2-D contours. c A mesh plot
of 3-D contours based on a stack
of ellipses
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Experiments

We first used a simple cylindrical phantom to validate the
accuracy of absolute quantification with U-SPECT-II. The
phantom (45 mm diameter and 40 mm height) was filled
with 99mTc solution with activity concentration equal to
2.88 MBq/ml. The activity was measured by using the VIK-
202 dose calibrator. A scan was then performed with U-
SPECT-II, and the image was subsequently reconstructed by
using 6 POSEM iterations with 16 subsets, a 0.375-mm
voxel size, and with decay and scatter corrections integrated.

A cadaver of a 250-g female Wistar rat was used to test
our method in a realistic complex attenuation distribution.
Twelve 99mTc sphere-like sources were made from tips of
microcentrifuge tubes (container), cotton balls (solution
absorber), 99mTc solution (radioactive source) and Parafilm
(seal). Their diameters were around 5 mm and activities
ranged from 7.29 to 9.87 MBq, measured in the same dose
calibrator employed in the phantom experiment. These
sources were inserted into the rat (mouth, neck, shoulder×
2, lung×2, liver, right kidney, intestine, bladder and back×
2) by surgery. Then a total-body SPECT scan was carried
out. The image was reconstructed by using 6 POSEM
iterations combining with 16 subsets and a 0.375-mm voxel
size. Decay and scatter corrections were integrated into the
reconstruction.

Results

Phantom experiment

Figure 3 shows reconstructed slices of the cylindrical
phantom to illustrate the effect of the attenuation correction.
The summation of ten transverse slices (decay corrected)
without attenuation correction (Fig. 3a, b) is much darker
than with attenuation correction (Fig. 3c, d), especially in
the centre. This can be observed more clearly on the line
profiles through the diameters of the phantom along the X
direction (Fig. 3e). The activity concentration measured in
the dose calibrator as a gold standard is indicated by a
horizontal line at 2.88 MBq/ml.

Without corrections, the difference between the activity
concentrations calculated on the reconstructed SPECT image
and measured in the dose calibrator was significantly under-
estimated by –0.54 MBq/ml, or –18.7%. With scatter
correction only, the difference worsened to –0.77 MBq/ml
(–26.8%). Applying only attenuation correction led to an
overestimation by 0.26MBq/ml (9.2%). Applying attenuation
correction in combination with scatter correction resulted in a
small underestimation of –0.05 MBq/ml (–1.7%). These
numbers were calculated on the voxels in a cylindrical volume
with a diameter of 42 mm, which was slightly smaller than the

phantom size in order to avoid the influence of partial volume
effect.

Animal experiment

Since the sources inserted into the rat were isolated well, it
is possible to segment sub-volumes for individual sources
on the reconstructed SPECT image. The activity of each
source was calculated by adding all the voxel values in the
sub-volume containing that source and then multiplying the
resulting sum, the CF, and the voxel size together. Eleven
volunteers were invited to carry out the attenuation
corrections on the reconstructed image individually, using
the application program that is shown in Fig. 2a. After a
15-min training session, all volunteers were able to finish
their testing within 5 min. Table 2 lists the activities of the
sources measured in the dose calibrator and their quantita-
tive results calculated on the decay, scatter and attenuation-
corrected image. The averages, standard deviations and
percent errors of those results over the 11 testers are also
listed.

Figure 4 shows the decay-corrected activities of the
sources calculated on the reconstructed SPECT image
without and with scatter and attenuation correction, as well
as the activities measured in the dose calibrator. The

(e) 

0         0.5               1                 1.5               2                 2.5               3                 3.5 MBq/ml
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Fig. 3 Averages of ten transverse SPECT slices of the cylindrical
phantom. The grey scales of a–d are the same, from black (0 Mbq/ml)
to white (3.5 MBq/ml). a Without corrections (NC). b With scatter
correction (SC). c With attenuation correction (AC). d With scatter and
attenuation correction (SC+AC). e Line profiles through centre of
phantom. The line MC indicates the concentration measured with a
dose calibrator, as a gold standard
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quantification errors on the uncorrected images ranged from
–23.6 to –9.3%. With attenuation correction only, these
errors of the 11 testers’ average results ranged from –1.4 to
10.3%, with an average magnitude of 5.6% over all 12
sources. With scatter and attenuation correction, these
errors ranged from –6.3 to +4.3%, and the average
magnitude decreased to 2.1%.

Discussion

Quantification of SPECT imaging in absolute terms becomes
possible when physical effects like collimator blurring,
sensitivity, scatter and photon absorption are all modelled
during iterative reconstruction or compensated afterwards. In
clinical SPECT imaging, non-uniform attenuation maps (e.g.

from X-ray CT) need to be acquired for accurate
quantitative results [15]. Our work shows that attenuation
compensation can be performed well in small-animal
SPECT applications, despite the fact that no CT scanner
was used. Uniform attenuation maps were created with the
help of body contour information from optical cameras. At
the current stage of this research, the 2-D contours were
defined manually with deformable closed spline curves on
the optical photos. This could possibly be further
automated by using certain image processing techniques,
such as image segmentation, pattern recognition and an
anatomical body contour model.

Experiments were performed to validate our method,
first with a simple uniform phantom, and then with a rat
cadaver. Although the animal model of a rat with artificial
sources is still different from a realistic set-up of pre-

Table 2 Activities of sources measured in dose calibrator and corrected results by 11 individual testers

Source No. Activity
(MBq)

Quantified results by 11 individual testers (MBq) Aver.
(MBq)

SD
(MBq)

Error
(%)

1 8.75 8.91 8.78 9.00 8.43 8.86 8.54 8.69 8.69 8.50 8.31 8.80 8.68 0.21 -0.8

2 8.77 7.92 8.25 8.23 7.82 8.09 8.23 8.38 8.02 8.51 8.18 8.87 8.23 0.29 -6.2

3 8.75 8.82 8.77 8.65 8.80 8.69 8.65 8.22 8.74 8.58 8.73 8.88 8.68 0.18 -0.8

4 7.87 8.07 8.19 8.13 8.25 8.27 7.96 8.34 8.09 8.04 8.33 8.15 8.16 0.12 3.7

5 8.16 8.30 8.15 8.31 8.04 8.25 8.01 8.00 8.23 7.98 8.08 8.26 8.15 0.13 -0.2

6 7.94 8.21 7.94 7.78 7.94 8.03 7.63 7.52 8.02 7.76 7.92 7.97 7.88 0.19 -0.7

7 9.73 10.47 9.87 10.26 10.29 10.00 9.93 9.59 9.62 9.97 10.02 9.99 10.00 0.26 2.8

8 7.29 7.82 7.59 7.82 7.78 7.68 7.60 7.45 7.31 7.63 7.68 7.65 7.64 0.15 4.8

9 8.96 9.19 8.89 9.17 8.81 8.95 8.74 8.61 8.77 8.73 8.56 8.94 8.85 0.20 -1.2

10 9.27 9.63 9.47 9.68 9.39 9.49 9.32 9.29 9.40 9.29 9.17 9.53 9.42 0.15 1.7

11 9.69 9.73 9.66 9.78 9.44 9.60 9.53 9.64 9.54 9.33 9.07 9.71 9.55 0.21 -1.5

12 9.87 9.91 9.88 10.02 9.64 9.97 9.62 9.72 9.84 9.62 9.60 9.85 9.79 0.15 -0.8

Max. error 6.2
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Fig. 4 a Planar images showing
positions of sources. b Activities
of sources. NC no correction
was performed, SC+AC scatter
and attenuation correction was
performed, MA activities
measured by dose calibrator
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clinical studies (with injections and region of interest
measurements, etc.), it is very well suited for evaluating
the accuracy of correction methods, since the exact amounts
of activity in specific regions of interest are known (which
is in contrast to using living animals with a tracer injected).
The results from the phantom and animal experiments
demonstrated that without compensation an approximately
10–30% underestimation of the activity concentration could
be achieved, varying with the diameters of the objects and
the depth of the sources. Note that even if the sources were
just under the skin of the rat, i.e. the common positions of
transplanted tumours for pre-clinical cancer research, there
was still more than 10% underestimation. Applying a first-
order uniform attenuation correction with the Chang
algorithm resulted in accurate quantifications in our experi-
ments, especially when combining together with scatter
correction (–1.7% in the phantom study and from –6.3 to
+4.3% in the animal study).

In Table 2 we notice that the magnitudes of most errors
are below 5% except for source No. 2 which has an
underestimation of –6.3%. This source was in the rat’s
mouth and we found that the mouth can be hardly seen on
the optical photos, due to the obstruction of the tissue and
tape around the rat, which makes the 2-D contours at that
region uncertain. In fact, the source is not even enclosed
with the contours made by 7 of the 11 testers. This
apparently leads to an underestimation of the attenuation
and thus to a negative bias of the quantitative result.
Therefore, we suggest trying to keep a clear sight of the
animal contour in a study that requires absolute quantifica-
tion. On the other hand, the standard deviations of the 11
testers’ results are small (≤ 3%), which supports the
observation that the proposed attenuation correction method
is not very sensitive to the contour differences introduced
by some subjective judgments of individuals.

When imaging with 99mTc, scatter correction is usually
not performed in normal studies due to the small amount of
Compton photons within the photopeak window. However,
for absolute quantitative studies, it is better to apply scatter
correction in order to avoid the overestimation caused by
scattered photons. By using attenuation correction in
combination with scatter correction, about 7.5 and 3.5%
improvement of quantitative accuracy over the accuracy
with only attenuation correction was gained in our phantom
and rat cadaver experiments, respectively.

There are two things in our experiments which may
cause a bias to the results. The first one is the energy
window settings of reconstruction. Different photopeak
window settings will affect the proportion of gamma counts
which contribute to the reconstructed images and thus
change the calibration factor. To avoid this we employed
the same window settings for all of the reconstructions. The
other one is the inaccuracy of the dose calibrator. By using

the same dose calibrator to measure the sources for
computing the calibration factor and for the validation
experiments, the system error, or bias, of the dose calibrator
cancels out in the final results of relative errors. However,
accurate calibration of the dose calibrator is essential to
obtain the exact calibration factor and absolute quantitative
results in applications.

In order to simplify our method and to facilitate rapid
correction, the pinhole geometry of the U-SPECT-II system
and associated attenuation paths were roughly (2-D)
approximated during the Chang-like attenuation correction.
The actual projection paths of a voxel are very complicated
considering both the multi-pinhole geometry and the use of
multiple bed positions during acquisition. It was shown that
this approximation provides good quantitative accuracy in
small-animal images. That still good results were obtained
can partly be explained by the fact that changes of
transmitted fraction due to the length differences between
oblique paths and perpendicular paths are small (around 5%
at the most).

In clinical studies, the Chang algorithm is known to
cause over- and undercorrection, and therefore an additional
iterative step for compensation is implemented, however at
the cost of noise increase. Since in small-animal SPECT the
results are accurate without additional iterations, we
restricted our method to pure post-reconstruction process-
ing which (1) is much easier to implement and (2) does not
increase noise.

Conclusion

The effects of attenuation in rat-sized objects are signifi-
cant. We introduced a contour-based attenuation correction
method for small-animal SPECT. To validate this method,
phantom and animal experiments were performed and
subsequently quantified with a practical software tool by
11 testers. From the results (average error of 1.7 and 2.1%
for phantom and animal studies, respectively), we conclude
that this body contour-based uniform attenuation correction
method derived from the Chang algorithm, in combination
with scatter correction, is sufficient for accurate absolute
quantification in small-animal SPECT imaging. The infor-
mation of 3-D contours for generating the attenuation maps
can be obtained from optical photos instead of from X-ray
CT images. This gives opportunities to do absolute
quantitative SPECT with stand-alone SPECT systems and
to reduce the dose to the animals caused by X-rays which
can be limiting in longitudinal studies.
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