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Abstract

Purpose Peptide receptor radionuclide therapy using [3-
emitting radiolabelled somatostatin analogues like DOTA,
Tyr’-octreotate shows beneficial results in patients suffering
from somatostatin receptor overexpressing tumours. How-
ever, after high-dose therapy partial renal reabsorption of
radiopeptides may lead to nephrotoxicity. Co-infusion of
lysine/arginine lowers renal retention of these radiopeptides
without affecting tumour uptake. Recently co-
administration of Gelofusine has been described to have a
comparable kidney-protecting effect in rats. In the present
study optimal dosing of Gelofusine co-administration was
studied in tumour-bearing rats.

Methods Doses of 40, 80, 120 or 160 mg/kg Gelofusine
were co-injected with 15 pg DOTA,Tyr’-octreotate, la-
belled with 3 MBq '"'In for biodistribution (24 h post-
injection, n=4 per group) and with 60 MBq '"'In for
microSPECT imaging experiments at 3, 24 and 48 h post-
injection. An additional group of rats received 80 mg/kg
Gelofusine plus 400 mg/kg lysine co-injection. Biodis-
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tribution studies were performed both in older (475 g)
and younger (300 g) rats, the latter bearing CA20948
tumours.

Results Co-injection of 40 mg/kg Gelofusine resulted in
40-50% reduction of renal uptake and retention of '!!
In-DOTA, Tyr*-octreotate, whereas higher doses further
increased the reduction to 50-60% in both groups of rats.
Combining Gelofusine and lysine caused 70% reduction of
renal uptake. The uptake of radiolabelled octreotate both in
somatostatin receptor-expressing normal tissues and
tumours was not affected by Gelofusine co-injection.
Conclusion In rats co-injection of 80 mg/kg Gelofusine
resulted in maximum reduction of renal retention of '''In-
DOTA, Tyr’-octreotate, which was further improved when
combined with lysine. Tumour uptake of radiolabelled
octreotate was not affected, resulting in an increased
tumour to kidney ratio.

Keywords Renal reabsorption - Radiolabelled octreotate -
Succinylated gelatin - Kidney

Introduction

The treatment of patients with somatostatin receptor-
positive tumours with peptide receptor radionuclide therapy
(PRRT) has shown convincing beneficial effects [1, 2]. The
radiolabelled peptides are rapidly cleared via the glomeruli
in the kidneys into the urine, but a low percentage is
reabsorbed and retained in the cortical proximal tubules
[3, 4]. After glomerular filtration a fraction of the
administered peptides is internalized via endocytic recep-
tors; in this process megalin has been demonstrated to play
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an essential role [5, 6]. Transfer of the radiopeptides to the
lysosomes is followed by degradation of the peptide, after
which amino acid chelate conjugates are trapped in the
lysosomes of the tubular cells [7], delivering a high
radiation dose to the renal cortex during PRRT. The
maximum tolerated dose in PRRT in patients is not exactly
known. However, from data from external beam radiation
therapy a limit of 23 Gy on the kidney has been adapted as
the upper limit of the dose that can be administered safely
[8]. Because of the differences with external beam
irradiation individual dosimetry has been introduced re-
cently in PRRT. This is to correct for the characteristic
features of the radionuclide and of the patient, like
inhomogeneous intra-organ distribution, shorter penetration
range, dose rates following exponential decay and patient-
specific geometry. Calculation of the biological equivalent
dose (BED), with a correction for CT-assessed kidney
volume and dose fractionation, has been adapted resulting
in more accurate prediction of kidney toxicity. Using an
upper limit of a BED of 40—45 Gy has been described to be
safe to prevent nephrotoxicity during PRRT [9-11]. Co-
infusion of lysine and arginine (Lys/Arg) has become a
standard procedure in our institution during PRRT with
"TLu- or *°Y-labelled somatostatin analogues, reducing
the renal retention of the radiopeptides by approximately
35% [12-14]. These positively charged amino acids
probably interfere in the megalin-mediated reabsorption
process [4]. As a result higher radioactivity doses can be
administered without risk of nephrotoxicity. In some
cases, however, amino acid infusion may lead to nausea
and vomiting, sometimes even to hyperkalaemia [13].

Recently, the reduction of renal retention of radio-
peptides by co-infusion of the plasma expander Gelofusine
was described [15, 16]. A transient low molecular weight
proteinuria [17, 18] induced by Gelofusine led to a 40%
reduction of renal reabsorption of radiolabelled octreotide,
both in animals [15, 19, 20] and in humans [16]. The
combination of both Lys and Gelofusine appeared to have
an additive effect on the reduction of renal uptake of
radiolabelled somatostatin analogues [19, 20]. This pointed
to different mechanisms of interfering in the reabsorption
process in the renal proximal tubules.

Most of these experiments have been performed with a
fixed dose of Gelofusine. The aim of the current study was
to investigate the dose-response effect of Gelofusine on
renal retention of the '''In-labelled somatostatin analogue
DOTA, Tyr’-octreotate. Biodistribution studies were per-
formed in rats bearing CA20948 tumours expressing
somatostatin receptors. Co-infusion of Lys has been
described to have no effect on the tumour uptake of
radiolabelled somatostatin analogues [21]; the effect of
Gelofusine (with or without Lys) on receptor-mediated
tumour uptake has not been described yet.

Materials and methods
Radionuclides, peptide, chemicals

"InCl; was purchased from Covidien (Petten, The
Netherlands). DOTA, Tyr’-octreotate was obtained from Bio-
Synthema (St. Louis, MO, USA). Radiolabelling was
performed according to previously published procedures
[22]. The labelling efficiency exceeded 99%, as confirmed
by thin-layer chromatography [22]. Specific activity of '''In-
DOTA, Tyr’-octreotate was 3 MBg/15 pg peptide for biodis-
tribution studies and 60 MBg/15 pg peptide for NanoSPECT
imaging experiments. Gelofusine (40 g/l) was obtained from
Braun Medical (Oss, The Netherlands) and L-lysine from
Sigma (Zwijndrecht, The Netherlands). Shortly before use a
400 mg/ml L-lysine solution in saline was prepared.

Biodistribution experiments

Animal studies were conducted in agreement with the
Animal Welfare Committee requirements of our institution
using generally accepted guidelines. For all experiments
male Lewis rats (Harlan, Horst, The Netherlands) were used
(n=4 per group for biodistribution studies). A group of
young, slim rats was used at 14 weeks of age (mean body
weight of 300 g) and a group of old, heavier rats at
45 weeks of age (mean body weight of 475 g) at the time of
biodistribution.

The young rats were subcutaneously inoculated with
500 pl of a CA20948 tumour cell suspension [23], prepared
from 5 g crude tumour tissue in 100 ml saline, at both sides
in the shoulder region. On day 24 after inoculation the
biodistribution and imaging experiments were performed.

For biodistribution studies rats were anaesthetized with
isoflurane/O, and injected with Gelofusine (or saline in
control animals) intravenously via the tail vein. The volume
ranged from 300 to 2,000 pl, depending on the adminis-
tered dose ranging from 40 to 160 mg/kg. In the experiment
with the young rats one extra group received both 80 mg/kg
Gelofusine and 400 mg/kg L-lysine. The injection of
Gelofusine was immediately followed by the administration
of "In-DOTA, Tyr’-octreotate. A peptide dose of 15 g
was used because this amount is required to administer the
optimal activity dose of 555 MBq '"’Lu-DOTA,Tyr’-
octreotate in CA20948 tumour-bearing rats [21]. For the
biodistribution studies 3 MBq '''In-DOTA, Tyr’-octreotate/
15 pug in 250 pl was injected via the dorsal vein of the
penis, whereas for imaging of the young tumour-bearing
rats, one extra rat per group received 60 MBq '''In-DOTA,
Tyr’-octreotate/15 pg in 250 pl.

After euthanasia at 24 h post-injection (p.i.), organs and
tumours were dissected and blood samples were taken.
Organs and tumours were weighed and radioactivity was
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measured in a gamma counter (Wallac, 1480 Wizard 3”,
PerkinElmer, Turku, Finland). Uptake of radioactivity was
expressed as percentage of injected activity per gram tissue
(%IA/g). Data were expressed as percentage of control. For
autoradiography one kidney and the tumours of each animal
were frozen embedded in OCT compound (Tissue Tek,
Sakura, Zoeterwoude, The Netherlands) using isopentane
cooled in liquid nitrogen.

MicroSPECT/CT imaging

One additional rat from each group of the CA20948
tumour-bearing rats was imaged with the four-headed
multi-pinhole NanoSPECT/CT camera (Bioscan Inc.,
Washington DC, USA) [24]. Rats were anaesthetized with
isoflurane/O,. Nine pinhole apertures with a diameter of
2.5 mm were used on each head, with a field of view (FOV)
of 24 mm. Settings of the '''In energy peaks were 171 and
245 keV. Based on the CT topogram, a body range of
85 mm ranging from neck to bottom was scanned in 24 min
with 60 s per projection. A 6 min CT at 45 kV, was
acquired. Animals were imaged at 3, 24 and 48 h p.i. to
measure the retention of '''In-DOTA, Tyr’-octreotate and
allow calculation of the kidney and tumour dose.

Using the InVivoScope software quantification of the
amount of radioactivity in the volume of interest (VOI)
of kidneys and tumours was performed. Each tumour
nodule inside a CA20948 tumour was analysed separate-
ly. The amount of radioactivity in the VOI was expressed
in MBg/ml tumour.

To achieve accurate quantification, the camera was
calibrated by scanning a phantom, representing the
attenuation of rats, filled with a known amount of '''In
activity.

Ex vivo autoradiography

Frozen kidneys and CA20948 tumours were cut into
sections of 10 um (Microm Cryo-Star HM 560 M,
Microm Laborgerdte GmbH, Walldorf, Germany). Auto-
radiographs of the sections were made by exposing
them to SR phosphor imaging screens (PerkinElmer,
Groningen, The Netherlands) in X-ray cassettes. After
24-72 h screens were read by a Cyclone phosphor imager
and analysed with OptiQuant 03.00 image processing
system (PerkinElmer, Groningen, The Netherlands). After
exposure the sections were stained with haematoxylin and
eosin (H&E). Based on the results of this staining regions
of interest (ROI) were determined. OptiQuant software
was used to quantify the intensity of radioactivity and
expressed in digital light units (DLU)mm?. Of each
tumour five sections were analysed and at least five ROI
per section.
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Dosimetry

The dosimetry was based on the MIRD schema to calculate
the dose by the product of the organ residence times and the
S values for dose per cumulated activity. Radiation doses to
the kidneys and CA20948 tumours were determined. The
residence time of '''In was determined by the kinetics of
the radioactivity retention at three time points after
administration. The kidney S values were calculated as
described earlier [25], adapted to the actual mass of the
kidneys, and the absorbed dose in mGy/MBq was calculat-
ed. This dose was calculated separately for the whole
kidney and for the cortex, because the majority of the
radioactivity was retained in the cortex containing glomer-
uli and proximal tubules. Only the self-absorption dose
from activity uptake in the kidneys was calculated. Tumour
S values also were dependent on the actual mass of each
tumour. Olinda/EXM software was used for calculation of
the absorbed dose in mGy/MBq [26].

Statistics

Data were expressed as mean + standard deviation (SD).
Statistical analysis was performed using Student’s ¢ test.

Results

In rat biodistribution studies the renal uptake of 15 pg
""In-DOTA, Tyr’-octreotate was examined, without or
with co-injection of increasing doses of Gelofusine
(ranging from 40 to 160 mg/kg). The retained amount of
radioactivity without Gelofusine co-administration was
4.6+0.3 or 4.1+0.1%IA/g in the young and older rats,
respectively, at 24 h p.i.. A dose of 40 mg/kg Gelofusine
significantly reduced the renal retention of '''In-DOTA,
Tyr’-octreotate (Fig. la, b). This lowest dose of Gelofu-
sine induced a reduction of renal uptake of 40% in young
and of 50% in older rats. When a dose of 80 mg/kg was
given a further reduction of uptake in the kidneys was
found of 50 and 60%, respectively, compared to controls.
With the 120 and 160 mg/kg Gelofusine doses no further
reduction of the renal retention was measured; therefore,
the 80 mg/kg dose seemed sufficient to induce the
maximum achievable reduction of renal retention of
""In-DOTA, Tyr’-octreotate. The maximum total volume
of Gelofusine and radiopeptide that was administered to
the heavy rats was more than 2,000 pl; no side effects
were observed.

Ex vivo autoradiography of kidney sections demonstrat-
ed that the localization of the radioactivity was not affected
by addition of Gelofusine (Fig. 1c); radioactivity mainly
localized in the cortex and to a lesser extent in the outer
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Fig. 1 Biodistribution at 24 h p.i. of 15 pg ''In-DOTA,Tyr’-octreotate
in rats, without or with co-injection of Gelofusine in increasing doses
ranging from 40 to 160 mg/kg. In young rats Gelofusine 80 mg/kg in
combination with Lys 400 mg/kg was tested as well. Uptake was
calculated as % injected activity/gram (%IA/g). The %IA/g of the
control group was set at 100%, and values obtained in Gelofusine
groups were expressed as percentage of control values; n=4 per group.
a Renal retention in 45-week-old rats with a mean body weight of

medulla. When the 80 mg/kg Gelofusine dose was
combined with Lys co-administration a significant additive
effect on reduction of renal uptake of radiolabelled
octreotate was measured; 68% reduction compared to
control values was achieved (Fig. 1b). In the biodistribution
study in the young rats it was found that the administration
of large amounts of Gelofusine, with or without Lys, did
not affect the uptake of '''In-DOTA,Tyr’-octreotate in
somatostatin receptor-expressing organs (Fig. 1d) and
subcutaneously grown somatostatin receptor-expressing

475 g. b Renal retention in 14-week- old rats with a mean body weight
of 300 g. ¢ Kidney sections after ex vivo autoradiography demonstrat-
ing localization of '''In-DOTA, Tyr*-octreotate 24 h p.i. in a represen-
tative kidney from the control and Gelofusine 80 mg/kg group of
the 45-week-old rats. d Uptake in pancreas, adrenals and stomach in
14-week-old rats. e Uptake in CA20948 tumours in 14-week-old rats.
*p<0.05; **¥p<0.001; ***p<0.005

CA20948 pancreatic tumours (Fig. 1le). Quantification of
retained radioactivity in CA20948 tumour sections in ex
vivo autoradiograms confirmed that Gelofusine co-
administration had no significant effect on tumour uptake
of radiolabelled octreotate (Fig. 2a, b).

Tumour to kidney activity uptake ratios at 24 h p.i. of the
control, the Gelofusine 80 mg/kg and the combination of
Gelofusine and Lys situation were 0.18+0.08, 0.30+0.12
and 0.38+0.23, respectively. This was also nicely visual-
ized in the NanoSPECT/CT images of CA20948 tumour-
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Fig. 2 Ex vivo autoradiography of CA20948 after biodistribution
study with """In-DOTA, Tyr’-octreotate, without or with co-injection
of increasing doses of Gelofusine. a Quantification of intensity of
retained radioactivity in frozen sections of CA20948 tumours after ex
vivo autoradiography of which the biodistribution results are shown in

bearing rats (Fig. 3a) [27]. Quantification of the tumour
uptake of ""'In-DOTA,Tyr’-octreotate 24 h p.i. in the
images revealed again that increasing doses of Gelofusine
did not affect tumour uptake of radiolabelled octreotate
expressed in MBg/ml tumour (Fig. 3b).

Images of the rats acquired at 3, 24 and 48 h p.i. were
analysed to determine the kidney and tumour dosimetry.
The kinetics of the washout of '''In-DOTA, Tyr’-octreotate
from the kidneys and CA20948 tumours were similar in the
control group and the Gelofusine (+ Lys) groups; kidney data
are shown in Fig. 3c. After determination of the correct S
values based on the actual masses of both kidneys and
tumours, the absorbed doses were calculated. The dose
on the renal cortex in the rats that received Gelofusine
80 mg/kg appeared to be 40% of the dose in the rats
without renal protection, whereas the dose in the rats that
received the combination of Gelofusine with Lys was
only 30% of the dose in the control group as shown in
Fig. 3d. The total absorbed radiation dose caused by '''In
to the renal cortex in the control group was 1.7£0.1 Gy,
whereas the doses to the CA20948 tumours varied
between 0.3 and 0.75 Gy and were independent of
administration of renal protection agents.
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120 mg/kg 160 mg/kg 80 mg/kg + Lys

Fig. le. Amount of radioactivity is expressed in DLU/mm?. Only
regions containing tumour cells were analysed, as demonstrated in the
H&E-stained section. No significant differences were found.
b Examples of CA20948 tumour sections after ex vivo autoradiography

Discussion

Reduction of renal retention of radiolabelled somatostatin
analogues is an important issue in PRRT, since after
treatment with therapeutic doses of *°Y-labelled octreo-
tide or octreotate nephrotoxicity has been described [28,
29], especially when renal doses exceeding 23 Gy were
applied [14, 30]. The partial reabsorption of somatostatin
analogues can be reduced by co-infusion with the cationic
amino acids lysine and arginine during the administration
of therapeutic doses of *°Y- or '”"Lu-labelled somatostatin
analogues. This is a commonly used method nowadays,
resulting in about 35% reduction of renal uptake of
radioactivity [2, 13]. Approximately 30% of the patients
suffer from nausea and 15% from vomiting as well during
the 4 h infusion of 2.5% lysine and 2.5% arginine in 1 1 of
saline, in spite of administration of the antiemetic
granisetron [31]. Hyperkalaemia has not been demonstrat-
ed with these amounts of amino acids, but was only found
in patients receiving a total dose of 75 g lysine [13].
Therefore, increasing the Lys dose is not an option to
improve the reduction of renal uptake. Research to further
reduce renal retention of such high-energy radiolabelled
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Fig. 3 NanoSPECT/CT imaging, quantification and dosimetry.
a NanoSPECT/CT images of CA20948-tumour bearing rats, 3 h p.i.
of 15 ug ""In-DOTA,Tyr’-octreotate, labelled with 60 MBq of '''In,
without or with co-injection of Gelofusine 80 mg/kg (and 400 mg/kg
Lys). Earlier published in [27]. b Quantification of retained radioactivity
in CA20948 tumours of imaged rats using InVivoScope software.
Amount of radioactivity was expressed in MBg/ml tumour. Each
tumour nodule inside a CA20948 tumour was analysed separately. No

significant differences were found. ¢ Residence time of '''In in kidneys,
as determined in NanoSPECT/CT images at 3, 24 and 48 h p.i. of 15 pg
"In-DOTA, Tyr’-octreotate. Washout of '''In was plotted for three rats:
control, with Gelofusine 80 mg/kg alone and combined with 400 mg/kg
Lys. d Dose calculation of '''In-DOTA, Tyr*-octreotate for whole kidney
or renal cortex only, expressed in mGy/MBq '''In. Renal radiation dose
in a control rat is compared with rats receiving Gelofusine 80 mg/kg
alone or combined with 400 mg/kg Lys as co-administration
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peptides is warranted to increase the therapeutic window
of PRRT.

The net charge of radiolabelled peptides is an important
factor influencing renal retention [32]. The Lys residue in
octreotide and octreotate seems responsible for the relative-
ly high uptake in kidney. In a preclinical study comparing
different neurotensin analogues it was shown that Lys co-
administration also reduced renal retention of other radio-
labelled peptides, but this only occurred when a Lys residue
formed part of the peptide [33]. This points to a competitive
mechanism which has been revealed to be, at least partly, a
megalin-mediated process. This negatively charged multi-
ligand scavenger receptor which is expressed on renal
proximal tubules plays a key role in the endocytosis of
radiolabelled somatostatin analogues [4, 6].

Gelofusine is a succinylated gelatine consisting of
polypeptides with an average molecular weight of 30 kDa.
It is used as a plasma expander in critically ill patients. ten
Dam et al. described that after Gelofusine infusion an
increased amount of ;- and 3,-microglobulin was excret-
ed in the urine, pointing to a disturbed protein reabsorption
process [17]. Based on this observation Gelofusine was co-
administered with radiolabelled somatostatin analogues and
offered a reduction of renal uptake of radiolabelled
octreotide to an extent comparable to that of cationic amino
acids, as recently described in animals and in healthy
volunteers [15, 16]. The exact mechanism of the reducing
effect of Gelofusine is still unknown. When the renal
uptake of several non-somatostatin peptide analogues was
studied, it appeared that their renal retention could be
reduced as well, whereas in the cases of gastrin and exendin
analogues Lys co-injection had no effect [19, 34]. Gotthardt
et al. suggested that Lys and polyglutamic acid only
interfere with one of the four clusters of anionic amino
acid repeats of megalin responsible for binding of a variety
of ligands, while Gelofusine administration acts on all four
clusters enabling reduced retention of all radiolabelled
peptides tested thus far [19, 35].

To further reduce uptake and retention of radioactivity in
the kidneys the combination of both agents was tested,
demonstrating an additive effect. This combination of
agents is promising, because more cycles of therapeutic
doses could be safely administered in clinical PRRT using
this combination without exceeding the mentioned 23 Gy
absorbed kidney dose or 45 Gy BED limit. Until now in
most experiments in rats and mice a fixed dose of
Gelofusine was used [15, 19]. In the study of Rolleman et
al. [20], a limited dose-response effect was suggested in the
range between 50 and 80 mg/kg. In the current study this
observation was confirmed; 40 mg/kg Gelofusine already
caused a reduction of renal retention of '''In-DOTA, Tyr’-
octreotate, which was further increased with a 80 mg/kg
dose. These doses were independent of the body weight of
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the animals, since comparable results were obtained in both
groups without significant difference. The 80 mg/kg dose
appeared to be the dose being sufficient to induce
maximum reduction of renal retention, since higher doses
did not improve the reduction of kidney uptake of radio-
labelled octreotate. Apparently maximal induction of
proteinuria and/or blocking of receptors responsible for
endocytosis already is achieved at this 80 mg/kg Gelofusine
dose.

Comparing literature data with the currently described
results, it is clear that the percentage of reduction of renal
uptake by Gelofusine co-administration in a 80 mg/kg dose is
comparable for all somatostatin analogues tested ('''In-DTPA,
Tyr’-octreotide, '’’Lu-DOTA,Tyr’-octreotate, '''In-DOTA,
Tyr’-octreotate) and is independent of the administered
amount of peptide (0.5 pg, 15 pg), while the %IA/g kidney
of control animals ranged from 1 to 4%IA/g [15, 19, 20].

The potential effect of Gelofusine on tumour uptake of
"'In-DOTA, Tyr’-octreotate was investigated as well. The
biodistribution experiment showed no interference of
Gelofusine with radioactivity uptake in CA20948 tumour,
although the tumour uptake varied largely due to the
irregular shapes and structures of the tumours, whereas
the mean volume of the tumours was similar in all groups,
although with a high variability. When radioactivity in
separate tumour nodules in the frozen sections was
quantified using ex vivo autoradiography, variability of
tumour uptake was smaller and mean DLU/mm? was not
reduced when Gelofusine was co-administered. Further-
more, the recently developed method to quantify the
amount of radioactivity which is retained in imaged organs
and tumours using microSPECT/CT also confirmed that
tumour uptake of '''In-DOTA,Tyr’-octreotate was not
influenced by Gelofusine with or without Lys [20, 24].

Quantification of the retained renal radioactivity by
imaging the same rat at several time points after injection
of the radiolabelled octreotate allowed estimation of the
radiation dose to the kidneys and tumours. The clearance
rate of '''In-DOTA,Tyr’-octreotate from the kidneys and
the tumours was similar in the control and in the renal
protection groups. This confirms that Gelofusine and Lys
had a transient effect on the renal reabsorption mechanism
and only interfered in the initial retention of radiopeptides
in the proximal tubules, but had no effect on the washout
of the radiometals. The induced reduction in radiation
dose to the whole kidney or to cortex alone was
comparable to the reduction found in the biodistribution
study: up to 70%, which is very favourable for kidney
protection when therapeutic radionuclides like '"’Lu or
2%y will be applied.

Taken together our results indicating significant renal
protection but unaffected uptake in somatostatin receptor-
expressing tumours and organs warrant a randomized cross-
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over trial to test the combination of amino acid infusions
with or without Gelofusine in patients receiving PRRT with
"7"Lu-DOTA, Tyr’-octreotate in our centre.

It is hard to translate our reported optimal dose of
80 mg/kg Gelofusine for renal uptake reduction of '''In-
DOTA,Tyr3 -octreotate in rats, which was administered as
a bolus injection, to the clinical situation where Gelofu-
sine will be co-infused during several hours. The Gelofu-
sine dose that was administered in the healthy volunteers
was a bolus of 40 mg/kg per 10 min followed by a 3 h
infusion of 0.8 mg/kg per min (144 mg/kg), resulting in a
total dose of almost 200 mg/kg over a 3-h period of time
[16]. In Bad Berka 450 ml of 4% Gelofusine solution was
infused in 4 h combined with Lys/Arg, during PRRT,
which means a dose of 225 mg/kg per 4 h for a patient
with a body weight of 80 kg [36].

A drawback of the use of Gelofusine might be the risk of
an allergic reaction in less than 1% of the patients, probably
because of its bovine origin [37, 38]. Therefore, patients
need to be strictly monitored. When a significantly reduced
renal retention of radioactivity can be obtained with extra
Gelofusine administration, an adapted regimen to protect
kidneys from renal toxicity during PRRT may be used in
future. This will allow administration of more cycles of
PRRT without risk of nephrotoxicity, while a higher tumour
radiation dose will be achieved.

Due to crossfire from circulating radioactivity in the
blood the bone marrow is the second organ at risk during
PRRT. The clearance of radioactivity from the blood was
not delayed by the administration of Gelofusine and Lys.
Therefore, especially when the cumulative dose will be
increased further, monitoring of blood cell counts is needed
to detect haematological toxicity, like cytopaenia or
myelodysplastic syndrome [2].

Conclusion

In rats a Gelofusine dose of 80 mg/kg body weight
induced maximal reduction of 50—60% of renal retention
after administration of a therapeutic peptide dose of
15 pg of ""In-DOTA,Tyr’-octreotate. Combination of
this dose of Gelofusine with 400 mg/kg L-lysine resulted
in a 70% reduced kidney uptake, while the somatostatin
receptor-specific uptake in pancreas, stomach, adrenals
and CA20948 pancreatic tumour was not affected.
Application of combined Lys/Arg and Gelofusine infu-
sions during PRRT in patients will enlarge the therapeutic
window.
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