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Abstract. We investigate the synchronization behaviour
of three different networks of nonlinearly coupled oscil-
lators. Each network consists of several clusters of
oscillators, and the clusters themselves consist of any
number of oscillators. In each cluster the eigenfrequencies
scatter around the cluster frequency (mean frequency).
The coupling strength varies in each cluster, too. We
analyze the synchronized states by means of the center
manifold theorem. This enables us to calculate these states
explicitly, and to prove their stability. Moreover we are
able to determine frequency shifts caused by different
coupling mechanisms. In a number of cases we calculate
the synchronisation threshold explicitely. Numerical
simulations illustrate our analytical results. In one of the
three networks we have additionally analyzed a single
cluster consisting of infinitely many oscillators, that is an
oscillatory field. Again, the center manifold theorem en-
abled us to calculate the synchronized state explicitly
and to prove its stability. Our results concerning the
oscillatory field are in contradiction to Ermentrout’s
analysis [6].

PACS: 31.15.!p

1. Introduction

A huge variety of dynamical phenomena in nature is
caused by the nonlinear interactions of oscillators (cf.
[1, 2, 3, 6, 7, 9, 11, 16, 17, 21, 24]). Every area of the
natural sciences provides famous examples of oscillatory
behaviour. We recall some of them: ultrashort laser
pulses [11], wave propagation in the Belousov-
Zhabotinski reaction [16], phase transitions in human
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hand movements [12], and spinal generators for
locomotion [3].

Systems of weakly coupled limit cycle oscillators are
quite popular. They not only provide suitable models in
different areas of the natural sciences, moreover they
allow us to consider the amplitude of the motion in a first
approximation as constant in order to approximate the
entire system by phase models [16]. This simplifies the
analytical investigation decisively. Nevertheless even in
this case it is often difficult to prove the stability of the
synchronized states.

We investigate the synchronization behaviour of
three different networks of nonlinearly coupled oscil-
lators. From the physicist’s point of view, it is often a
crucial restriction to assume that the couplings are
weak. Therefore we do not restrict our investigation to
the case of weak coupling strength. Rather we analyze
the total systems, consisting of phase and amplitude
dynamics, too. By means of the center manifold theorem
[15, 18] we are able to proof the stability of the
synchronized states and to calculate these states
explicitly. The center manifold theorem may be con-
sidered as a special case of the slaving principle of
synergetics [10, 11]. After introducing a rotating co-
ordinate system the center manifold theorem allows us to
reduce the many degrees of freedom of the oscillatory
system (cf. [15, 18, 10, 11]). Obviously the coupling
mechanism is of great importance for the synchron-
ization behaviour of an oscillatory network. In this
paper we analyze the influence of different coupling
mechanisms on the frequency of the synchronized
state. To this end we explicitely calculate the shifts of
the cluster frequency caused by different coupling mecha-
nisms.

The three different models are analyzed one after the
other. For each model we start with the analysis of the
entire system. After this we investigate the respective
phase model. The results of the analysis of the entire
system and the results of the analysis of the phase model
are compared in order to check the validity of the phase
model. For model I we additionally investigate an oscilla-
tory field.



2. Model I

2.1. The total system

2.1.1. One cluster. Let us consider a single limit cycle
oscillator obeying the equation

zR "(�#i�)z!Kz�z* . (1)

z is a complex variable. z* denotes the complex conjugate
of z. Inserting the hypothesis z"r e�� (r, �3R) into Eq. (1)
provides us with evolution equations of amplitude r and
phase �:

rR "�r!Kr� , (2)

�Q "� . (3)

Obviously for negative � the amplitude vanishes. When
� becomes positive the amplitude dynamics given by Eq.
(2) undergoes a Hopf-bifurcation giving rise to a stable
oscillation with frequency � and amplitude ��/K (cf.
[11]).

Equation (1) is a normal form, which means that the
limit cycle dynamics of many and even more complicated
oscillators can be transformed onto or can be approxim-
ated by the dynamics given by Eq. (1) [5, 14]. Applying the
rotating wave approximation and the slowly varying wave
approximation for instance to the van der Pool oscillator
or to the neurophysiological HKB oscillator [12] we end
up with Eqs. (2) and (3) [12]. Thus, Eq. (1) provides us with
a suitable minimal model of a limit cycle oscillator.

In the present paper we analyze oscillators which are
able to synchronize in phase due to their mutual continu-
ous interactions. Therefore we are interested in couplings
which minimize the oscillators’ phase difference (modulo
2�). Before we turn to networks consisting of large num-
bers of oscillators let us first dwell on two oscillators with
eigenfrequencies �

�
and �

�
which are described by the

complex variables z
�
, z

�
and coupled according to
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where j, k"1, 2 and kOj. (4)

With the hypothesis
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�
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�
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we immediately obtain evolution equations for the oscil-
lators’ amplitudes (r

�
, r

�
) and phases (�

�
, �

�
) :
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where j, k"1, 2 and kOj. According to Eq. (7) the cubic
coupling term z�

�
z*
�

of the right hand side of Eq. (4)
corresponds to a synchronizing coupling mechanism. This
mechanism can be encountered in many pairs of self-
synchronizing limit cycle oscillators (cf. [11] ). If we apply
the rotating wave approximation and the slowly varying
wave approximation for instance to a pair of van der Pool

oscillators or HKB oscillators with self-synchronizing in-
teractions we end up with Eqs. (6) and (7) [12]. For this
reason the cubic coupling term z�

�
z*
�

provides us with
a suitable mechanism modelling continuously synchroniz-
ing interactions of limit cycle oscillators in the sense of the
normal form theorem [5, 14] mentioned above.

We want to analyze the synchronization behaviour of
networks consisting of many limit cycle oscillators. Ex-
tending the notion of self-synchronizing interactions we
end up with the network model
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�

( j"1, 2 , N ) , (8)

with �'0, K'0. The j-th oscillator is described by the
complex variable z

�
.

According to the normal form theorem [5, 14] net-
works consisting of even more complicated limit cycle
oscillators can be approximated by the dynamics given by
Eq. (8). Thus, Eq. (8) may be considered as a normal form
in the class of the all-to-all coupled oscillatory networks.

With the hypothesis (5) we obtain for the amplitudes
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and for the phases
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Now we introduce relative phases

�
�
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�
(t)!�t!�, �"const. ( j"1, 2 , N) , (11)
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�
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is called the cluster frequency. By means of deviations
�
�
from the cluster frequency the eigenfrequencies may be

written as

�
�
"�#�

�
. (13)

We assume that

���;� and ���;����K���, (14)

holds, where �"(�
�
, 2, �

�
)�. For the amplitudes we

make the hypothesis

r
�
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�
K
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�
(t) , (15)

because ��/K is the nontrivial stable stationary solution
of Eq. (9) for �

�
"0 for all j"1, 2 , N. Because of

��
���

�Q
�
,0 we choose �" 1/N ��

���
�
�
(0) . This yields

�
�
���

�
�
,0. (16)

According to Eq. (13) �
�
, 2, �

�
are constant frequency

deviations. We exploit this fact by treating �
�
, 2 , �

�
as

variables with vanishing time derivative: �R
�
"0 for all

j"1, 2, N.

304



�
�
(t)"�t#�#�

�
�

# 1

6N��
�
�
���

(�
�
!�

�
)�

! 1

2N��
�
�

�
�
���

(�
�
!�

�
)�# 1

2N���
�
�

�����

�
�
(�

�
!�

�
)�

�������������������������
"I

#O(���	)
(22)

As a result of this extension there are two types of
variables: on the one hand the amplitude deviations 	

�
and

relative phases �
�
, both rapidly changing, and on the other

hand the constant frequency deviations �
�
. Thus, there are

two different time scales, one corresponding to the rapidly
changing variables, the other one corresponding to the
constant frequency deviations. This enables us to apply
the center manifold theorem, where �

�
, 2, �



are the

center modes. The latter may be considered as a special
case of the order parameters known from synergetics
[10, 11]. Likewise the stable modes correspond to the
enslaved modes in synergetics [10, 11]. We briefly men-
tion the connection with results in synergetics: Here the
order parameter equation describes both the relaxation of
the system towards the center manifold and its motion
within it. In the present context we focus our attention on
the motion on the center manifold.

We included the frequency deviations �
�
as variables in

order to apply the center manifold theorem. For two
reasons the latter turns out to be a powerful tool for
instance in comparison to linear perturbation theory:

1. The center manifold theorem provides us with a rigor-
ous proof of the stability of the synchronized states under
consideration (cf. [15, 18]).
2. Moreover we are able to expand the amplitude devi-
ations 	

�
and relative phases �

�
in the synchronized states

in powers of 	
�
. Obviously linear perturbation theory

could not provide us with this nonlinear expansion. From
this point of view our approach can be considered as
a nonlinear perturbation theory.

In order to separate the linear parts of the center
modes from the linear parts of the stable modes, we carry
out the transformation

�
�
"�

�
!1

�
�
�

for j"1, 2, N . (17)

Furthermore we introduce x
�
"� and x

	
"

(	
�
, 2 , 	

�
, �

�
, 2 , �

�
)�. ‘‘c’’ stands for center modes,

whereas ‘‘h’’ stands for hyperbolic (stable) modes.
With Eq. (16) and Eq. (17) the linearization (around

zero) yields for the center modes x

�
"0. This is the re-

duced problem which in synergetics is called the order
parameter equation [10, 11]. For the stable modes we
obtain x


	
"B

	
#m

	
(x

�
, x

	
), with

B
	
"�

A 0

0 !�I� . (18)

Here A"(a
��
), with a

��
"!� (1#1/N) for j"k and

!�/N for jOk. I is the N�N-identity matrix. 0 stands
for the null matrix.

The eigenvalues of A lie in the intervall [!2�,
!2�/N]. This follows from the theorem of Gerschgorin
[20]. Therefore B

	
has only negative eigenvalues, and x

	
is

the vector of the stable modes.

With x"(x
�
, x

	
)� the nonlinear transformed system

reads
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We are now able to determine the center manifold. To this
end we derive the map h which on the center mani-
fold gives the stable modes as a function of the center
modes: x

	
"h (x

�
). With x
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) with a��
��

"(!1#1/(2N)) /� if j"k
and 1/(2�N) if jOk. The symmetry of the system is given
by

T"�
T
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0

0 T
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"�

I 0

0 !I� (21)

and T
�
"!I (cf. [19]). Therefore h (!x

�
)"T

	
h(x

�
)

holds. This enables us to determine the coefficients of h of
lowest order. Hereby we expand the sine and the cosine
terms according to Taylor. With this we obtain the sta-
tionary synchronized state. This state is stable. Moreover,
due to the center manifold theorem it is a local attractor
which our model approaches in an overdamped fashion
[15, 18]. Transforming back to phases and amplitudes
yields the synchronized state

r
�
,�

�
K

# 1

2����K���
��
�
#O (����) . (23)

The terms denoted by ‘‘I’’ do not appear in the formula of
the synchronized state of the phase model. Simplifying
Eq. (22) finally yields

�
�
(t)"�t#�#�

�
�

! ��
�

3��
# 1

3N��
�
�
���

��
�
#O(���	) .

(24)

The terms of the right hand sides of equations (24) and (23)
find a clear interpretation. In Eq. (23) ��/K denotes the
unperturbed limit cycle amplitude for �

�
, 2, �

�
"0. Ne-

glecting terms of fourth order the deviation of the oscil-
lator’s amplitude from the unperturbed limit cycle only
depends on its eigenfrequency deviation �

�
. In Eq. (24) the

term �t indicates that in the synchronized state all oscil-
lators have the same frequency. The other terms contrib-
ute to a phase shift. � is the part of this phase shift which is
common to all oscillators, whereas the other terms may
differ from oscillator to oscillator.

The deviations of the eigenfrequencies �
�
, 2 , �

�
act

as order parameters: they determine the relative phases
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Fig. 1. Model I, total system, 10 oscillators. �"1, K"�"0.5. �(t)
(solid line) and Re(Z(t)) (dashed line). �

�
, 2, �

�
are uniformly

distributed in [!0.1, 0.1]

and the deviations of the limit cycle amplitudes. Note that
the assumption (14) is necessary in order to apply the
center manifold theorem. To get an impression of how the
oscillators synchronize, we integrate the system (9), (10)
numerically for K"�"0.5 and �"1. �

�
, 2 , �

�
are

uniformly distributed in [!0.1, 0.1]. The initial values of
the phases are uniformly distributed in [0, 2�]. The initial
values of the amplitude deviations 	

�
(0) are uniformly

distributed in [0, 2]. We introduce the cluster variable
Z(t), the cluster amplitude � (t) and the cluster phase � (t)
by putting

Z(t)"�(t) e���
" 1

10

��
�
���

e��
�
�
. (25)

The evolution of the cluster amplitude is shown in Fig. 1,
and the evolution of the amplitude deviations 	

�
, 2, 	

�in Fig. 2. Although the magnitude of the initial amplitude
deviations is large compared to K and � the oscillators
synchronize rapidly.

2.1.2. Several clusters. In this section we investigate the
interaction of several groups (clusters) of oscillators. Cer-
tainly the behaviour of a system like that may be arbitrar-
ily complex. Therefore we restrict our analysis to the case
when it is possible to separate the clusters by means of
averaging theorems [9, 13]. In other words, we approxim-
ate the behaviour of interacting clusters by the behaviour
of noninteracting clusters.

Our model consists of n clusters with the cluster fre-
quencies �

�
, 2, �

�
. I� is the index set of the -th cluster:

I�"�M���
, 2, M��, where M

�
"0 and M

�
"N.

N�"M�!M���
denotes the number of oscillators of the

-th cluster, and n�"N�/N.

��"
1

N�
�
����

�
�

("1, 2 , n) (26)

Fig. 2. Model I, total system, 10 oscillators. �"1, K"�"0.5.
�
�
, 2 , �

�
are uniformly distributed in [!0.1, 0.1]. Amplitude devi-

ations 	
�
(t) with j"1, 2, 10, and their ‘‘abscissas’’ (dotted lines)

is the cluster frequency of the -th cluster. We introduce
the smallness parameter � by putting

�
�
"��#��

�
for j3I� . (27)

We will comment on the size of � below. Let us assume
that the coupling strength by which the oscillators of the
-th cluster influence the j-th oscillator is given by K�� . We
introduced the parameter � in order to point out that we
assume that the frequency deviations and the coupling
strength are of the same magnitude.

Below it will turn out that we can apply the averaging
theorem only if

���!�

�<� for Om (28)

holds. We assume that the cluster frequencies and the
differences of the cluster frequencies are all of the same
order of magnitude, so that the relations

��"O(1) and ���!�

�"O(1) (29)

are fulfilled. From Eqs. (28) and (29) it immediately follows
that

0(�;1 (30)

holds. Thus, � is a smallness parameter which guarentees
that the cluster frequencies are sufficiently far away from
each other compared to the magnitude of the coupling
strength. Below this will turn out to be a necessary condi-
tion for applying the averaging theorem.

With Eqs. (26), (27), and (28) our model reads

zR
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N
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�K� �
����

z*
�
, (31)

for j"1, 2, N. Hereby �'0, and K�'0 for all
"1, 2, n .

First we choose the hypothesis z
�
"r

�
e��

�
with real

r
�

and �
�
. After this we introduce amplitude deviations

306



	
�
by means of the hypothesis

r
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(t)"R#	

�
(t) with R"�

�
��

���
K�n�

� (32)

Next we turn to relative phases by putting

�
�
(t)"�

�
(t)!�


t!�


, �


"konst. ( j3I


). (33)

With u"(	
�
, 2, 	

�
, �

�
, 2, �

�
) � the transformed sys-

tem may concisely be written as

u
 "�f (u, t) . (34)

f(u, t) ist smooth and bounded. A little calculation shows
that f(u, t) contains two types of trigonometric terms:
sin(�

�
!�

�
) if the j-th and the k-th oscillator belong to the

same cluster, and sin[�
�
!�

�
#(�


!��) t#�


!��] if

the j-th/k-th oscillator belongs to the m-th/-th cluster.
Obviously f (u, t) is ¹-periodic with the non-trivial period
¹'0 iff the ratios of the cluster frequencies ��/�� are
integers.

Thus, according to our assumptions (27), (28), (29), and
(30) there are two time scale: As a result of the smallness
parameter � in Eq. (34) the system’s dynamics changes on
a slow time scale (cf. [9], theorem 4.1.1). This slow evolu-
tion is perturbed by a rapid periodic oscillation which is
due to the time dependent sine terms on the right hand
side of Eq. (34) (cf. [9], theorem 4.1.1). The perturbing
rapid periodic oscillation which is a result of the interac-
tions of different clusters can be averaged out by means of
the averaging theorem of Guckenheimer und Holmes
( [9], theorem 4.1.1). Thus, we approximate the dynamics
of n interacting clusters by the dynamics of n separate
clusters. Mathematically this means that we approximate
the system’s dynamics by means of the autonomous differ-
ential equation

U� "�F (U)"�
1

¹
�
�
�

f (U, t) dt , (35)

where U"(	M
�
, 2 , 	M

�
, 2, �M

�
, 2, �M

�
)� is the vector of

the averaged variables.
Note that averaging weakens the coupling strength. The

effective coupling constant in the m-th cluster is
K���


"K


N


/N"K


n

(K


, because n


(1. Obvious-

ly not only the coupling strength but also the cluster’s size
determines whether a cluster will synchronize or not.

Let us consider the case when the effective coupling is
strong enough, i.e. for j3I


we assume that

��
�
�;� and ��

�
�;����(K���


)��� (36)

hold. With the results of Sect. 2.1.1 we immediately obtain
the stable synchronized state of the averaged system:
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#O(���	)

(37)

and

rN
�
"R#	M

�
,�

�
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���
K����

# 1

2����(K���


)���
��
�

#O(����) (38)

for j3I

. The interpretation of the right hand sides of

equations (37) and (38) is straightforward. Due to the term
�


t in (37) all oscillators of the m-th cluster have the same

frequency, namely �

. The other terms cause a constant

phase shift. �


is a phase shift which is common to all
oscillators of the m-th cluster. The other terms contribute
to a phase shift which may be different for every oscillator
of the m-th cluster. Note that these terms only depend on
the eigenfrequency deviations of oscillators of the m-th
cluster. Thus, the averaged phases of the m-th cluster are
not influenced by the other clusters (cf. Eq. (24)). Compar-
ing equation (38) with (23) shows that the interaction of
the different oscillatory clusters determines the averaged
amplitudes. R, the limit cycle amplitude for vanishing
eigenfrequency deviations, depends on the sum of the
effective coupling constants. By means of the effective
strength K���


in the denominator of the second term even

the deviation of the oscillator’s amplitude is influenced by
all other clusters.

The solution U(t) of the averaged system approximates
the solution u (t) of Eq. (34). If �u(0)!U (0) �"O(�) then
�u (t)!U(t)�"O(�) on a time scale t�1/� ( [9], theorem
4.1.1). U (t) approximates u(t) even for t3[0,�) . This
follows from an averaging theorem of Hale ( [13], theorem
3.2).

If the ratio of the cluster frequencies is not an integer,
the averaging can also be applied if f(u, t) in Eq. (34) is
almost periodic ([13], theorem 3.1).

We can apply the averaging theorems only if the
coupling strength is weak. In the case of strong coupling
this approach is no longer succesful: the clusters disturb
each other too much, as we shall see below.

2.1.3. Repulsive coupling. In this section we change the
kind of coupling. Suppose we have two clusters. Within
the clusters we do not change the coupling constants.
Rather we change the sign of the coupling constants
between both clusters. So, every oscillator is coupled with
K'0 to the oscillators of its own cluster, and with !K
to the oscillators of the other cluster. The latter is called
repulsive coupling (cf. [16]).

With this our oscillatory network consists of two re-
pulsively coupled clusters. For ( j"1, 2, M) the system
reads
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�
) z

�
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�
, (39)

and for ( j"M#1, 2 , N)
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N
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�����
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. (40)

We make the usual hypothesis z
�
"r

�
e��

�
, and turn to

relative phases by introducing

�
�
(t)"�

�
(t)!�t!� for j"1, 2, M (41)

�
�
(t)"�

�
(t)!�t!�!� for j"1, 2, M, (42)

where �"konst. For all oscillators we put r
�
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��/K#	
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(t). The eigenfrequencies are �
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"�#�

�
. We
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assume that Eq. (14) holds. With the results of section 2.1.1
the stable synchronized state finally reads:

�
�
(t)"�t#�#�

�
�

! ��
�

3��
# 1

3N��
�
�
���

��
�
#O(���	) . (43)

for j"1, 2, M, and
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(44)

for j"M#1, 2, N, and

r
�
,�

�
K

# 1

2����K���
��
�
#O (����) , (45)

for j"1, 2, N. Comparing equations (43) and (44) with
equation (24) we immediately see that the two clusters are
synchronized in antiphase. From equations (45) and (23) it
follows that the antiphase synchronization does not per-
turb the oscillators’ amplitudes.

In the case of the phase model the analysis is exactly
the same: by introducing relative phases in the way we
have done it above, we end up with the synchronized
antiphase state.

2.1.4. Shift of the cluster frequency. Up to now the cluster
frequency has been the mean value of the eigenfrequencies
as well as the frequency of the synchronized state. In this
section we analyze an extended oscillatory network which
shows a different behaviour: the frequency of the synchro-
nized state differs from the cluster frequency, which is the
mean of the cluster’s eigenfrequencies.

Let us first consider a single limit cycle oscillator with
the evolution equation

zR "(�#i�) z!K(1#i�) z�z* . (46)

When the sign of � turns from negative to positive, this
oscillator undergoes a Hopf bifurcation. Hereby the fre-
quency shift !�� occurs due to the complex coefficient in
front of the cubic term (see e.g. [11]). An analogous
phenomenon occurs if N oscillators are nonlinearly
coupled with complex coupling coefficients. To show this,
we investigate the oscillatory system
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N
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�
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�
���
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�
, (47)

with j"1, 2 , N and �'0. With z
�
" r

�
e��

�
we get

rR
�
"�r

�
!K

N
r�
�

�
�
���

r
�
(cos (�

�
!�

�
) !� sin (�

�
!�

�
))

(48)

�Q
�
"�

�
!K

N
r
�

�
�
���

r
�
(sin (�

�
!�

�
)#� cos (�

�
!�

�
)).

(49)

�"1/N ��
���

�
�

is the cluster frequency. For the eigen-
frequencies we write �

�
"�#�

�
. We turn to relative

phases by means of

�
�
(t)"�

�
(t)!� �t!� with � �"�!�, (50)

and �"const. Below it will turn out how to choose
� appropriately in order to simplify our analysis decis-
ively. Furthermore we put r

�
(t)"��/K#	

�
(t) . In order

to avoid a clumsy analytical investigation, we treat
�
�
, 2 , �

�
as well as � as variables by putting �R

�
"0 for

j"1, 2, N, and �Q "0.
We introduce a further variable by putting

y" �
�
���

�
�
. (51)

Next we make the transformation

�
�
"�

�
!�

�
�

! y

N
for j"1, 2 , N . (52)

By putting �"��, the linear part of yR vanishes. So, with

x
�
"(y

�
�,�

�
,2,�

�
)� and x

	
"(	

�
,2,	

�
,�

�
,2,�

�
)�

(53)

our transformed system is described by

x

�
"m

�
(x

�
, x

	
) (54)

x

	
"B

	
x
	
#m

	
(x

�
, x

	
) , (55)

where m
�
and m

	
only contain nonlinear terms, and B

	
is

the matrix of Sect. 2.1.1. h is determined quite analogously
to Sect. 2.1.1. With this we arrive at the order parameter
equation

x

�
"m

�
(x

�
, h(x

�
)) . (56)

The equations for �
�
, 2, �

�
and � are trivial, and for y we

obtain

y(t)"���1!1

��
�
�
���

��
�
#O (�����)� t#y(0). (57)

The center manifold theorem is only valid if the magni-
tude of all variables is small compared to max �re(�);
�3spec(!(KI#�A))�. After some time y (t) violates this
condition. Therefore we identify 0 and 2�. That means, we
solve our system on the (N#1)-torus. Next we transform
the time according to �"t/�, with � �

���
<2�. So, for all

t the phase variables stay in a neighbourhood of zero
where the center manifold theorem is valid.

Therefore the synchronized state is a local attractor.
Transforming back to phases and amplitudes we arrive at

�
�
(t)"�(�) t#��#1

�
�
�
! 1

3��
��
�
# 1

3��N
�
�
���

��
�

!��

�
�
�
! �

��
��
�
# �

��N
�
�
���

��
�
#O(����	) , (58)

with ��"�#y (0)/N" 1/N ��
���

�
�
(0) and

�(�)"�!��#�
N �1!1

��
�
�
���

��
�
#O(�����) . (59)

We have used the abbreviation ��"(�, �
�
, 2 , �

�
)�. For

the amplitudes we obtain

r
�
,�

�
K

# �

��K
�
�
# 1

2����K���
��
�
#O(�����) . (60)
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Note that the center manifold theorem can only be ap-
plied if

����;� and ����;����K��� (61)

holds. The right hand side of (58) shows that all oscillators
have the same frequency which is shifted against � ac-
cording to equation (59). The other terms of the right hand
side of equation (58) contribute to a phase shift. The cosine
coupling term in (49) and (48) does not only cause a fre-
quency shift according to Eq. (59). Comparing Eq. (58)
with Eq. (24) shows that the cosine coupling also induces
a phase shift. By means of the Eqs. (60) and (23) we
immediately see that the unperturbed limit cycle ampli-
tude (i.e. the amplitude for �

�
, 2 , �

�
) is not influenced by

the cosine coupling term in Eqs. (49) and (48). Neverthe-
less the second term of the right hand side of Eq. (60)
describes how the cosine coupling constant � contributes
to the amplitude deviation.

2.2. Phase model

2.2.1. One cluster. According to Eq. (15) the amplitudes
may be written as r

�
(t)"��/K#	

�
(t) , where ��/K is

the constant amplitude of the limit cycle, and 	
�
(t) is the

deviation of the limit cycle. If the oscillators are weakly
coupled, we are able to neglect the amplitude deviations
	
�
(t) in a first approximation. This has been proven to be

correct in the case of weakly coupled oscillators which are
characterized by the prescription 0(K;1 [16]. Thus,
for small (and fixed) K we put 	

�
"0 for all oscillators. As

a consequence of this all oscillators have the same, time
independent amplitude

r
�
"��/K"R"const for all j"1, 2 , N. (62)

We insert Eq. (62) into Eq. (10). For the sake of brevity we
additionally put

�"KR�PK . (63)

With this we obtain our phase model

�Q
�
"�

�
!K

N

�
�
���

sin (�
�
!�

�
) ( j"1, 2 , N ) . (64)

Note that K'0. Up to now the coupling coefficients
between oscillators of a single cluster have been identical.
In some cases this may be an appropriate idealization. But
considering for instance systems in physics and biology, it
would be desirable to have coupling coefficients scattering
around a mean. Therefore in this section we investigate an
extended model:

�Q
�
"�

�
!1

N

�
�
���

(K#�K
��

) sin (�
�
!�

�
)

for j"1, 2 , N. (65)

In order to simplify our investigation we make some
assumptions concerning the coupling constants. In the
context of oscillatory networks it is often assumed that the

coupling constants are symmetrical, i.e. K
��

"K
��

holds.
Nevertheless in several cases this assumption is a rather
rigid restriction. Consider for example interacting oscilla-
tory neurons. According to physiology the interactions
are far from being symmetrical. Therefore we do not
assume that the coupling constants are symmetric. Ac-
cording to the notion of scattering coupling constants we
rather assume that

�
�
���

K
��

" �
�
���

K
��

"0 (66)

holds for j"1, 2 , N. We introduce relative phases by
means of the transformation (11). Obviously ��

���
�Q
�
I0

holds. Therefore we introduce a further variable

y" �
�
���

�
�
. (67)

We extend the system by including y and �
�
, 2 , �

�
as

variables, where

yR "0 and �

�
"0 for all j"1, 2, N (68)

holds. As a result of this extension we are able to apply the
center manifold theorem (cf. remarks on page 2.1.1). The
vector of the center modes is x

�
"(y, �

�
, 2 , �



)�, whereas

the vector of the stable modes reads

x
	
"�

�
�
�

�
�
�"�

�
�
�

�
�
� !(KI#�A)����

�
�
�

�
�
� #K

N �
y

�

y� � .

(69)

This transformation separates the center part from the
stable part. The transformed system reads

x

�
"m

�
(x

�
, x

	
) (70)

x

	
"!(KI#�A) x

	
#m

	
(x

�
, x

	
) . (71)

m
	
and m

�
contain only nonlinear terms. We assume that

the matrix !(KI#�A) has only eigenvalues with nega-
tive real part. Nevertheless � may be of the order of K. By
means of the theorem of Gershgorin [20] for a given A we
may check the ‘‘permitted’’ size of � . Let 0(�;K. From
this theorem it follows that !(KI#�A) only has eigen-
values with negative real part. In this case it is easy to
determine

(KI#�A)��"1

K
I# �

�
���

(!1)�
K���

A���. (72)

On the center manifold x
	
"h (x

�
; �) holds. Making use

of Eq. (72), we determine h as shown above up to the terms
of third order (cf. Sect. 2.1.1) by means of

h(x
�
; �)"(KI#�A)��m

	
(x

�
, h(x

�
; � ))#O(�x

�
�	) . (73)

With this we are able to solve the order parameter equa-
tion (the reduced problem):

x

�
"m

�
(x

�
, h (x

�
; �)) . (74)
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The equations for �
�
, 2 , �

�
are trivial, and for y we

obtain

y(t)"�
�

2NK�

�
�

�����

(K
��

!K
��
) ��

�
�
�
#O (�x

�
�	

#�x
�
����)� t#y(0). (75)

We solve our system on the (N#1)-torus (cf. Sect. 2.1.4).
The time transformation from Sect. 2.1.4 shows, that
for all t the center manifold theorem is valid. Therefore
the synchronized state is a local attractor. It reads

�
�
(t)"�*t#��#�

�
K

! �
NK�

�
�
���

K
��
�
�

# 1

6NK�

�
�
���

(�
�
!�

�
)�# �

2N�K�

�
�

�� ���

�(K
��
!K

��
) (�

�
!�

�
)��

�

# �
6NK�

�
�
���

K
��

(�
�
!�

�
)�! �

6N�K�

�
�
�

�� ���

K
��

(�
�
!�

�
)�#O(���	#������) , (76)

with �� as in Sect. 2.1.4.

�*"�# �
2N�K�

�
�

�� ���

(K
��
!K

��
) ��

�
�
�

#O(���	#������) (77)

is the renormalized cluster frequency. The first term of the
right hand side of equation (76) shows that in the synchro-
nized state �* is the frequency of all oscillators. According
to equation (77) the magnitude of � and the symmetries of
the matrix (K

��
) and the vector (�

�
, 2 , �

�
) determine how

much the renormalized cluster frequency is shifted against
the mean of the eigenfrequencies. Note that the frequency
shift crucially depends on the symmetry of the coupling
matrix (K

��
) . All terms on the right hand side of Eq. (76)

except for the first one determine a constant phase shift.
Obviously the coupling deviations (K

��
) cause a phase

shift, too. Moreover they determine whether �* differs
from the cluster frequency � or not. If K

��
" K

��
for all

j, k" 1, 2, N we get �"�*. The renormalization of
the cluster frequency is due to the loss of symmetry of the
coupling deviations K

��
.

Note that we have assumed that

���;K and 0(�;K (78)

hold.
The analysis presented in this section may also be

applied to the total system with coupling constants
K#�K

��
.

If we assume K
��

"K
��

for all j, k"1, 2 , N instead
of Eq. (66), we do not have to introduce y. Therefore the
analysis is simpler, and we just want to present the result
here. With 0(�;K we finally obtain the stable synchro-

nized state

�
�
(t)"�t#�#1

K
�
�
! �

K�

�
�
���

a
��
�
�
# 1

6NK�

�
�
���

(�
�
!�

�
)�! �

2NK�

�
�

�� ���

(a
��
!a

��
) (�

�
!�

�
)��

�

# �
6NK�

�
�
���

K
��

(�
�
!�

�
)�! �

6NK�

�
�

�� ���

a
��
(�

�
!�

�
)�

#O (���	) #O (������). (79)

for j"1, 2, N. With a
��

"!�(1#1/N) for j"k and
a
��

"!�/N for jOk. Comparing Eq. (79) with Eqs. (76)
and (77) shows that the symmetric coupling deviations
(K

��
) only cause phase shifts. No frequency shifts occur.

2.2.2 Several clusters. With the notations of section 2.1.2
the phase model of (31) is

�Q
�
"�

�
!1

N

�
�
���

�K
� �

����

sin (�
�
!�

�
) . (80)

for j3I

. As usual we make the hypothesis (33). As in Sect.

2.1.2 we can separate the clusters if the ratio of the cluster
frequencies is an integer (with [9, 13]). We can even
separate them if the vector field is an almost periodic
function (with [13]). As we have already seen in Sect. 2.1.2
averaging weakens the coupling strength. If we want to
apply the averaging theorems of [9] and [13] the condi-
tion ���!�


�<� has to be fullfilled.

If the cluster frequencies come closer together, it is no
longer possible to separate the clusters by means of aver-
aging. To show this, we have integrated the system

�Q
�
"�

�
!K

20

��
�
���

sin (�
�
!�

�
) ( j"1, 2 , 20) (81)

numerically. �
�

is the cluster frequency of the oscillators
1, 2 , 10, whereas �

�
is the cluster frequency of the oscil-

lators 11, 2 , 20. �
�
, 2 , �

�
are uniformly distributed in

the intervall [!0.1, 0.1]. We choose K"0.3 and
�

�
"0.5. The initial values of the phases are uniformly

distributed in [0, 2�]. We introduce

�
�
(t)e����
"

1

10

��
�
���

e��
�
�
 and �

�
(t) e����
"

1

10

��
�

����

e��
�
�
.

(82)

The cluster amplitudes �
�
(t) and �

�
(t) are plotted for three

different values of �
�
. For �

�
"4 there is a weak disturb-

ation of the stable synchronized state (Fig. 3). Lowering
�

�
increases the amplitude and the period of the oscilla-

tions of the cluster amplitudes. The weakly perturbed
stable synchronization vanishes more and more. For
�

�
"0.77 both clusters are no longer synchronized in

a stable way (Fig. 4). They strongly disturb each other. If
�

�
approaches �

�
even more, both clusters melt and form

one big cluster (Fig. 5).

2.2.3. Continuum of oscillators. In physics modeling by
means of field theory has often been very succesful. There-
fore we are interested whether an oscillatory field shows
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Fig. 3. Phase model I, cluster 1: �
�
"0.5 (solid line) scluster 2:

�
�
"4 (dotted line)

Fig. 4. Phase model I, cluster 1: �
�
"0.5 (solid line), cluster 2:

�
�
"0.77 (dotted line)

a qualitatively different behaviour compared to the dy-
namical behaviour of finitely many oscillators. To this end
we replace the discrete system (64) by the partial differen-
tial equation. This yields

��(x, t)

�t
"�(x)!K

2�
�	
�
�

sin (� (x, t)!� (	, t)) d	 . (83)

�(x, t) is now the phase field belonging to a field of weakly
coupled oscillators. We will analyze eq. (83) for periodic
boundary conditions, i.e. � (0, · ),� (2�, · ). With the clus-
ter frequency

�" 1

2�
�	
�
�

�(x) dx (84)

Fig. 5. Phase model I, cluster 1: �
�
"0.5 (solid line), cluster 2:

�
�
"0.7 (dotted line)

the eigenfrequency field is �(x)"�#�(x). We assume
that

���
�������	�;K (85)

holds. � ·�
�������	� is the norm in the Sobolev-space

H� ([0, 2�]) (cf. [22]).
The transformation � (x, t)"� (x, t)!� t!�, with

�,const. yields

��(x, t)

�t
"� (x)!K

2�
�	
�
�

sin (� (x, t)!� (	, t)) d	 (86)

with periodic boundary conditions � (0, · ),� (2�, · ).
These boundary conditions enable us to make a Fourier
transformation. We are able to apply the center manifold
theorem if we expand the system by putting ��L (k) /�t"0
for all k3Z��0�) (cf. remarks on page 2.1.1). Next we
separate the center modes from the stable modes with the
transformation

�L (k, t)"�K (k, t)!�L (k)

K
for k3Z��0� . (87)

x�
�
"(2, �L (2), �L (1), �L (!1), �L (!2), 2)� (88)

and

x�
	
(t)"(2, �(2, t), � (1, t), � (!1, t), �L (!2, t),2)� (89)

are the center and the stable modes, respectively. The
existence of the center manifold is proven in the appendix.
We now calculate the coefficients of this center manifold.
The stable part of the linearized system may be written in
the form

��L (k, t)

�t
"!K�L (k, t)#m'

�
(x�

�
, x�

	
) , (90)

where m'
�

only contains nonlinear terms. We are now
interested in the map h� (x�

�
)"x�

	
of the center manifold.
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Differentiating this equation with respect to time finally
yields for all k3Z��0�

h�
�
(x�

�
)" 1

K
m'

�
(x�

�
, h� (x�

�
)) (91)

with

h� (x�
�
)"(2, h�

�
(x�

�
), h�

�
(x�

�
), h�

��
(x�

�
), h�

��
(x�

�
), 2)� . (92)

This enables us to determine the coefficients of lowest
order. On the center manifold there is x�

	
"h� (x�

�
) , and

therefore

�(x)" �
��Z����

hK
�
(x̂

�
)e��� (93)

holds.
Transforming back to the phase field we immediately

obtain the synchronized state

�(x,t)"�t#�#� (x)/K

# 1

12�K�

�	
�
�

(�(x)!�(	))� d	#O(���	
�������	� ). (94)

This state is stable. Moreover due to the center manifold
theorem it is a local attractor. Obviously Eq. (94) is the
analogue of Eq. (76) for �"0. So, in the parameter range
we have explored (cf. Eqs. (78) and (85)), finitely many
oscillators as well as an oscillatory field show the same
synchronization behaviour.

2.2.4. Time dependent cluster frequency. Considering the
oscillatory neuronal activity in the brain (cf. [4, 8]), we
became interested in a synchronized cluster of oscillators
with time dependent cluster frequency. Therefore we ana-
lyze Eq. (64) for time dependent eigenfrequencies. The
model reads

�Q
�
"�

�
(t)!K

N

�
�
���

sin(�
�
!�

�
) ( j"1, 2 , N), (95)

with �
�
(t)"�#�

�
#f (t). f (t) models the time depend-

ence of the cluster frequency. In order to apply the center
manifold theorem we assume that ���;K holds. We
make the hypothesis �

�
(t)"�I

�
(t)#p(t) for j"1, 2 , N,

where �I
�
(t) is a solution of Eq. (64). With the results of

section 2.1.1 we immediately obtain the synchronized
state, which is a local attractor:

�
�
(t)" 


�

	

f (	) d	#�t#�#�
�

K

# 1

6NK�

�
�
���

(�
�
!�

�
)�#O(���	) (96)

for j"1, 2, N. Comparing Eq. (96) with Eqs. (76) and
(77) ( for �"0 and K

��
"0) shows that f (t) causes a time

dependent shift of the cluster frequency.

2.2.5. Shift of the cluster frequency. In Sect. 2.1.4 we have
analyzed a shift of the cluster frequency caused by the
imaginary part of the coupling constants. Considering

Eq. (49) we can immediately write down the analogous
problem for the phase model:

�Q
�
"�

�
!K

N

�
�
���

(sin (�
�
!�

�
)#� cos (�

�
!�

�
)) (97)

for j"1, 2, N. With �"1/N��
���

�
�
we put �

�
"�#

�
�
. We make the transformation

�
�
(t)"�

�
(t)!��t!� with �"konst. (98)

Moreover we introduce y"��
���

�
�
. y is a center

mode if we choose � �"�!�K. In order to separate the
center part from the stable part we make the transforma-
tion

�
�
"�

�
!�

�
K

! y

N
. (99)

The map of the center manifold is determined as shown
above. It is an easy task to solve the order parameter
equation. Next, we identify 0 and 2�, i.e. we solve the
system on the (N#1) -torus. According to the center
manifold theorem the synchronized state is a local attrac-
tor. It reads

�
�
(t)"�(�) t#��#�

�
K

# �
2NK�

�
�
���

(�
�
!�

�
)�

# 1

6NK�

�
�
���

(�
�
!�

�
)�#O(����) , (100)

where ��"�#y (0)"1/N ��
���

�
�
(0).

�(�)"�!�K# �
NK

�
�
���

��
�
#O (����) (101)

is the shifted cluster frequency. Note that we assume that
���;K holds. In contrast to Sect. 2.1.4 � needs not to be
small. Apart from that Eqs. (100) and (101) have a similar
structure compared to Eqs. (58) and (59).

3. Model II

In model I stable synchronized clusters with different
cluster frequencies can only exist, if their cluster frequen-
cies fulfill the condition

���!�� �<� for O� , (102)

where � is the magnitude of the coupling strength (cf. Sects.
2.1.2 and 2.2.2). In this case we are able to separate the
different clusters by means of averaging.

Obviously this is a significant restriction if we are
interested in an oscillatory network, which allows for the
stable synchronization of clusters with frequencies that
are arbitrarily close to each other. This motivates us to
investigate our models II and III. The latter is analyzed in
the next section. Both allow for stable synchronized clus-
ters with arbitrarily close cluster frequencies, even in the
case of high coupling strength. The above mentioned
condition has no longer to be fullfilled. In both models the
state of several synchronized clusters, all having different
cluster frequencies, is nothing but a stable fixed point,
moreover a local attractor. Therefore the different syn-
chronized clusters do not disturb each other.
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3.1. Total system

Before we turn to model II we recall some notations of
Sect. 2.1.2. The cluster frequency of the -th cluster is

��"f��" �
����

�
�

N�
with �

�
"f��#�

�
. (103)

With this, model II reads (in polar coordinates)

rR
�
"�r

�
!K

N

�
�
���

1

f�
r�
�

�
����

r
�
cos ( f���

!f

�
�
) (104)

�Q
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�
!K

N

�
�
���

1

f�
r
�
�
����

r
�
sin ( f���

!f

�

�
) (105)

for j3I

. K and � are positive constants. In order to

investigate the well-synchronized state, we assume that

���;� and ���;����K��� (106)

hold. We introduce

�
�
(t)"�

�
(t)!f��t!f�� for j3I� with �"const,

(107)

r
�
"R#	

�
with R"�

�
K ��

���
n�/ f�

, (108)

because R is the limit cycle solution for �
�
, 2 , �

�
"0.

Putting

�"1

N

�
�
���

1

f�
�
����

�
�
(0) yields

�
�
���

1

f�
�
����

�
�
,0. (109)

Below this will turn out to be important for the spectrum
of the linear operator. In order to apply the center mani-
fold theorem we include �

�
, 2 , �

�
as variables with

vanishing time derivative (cf. remarks in Sect. 2.1.1). By
means of introducing

�
�
"�

�
! �

�
KR�

(110)

we separate the center part from the stable part. We
denote the center modes by x

�
"(�

�
, 2 , �

�
)� and the

stable modes by x
	
"(	

�
, 2, 	

�
, �

�
, 2, �

�
)�. With

these notations the transformed system reads

x

�
"0 and x


	
"B

	
x
	
#m

	
(x

�
, x

	
) with (111)

B
	
"�

A 0

0 !KR� I�. (112)

I denotes the N�N-identity matrix, and A"(a
��

) with
a
��

"!�!KR�/(Nf�) for j"k3I� and "!KR�/(Nf�)else. All eigenvalues of A have negative real part (proof by
means of the theorem of Gershgorin (see e.g. [20])).

Differentiating x
	
"h(x

�
) with respect to time, we

finally get

h(x
�
)"!B��

	
m

	
(x

�
, h (x

�
)) , (113)

which serves for determinig h up to terms of third order.
We are interested in an oscillatory network which consists
of many oscillators. Calculating A�� is not straightfor-

ward. Therefore we restrict our analysis to networks
consisting of many oscillators, i.e. we put �"1/N. With
a little calculation we get

A��"!1

�
I! �

�
���

1

����N�
L� , (114)

with L"(l
��
) and l

��
"!KR�/f� for k3I�. With this we

finally obtain the synchronized state. For j3I


and with
the abbreviations

�" �
�
���

n�
f�

, �" �
�
���

n� f� (115)

the synchronized state reads

r
�
"R#	

�
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�
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# ����
2����K���N

�
�
���

1

f�

�
����

( f���!f

�
�
)�! 1

����K���N����
�
�
���

1

f�
�
����

��
�

#O (�����#������). (116)

�
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(t)"�
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�
�
�
#���

2��
��
�

# ���
2��N

�
�

�
�
���

��
�
# ��

6N��
�
�
���

1

f�
�
����

( f���!f

�
�
)�

!f

���

2��N
�
�
���

1

f�
�
����

��
�
#O(�����#������) . (117)

The interpretation of equation (116) is straightforword.
��/(K�) denotes the unperturbed limit cycle amplitude
(for �

�
, 2, �

�
"0). The other terms on the right hand

side of this equation contribute to a deviation of this limit
cycle amplitude which is caused by the eigenfrequencies’
deviations �

�
, 2 , �

�
. Note that the limit cycle amplitude

as well as its deviation is influenced by the interactions
of all clusters (cf. Eqs. (115) and (103)). All oscillators
of the m-th cluster have the frequency �


according

to the first term on the right hand side of (117). The other
terms on the right hand side give rise to a constant phase
shift.

3.2. Phase model

Carrying out the adiabatic elimination of the amplitudes
and putting KR��K in Eq. (105), the phase approxima-
tion of model II is

�Q
�
"�


#�

�
!K

N

�
�
���

1

f�
�
����

sin ( f���
!f


�
�
) ( j3I


).

(118)

As in the former section we turn to relative phases. With
Eq. (109) and the transformation

�
�
"�

�
!�

�
K

(119)
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a little calculation yields the stable synchronized state

�
�
(t)"�


t#f


�#�

�
K

# 1

6NK�

�
�
���

1

f�
�
����

( f���!f

�
�
)�#O(���	) (120)

for j3I

. Equation (120) has a similar structur compared

to equation (117). According to the center manifold the-
orem the synchronized state is a local attractor. With
regard to the synchronization frequency the clusters do
not disturb each other. If the cluster frequency is time
dependent, the problem is easily solved by means of the
hypothesis we have used in Sect. 2.2.4.

4. Model III

In model III (as in model II) synchronized clusters coexist
although their frequencies may be close. This is due to the
fact that the synchronized state is a stable fixed point. We
do not need any averaging procedure in order to separate
the different clusters. As in model II the synchronized state
is a local attractor. We use the same notations as in Sect. 3.
A simple transformation enables us to use the results of
Sect. 2.

4.1. Total system

The third network is given by

zR
�
"��#i

�
�

f

� z

�
!K

N
z�
�

�
�
���

z*
�

( j3I

). (121)

K and � are positive constants. With z
�
"r

�
exp (i�

�
/f

) we

obtain model III in polar coordinates:

rR
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"�r

�
!K

N
r�
�

�
�
���

�
����

r
�
cos�

�
�

f


!�
�

f� � (122)
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���
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����

r
�
sin�
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f


!�
�

f� � (123)

for j3I

. By putting

�I
�
"�

�
f


, �J
�
"�

�
f


, �J
�
"�

�
f


( j3I

) (124)

we arrive at model I, which we have analyzed in Sect. 2.1.1.
Therefore we can immediately write down the stable syn-
chronized state. For j3I


we obtain

�
�
(t)"�


t#f


�#�

�
�

! ��
�

3��
# 1

3N��
�
�
���

�
����

��
�
#O (��̂�	) (125)

r
�
,�

�
K

# 1

2����K��� f �


��
�
#O(��̂��) , (126)

with �̂"(�J
�
, 2 , �J

�
)�. Note that we have made the as-

sumption

��̂�;� and ��̂�;����K��� . (127)

According to equation (125) the unperturbed limit cycle
amplitude, ��/K, is not influenced by parameters which
are related to the mutual interaction of the clusters (cf. Eq.
(116)). Note that Eq. (126) has a similar structure com-
pared to Eq. (23). According to Eq. (125) all oscillators of
the m-th cluster have the cluster frequency �


. The con-

stant phase shift is similar to that one in Eq. (24).

4.1.1. Repulsive coupling. In order to investigate repul-
sively coupled clusters of different frequencies, we have to
introduce some notations. For every cluster frequency
�� there are now two groups of oscillators. Their index
sets are denoted by I�� and I�� respectively. On the whole
there are two groups of oscillators: I�"�����

I�� and
I�"�����

I�� . An oscillator of I� is coupled with the other
oscillators of I� with the coupling constant K. With the
oscillators of the other group it is coupled repulsively
with !K. The other notations are as in the former
section.

With this our system reads

zR
�
"��#i

�
�

f

� z

�
!K

N
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�
����
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N
z�
�

�
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(128)
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(129)

We make the hypothesis z
�
"r

�
(exp (i�

�
/f


) for j3I�


�I�


.

By means of introducing

�I
�
"�

�
f


, �J
�
"�

�
f


, �J
�
"�

�
f


for j3I�

�I�


, (130)

�I
�
"�I

�
!�t!� for j3I�,

�I
�
"�I

�
!�t!�!� for j3I�, (131)

r
�
(t)"�

�
K

#	
�
(t) for all j (132)

we transform model III to model I. We make use of the
results of Sect. 2.1.1. Transforming back, immediately
gives us the stable synchronized state

r
�
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�
K

# 1

2����K���f �


��
�
#O (��̂��) (133)

�
�
(t)"�


t#f


�#u

�
for j3I�


(134)

�
�
(t)"�


t#f


�#f


�#u

�
for j3I�


, (135)

where

u
�

"�
�
�

! ��
�

3��
# 1

3N��
�
�
���

�
������I��

�
�
�

f� �
�#O(���	).

(136)

Note that we have assumed that ��̂�;K holds. Compar-
ing Eq. (133) with Eq. (126) clearly shows that the
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anti-phase synchronization does not influence the oscil-
lators’ amplitudes in the synchronized state. From Eqs.
(134) and (135) we immediately read off that both clusters
with the cluster frequency �


have the constant phase

difference f

� (cf. Eq. (125)).

Repulsive coupling in the phase model is analyzed in
an analogous way.

4.1.2. Shift of the cluster frequency. In model I we have
already seen that the imaginary part of the coupling
constants causes a shift of the cluster frequency. Model III
exhibits the same phenomenon. To show this we investi-
gate

zR
�
"��#i

�
�

f

� z

�
!K

N
(1#i�) z�

�

�
�
���

z*
�

( j3I

) , (137)

with �'0, and � real. The hypothesis z
�
"r

�
exp (i�

�
/ f


)

for j3I


and the transformation (124) brings us to
the extended model I. We profit by the results from
Sect. 2.1.4. The stable synchronized state, which is a local
attractor, is
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for j3I

, where �


�"( ��

���
�

�
(0)) f


/N.
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��#f
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���
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����
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�
�

f��
�#O(�����	) (139)

is the shifted frequency of the m-th cluster. Equations (138)
and (139) have similar structures compared to (58) and
(59). Note that the higher the cluster frequency, the higher
the shift of the cluster frequency.

The amplitudes in the synchronized state are

r
�
,�

�
K

# �

f

��K

�
�
# 1

2����K��� f �


��
�
#O (�����	)

(140)

for j3I

, where ���"(�, �J

�
, 2, �J

�
)�. The structure of

(140) is well known to us from (60). The deviations from
the unperturbed limit cycle amplitude remarkably in-
crease with decreasing cluster frequency, i.e. with decreas-
ing f


. Note our assumption

�����;� and �����;����K��� . (141)

4.2. Phase model

4.2.1. One cluster. After the adiabatic elimination of the
amplitudes, and after putting KR�PK#�K

��
, we obtain

the system
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.

(142)

We assume that 0(�;1, 0(�;K, ��L �;K, and (66)
hold. The transformation (124) enables us to make use of
the results of Sect. 2.2.1. In the stable synchronized state
for j3I


there is

�
�
(t)"�*


t#f


��# 1

K
�
�

! �f


NK�

�
�
���

1

f�
�
����

K
��
�
�
# f


6NK�

�
�
���

�
����
�
�
�

f


!�
�

f� �
�

# �f


2N�K�

�
�

�����

1

f�
�
����
����

(K
��
!K

��
) �

�
�

f


!�
�

f� �
�
�
�

# � f


6NK�

�
�
���

�
����

K
�� �

�
�

f


!�
�

f� �
�

! �
6N�K�

�
�

�����

�
����
����

K
�� �

�
�

f�
!�

�
f��

�

#O (��L �	#����L ��), (143)

with the renormalized frequency of the m-th cluster

�*
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# f
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�����

1

f �� f�
�
����
����

(K
��
!K

��
) ��

�
�
�

#O���L �	#����L ��� , (144)

and ��"1/N ��
���

�
�
(0) . Equation (143) corresponds to

(76), whereas (144) corresponds to (77). There are n differ-
ent synchronized clusters with cluster frequencies
�*

�
, 2, �*

�
. The clusters’ interaction contributes to the

frequency shifts (cf. Eq. (144)) as well as to the constant
phase shifts (cf. Eq. (143)).

For symmetrical couplings K
��

"K
��

(instead of (66)),
the transformation (124) brings us back to model I, and
the problem is solved, too.

If the cluster frequency is time dependent, i.e. if we put
�


P �


#f


f (t) , we just have to add f


� 


	

f (	) d	 to
the right hand side of Eq. (143) (cf. Sect. 2.2.4).

4.2.2. Shift of the cluster frequency. The extended phase
model reads (with KR�PK)
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f� �� (145)
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for j3I

. The transformation (124) enables us to make

use of the results of Sect. 2.2.5. The stable synchronized
state is
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,

(146)

where ��

"(��

���
�

�
(0)) f


/N. The shifted cluster fre-

quency is
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(�)"f


(�!�K)# f


�

NK

�
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���
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�
�

f��
�#O(��L �	) .

(147)

Equations (146) and (147) correspond to equations (100)
and (101). Again, the clusters’ mutual interaction gives rise
to frequency (cf. Eq. (147)) and phase shifts (146)). Accord-
ing to (147) the frequency shift increases with increasing
cluster frequency.

5. Synchronization thresholds

For the time being we define the synchronization thre-
shold K

���

as the coupling strength which has to be ex-

ceeded in order to cause a synchronized state.
Let us for example consider Eq. (64). If we introduce

relative phases in the system (64) with the transformation
(11), the transformed system has the potential

»(�
�
, 2 , �

�
)"! �

�
���

�
�
�
�
!K

N

�
�
���

�
�
���
���

cos (��!�
�
).

(148)

For K'K
���


this potential has a minimum.
In this section we only analyze the phase models. First

we investigate model I and II. At the end we turn to model
III. In the whole section we let �'0.

5.1. Model I and II

5.1.1. Two oscillators. We first consider model I (Eq. (64)
with N"2). The two oscillators have the eigenfrequencies
�#�/2 and �!�/2. A little calculation shows that
K

���

"�. This still holds if we have N oscillators with the

eigenfrequency �# �/2 and N oscillators with the eigen-
frequency �! �/2 [23]. Obviously in the phase model II
for two oscillators we get K

���

"0.

5.1.2. Three oscillators. In this section we analyze three
coupled oscillators with the eigenfrequencies �

�
" �,

�
�
" f �# �, �

�
" f�! �, where f is a constant real

parameter. If fO1 this is the phase model II, and if f"1
this is the phase model I. Introducing relative phases in
the usual way, we obtain
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�
) . (149)

We are looking for stable fixed points. Because of the
symmetry of the system for the fixed point we make the
hypothesis �

�
"a, �

�
" fa#c, �

�
"fa!c, where a and

c are real constants. If we identify 0 and 2�, a causes
a SO(2)-symmetry of the fixed point. We eliminate this by
means of the transformation �

�
"f�

�
!�

�
,

�
�
"f�

�
!�

�
. This yields
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(150)
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(151)

The fixed point is (�
�
, �

�
)" (!c, c) , with c still to be

determined. To this end we put �R
�
" �R

�
"0. This

gives us

3�
K

"sin c#1

f
sin (2fc)": g (c; r) . (152)

Given f, our task is to find, whether there exists a solution
c. But furthermore we want to know whether this solution
is stable or not. Therefore we have to make a linear
stability analysis of the fixed point. To this end we
put �

�
"!c#	

�
and �

�
"c#	

�
. With x"(	

�
, 	

�
)�

the linearised equation is of the form x
 "A (c ; f )x.
With a little calculation we get the eigenvalues of A(c; f ) :
They are

�
���

(c; f )"!K

3
(2 cos c#cos (2fc))$K

3
�cos (2fc)!cos c �

(153)

for 0(f(�, and

�
���

(c ;�)"!2K

3
cos c$K

3
�cos c � (154)

in the limit fP�. For some values of f we are able to
discuss this problem analytically. For this purpose we use
suitable trigonometric formulas.

1. fP�: From Eq. (154) it follows that K

��

(�)"3�.
If K'K


��
(�) we have c3[0, �/2[, where [denotes the

open interval to the right.

316



2. f"3/2: In this case we obtain g (c; 3/2)"sin c
#2/3 sin (3c) and

�
��c;

3

2�"�
!K cos c: c3�0,

�
2���

3�
2

, 2��
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3
(cos c#2 cos (3c)): c3�
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,
3�
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(155)
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2
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(156)

Plotting these functions, it is easy to see that
K


��
(3/2)"3�/�

���
�2.45�, with �

���
"max�g(c ; 3/2) , c

real�. In the synchronized state there is c3[0,  
���

[ , where
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���
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�0.659.
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(158)

By plotting these functions we get K

��

"3�/�
�
�1.70�,

with �
�
"max�g(c; 1), c real�. In the synchronized state

c3[0,  
�
[holds, where cos  

�
"(�33!1)/8 and  

�
�0.936.

4. f"1/2: In this case g(c;1/2)"3sin c and �
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(c; 1/2)
"!K cos c. Therefore K


��
"� and c3[0, �/2 [.
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with cos (c
�
/2)"!1/2, c

�
�4.189 and c

�
"4�!c

�
�8.378.

By plotting these functions we get K
���


(1/4)"
3�/g(�/2; 1/4)�0.78�, and c3[0, �/2[.

6. f"1/6: The system shows an interesting behaviour,
because it does not have a single synchronization thre-
shold. We get g(c; 1/6)"sin c#6 sin (c/3) and

�
��c ;
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,
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(162)

As is shown in Fig. 6, starting with K"0 and increasing
K, the synchronization becomes stable for the first time
when K

�
(K(K

��
, with K

�
" 3/g (2� ; 1/6) � 0.58� and

K
��

" 3/g(3�/2; 1/6)"0.6� (cf. Eq. (152)). In this case we
have c3]3�/2, 2�[. Increasing K makes the synchroniza-
tion unstable again, but finally for K'K

���
"

3/g(�/2; 1/6)" 0.75� the synchronization remains stable.
Now c3[0, �/2].

The smaller f, the smaller is the synchronization
threshold. This is not surprising, because f stands in
the denominator of the coupling strength (cf. system
(149)).

Fig. 6. g (c; (1/6) (solid line), �
�
(c; 1/6) (dotted line), �

�
(c; 1/6) (dashed

line), reference line (dashed and dotted line)
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5.2. Model III

5.2.1. Two oscillators. Let us consider Eq. (142) for �"0,
N"2, �

�
"f�#�/2 and �

�
"f�!�/2. With the

transformation (124) and the results of section 5.1 we
obtain K


��
"�/f .

5.2.2. Three oscillators. In Eq. (142) we put �"0, N"3.
The eigenfrequencies of the three oscillators are �

�
"f

�
� ,

�
�
"f

�
�#�, �

�
"f

�
�!�. With transformation (124)

and the results of section 5.1 we get K

��

�1.70�/ f
�
.

The synchronization threshold decreases with increas-
ing f

�
, because f

�
stands in the numerator of the coupling

strength.

5.3. Stepwise synchronization

We illustrate this sequence of synchronization and desyn-
chronization by an example. Suppose there are two
clusters. The first cluster consists of two oscillators with
the eigenfrequencies

�
�
"�

�
#�

2
and �

�
"�

�
!�

2
. (163)

The synchronization threshold of the first cluster is
K�


��
" �. The eigenfrequencies of the second cluster are

�
�
"�

�
, �

�
"�

�
#0.7� and �

	
"�

�
!0.7� . (164)

Their synchronization threshold is K�

��

�1.19�. We sup-
pose ��

�
!�

�
�<�.

If all five oscillators are coupled according to Eq. (46)
(phase model I), K�


������
" 5/2K�


��
" 2.5� and K�


������
"

5/3K�

��

� 1.98� are the effective synchronization thre-
sholds of the two clusters respectively. Note that
K�


��
(K�


��
, but K�


������
'K�


������
. 0)K(1.98� : All of

the oscillators are desynchronized. 1.98�(K(2.5� : The
first two oscillators are synchronized. 2.5�(K;
��

�
!�

�
� : Both clusters are synchronized separately.

Further increasing of the coupling will destroy the
synchronization. And finally, when K exceeds the syn-
chronization threshold of all five oscillators, all of them
will join into a single synchronized cluster.

We have focused on synchronized states. Nevertheless,
concerning the dynamical patterns, the desynchronized
states are very interesting, too. For example in the desyn-
chronized states near to the synchronization threshold
intermittency phenomena occur (cf. [9]).

Let us turn towards the phase model I (cf. Eq. (64)). We
suppose that there are several clusters. The eigenfrequen-
cies within a single cluster are assumed to be close com-
pared to the distances of the cluster frequencies. We start
with K"0 and increase the coupling strength. How do
the clusters behave?

If K exceeds the effective synchronization threshold of
a single cluster, this cluster will synchronize and behave
like a single giant oscillator. The synchronization is weak-
ly perturbed by the influence of the other clusters. If we
further increase the coupling strength, the single synchro-
nized clusters will perturb each other more and more, and
finally the synchronization of the single clusters will be
destroyed (cf. Sect. 2.2.2).

Finally the coupling strength will exceed the synchro-
nization threshold of groups of clusters. This will cause the
corresponding clusters to join into single synchronized
clusters, respectively.

These different synchronized groups of clusters will
perturb each other more and more when the coupling
strength is further increased. Therefore the synchroniza-
tion of these clusters will finally vanish.

This stepwise synchronization and desynchronization
of increasing groups of clusters will find an end if the
coupling exceeds the synchronization threshold of all os-
cillators. This will force all of them to join into a single
giant cluster.

For this sketch we have assumed that averaging may
be carried out.

6. Discussion

Several authors have already analyzed synchronization
processes in oscillatory networks (cf. e.g. [2, 6, 16, 24]).
Nevertheless still there are many open questions.

In order to study the impact of an external field on
synchronization processes Christiansen et al. investigated
a large pool of coupled oscillators in the presence of
a modulated external field [2]. They were able to show
that in their model phase locking of the oscillator com-
munity to the harmonics of the frequency of the external
field is associated with a complete loss of coherence be-
tween the oscillators. This was a result of random distrib-
uted pinning phases which were introduced as a disorder-
ing element. In contrast to Christiansen et al. in the
present paper we investigate self-synchronization. Thus, in
our model there is no external field which influences the
synchronization process.

There are different types of coupling mechanisms be-
tween oscillators. For instance, oscillators may synchro-
nize due to pulselike interactions. Tsodyks et al. investi-
gated globally coupled oscillators with pulse interactions
[24]. They showed that in their system the completely
phase-locked state is unstable to weak disorder. As a re-
sult of a small degree of inhomogeneity they observed two
subpopulations of oscillators exhibiting different dynam-
ical behaviour: one that is phase locked and another one
that consists of aperiodic oscillators.

In contrast to Tsodyks et al. we investigated a network
of oscillators which are continuously interacting. For the
first time a rigorous analytical investigation of the stabil-
ity of synchronized clusters of continuously interacting
oscillators is presented in this paper. Our approach essen-
tially relies on the center manifold theorem [15, 18]. The
latter may be considered as a special case of the slaving
principle of synergetics [11, 10].

In the physical world synchronized states of an oscilla-
tory network can only be observed if they are stable with
respect to perturbing fluctuations. Therefore it is not suffi-
cient to prove the existence of synchronized solutions.
Moreover it is indispensable to check the stability of the
synchronized states. Up to now the drawback of many
investigations of synchronization phenomena in oscilla-
tory networks is the lack of a rigorous stability proof. For
instance Ermentrout [6] and Kuramoto [16] determined
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synchronization thresholds. Note that the notion of syn-
chronization thresholds in their investigation implies that
when the coupling strength exceeds this threshold a
synchronized solution exists. In this case all oscillators
(in [6]) or a small group of oscillators (in [16]) are syn-
chronized. Without a stability proof it remains unclear
whether the synchronized state is physically relevant (i.e.
stable) or not.

The center manifold theorem enables us to prove the
stability of the synchronized states under consideration. It
turns out that the latter are local attractors, and getting
synchronized means that the oscillatory network ap-
proaches this local attractor in an overdamped fashion.
Moreover we are able to calculate the phases of all oscil-
lators explicitely. Therefore we can detect frequency shifts
which are caused by different coupling mechanisms.

Parts of our results are in contradiction to Ermen-
trout’s analysis [6]. In [6] Ermentrout analyzed the patial
differential equation

��(x, t)

�t
"�(x)!K

�
�
�

sin(�(x, t)!� (	, t)) d	 . (165)

Except for the range of the values of x this equation is
exactly the same as our Eq. (83). Rescaling the range of the
x-values merely implies rescaling the coupling strength K.
Ermentrout has analyzed the existence of synchronized
states of the oscillatory field, which are of the form

�(x, t)"�t#� (x), (166)

where � is the cluster frequency. Note that � is not time
dependent. This is the very reason why Ermentrout is not
able to investigate the stability of the synchronized states.
He remarks that numerical simulations indicate that all
stable solutions of Eq. (165) are of the form

sin�(x)"c � (x) , (167)

where c is a constant (cf. Remark after Prop. 1 in ([6])).
The hypothesis (167) is quite enticing for technical rea-
sons. It simplifies the equation for the stationary synchro-
nized state remarkably. Ermentrout’s analysis is based on
this hypothesis (167). Nevertheless in section 2.2.3 we have
proven rigorously that in a reasonable parameter range
(cf. condition (85)) the stable synchronized state � (x) does
not only depend on � (x) . According to Eq. (94) � (x) also
depends on � (	) , where 	Ox. Thus, hypothesis (167) is
wrong for the ‘‘well-synchronized’’ parameter range in
which we analyzed Eq. (165) rigorously.

In this paper we investigated different coupling mecha-
nisms. The latter do not only cause frequency shifts. Fur-
thermore they determine whether synchronized clusters of
different frequencies mutually perturb each other (model
I) or tolerate each other (models II and III).

Many authors have prefered to restrict their analysis
to the case of weak coupling strength (cf. [3, 6, 7, 16, 17,
21] ). In this case it is allowed to consider the amplitudes
in a first approximation as beeing constant [16]. This
simplifies the analysis significantly. Nonetheless it is of
great interest to know whether an increase of the coupling
strength changes the behaviour of the synchronized clus-
ters qualitatively. Phase transitions might for instance
occur, revealing totally different dynamics. Thus, in this

paper we investigated the synchronization behaviour of
our models in the case of strong coupling strength, too.
Again the center manifold theorem turned out to be
a powerful tool providing us with rigorous stability proofs
of the synchronized states. Our analysis of the total sys-
tems basically revealed the same results as for the respect-
ive phase models. This confirms the quality of the approx-
imation by phase models for the networks which we
analyzed in this paper.

In the case of three coupled oscilltors we were able to
determine the synchronization threshold, i.e. the critical
coupling strength related to stable synchronization. Ap-
plying averaging arguments enabled us to sketch how
distinct synchronized clusters merge in one giant synchro-
nized cluster.

7. Appendix

We prove that the partial differential equation (86) has
a center manifold. Our proof is quite analogous to the one
of Kelley and Pliss [15, 18]. The only difference is, that we
need a suitable function space (cf. [22] ). With

u(x, t)"�
� (x)

� (x, t)� and M(u)"�
0

m(u)� (168)

the extended transformed system may be written in the
form

�u
�t

"�
0 0

0 !K� u#M(u) . (169)

Note that ���
�������	�;K holds.

1. function space: Let I"[0, 2�]. We choose u3X
 ,where 0(2!(K and X
"�u : I�RPR�; u� (k, t)3
C(R, C�) (k3Z), �u�
(��, with �u�
" sup�exp (!
!�t �)�u( . , t)�

����
�.

2. localization of the nonlinearity: We localize the
nonlinearity by putting M(u)PM� (u)"M(u)
"(�u�

����
/��), with 0(�;1, " smooth, and "(	)"1 for

04	41,"0 for 24	. M� is Lipschitz continuous with
the Lipschitz constant Lip(M� )"O(��) , because the vec-
tor field is odd.

3. linear part: For u(0)"u
�
3X
 and

g(x, t)"�
0

g(x, t)�3X
 (170)

the equation

�u
�t

"�
0 0

0 !K� u#g (x, t) (171)

has a unique solution in X
 . Proof by means of a Fourier
transformation: existence and uniqueness for the single
Fourier coefficient follow from the theory of ordinary
differential equations. The rest is shown by �u�
4C�g�
 .Let us denote the unique solution of (171) by
u"f (u

�
, g) .

4. contraction: We consider the Nemitskii-Operator
N: X
PX
 , u �M� (u). N is Lipschitz continuous, be-
cause M� is Lipschitz continuous. Solving (169) with the
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localized nonlinearity is equivalent to solving
u"f (u

�
, N(u))": S (u

�
, u). S (u

�
, . ) is a contraction in

X
 for all u
�
3X
 , because

�S (u
�
, u)!S (u

�
, u# )�! ��4 C�N(u)!N(u# )�


4C�Lip(M� )�u!u# �
(1 (172)

for � small enough. According to Banach’s fixed point
theorem for all u

�
3X
 there is a unique fixed point

u"u (u
�
).
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