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Abstract
Objective  To determine the association between joint structure and gait in patients with knee osteoarthritis (OA).
Methods  IMI-APPROACH recruited 297 clinical knee OA patients. Gait data was collected (GaitSmart®) and OA-related 
joint measures determined from knee radiographs (KIDA) and MRIs (qMRI/MOAKS). Patients were divided into those 
with/without radiographic OA (ROA). Principal component analyses (PCA) were performed on gait parameters; linear 
regression models were used to evaluate whether image-based structural and demographic parameters were associated with 
gait principal components.
Results  Two hundred seventy-one patients (age median 68.0, BMI 27.0, 77% female) could be analyzed; 149 (55%) had 
ROA. PCA identified two components: upper leg (primarily walking speed, stride duration, hip range of motion [ROM], thigh 
ROM) and lower leg (calf ROM, knee ROM in swing and stance phases). Increased age, BMI, and radiographic subchondral 
bone density (sclerosis), decreased radiographic varus angle deviation, and female sex were statistically significantly associ-
ated with worse lower leg gait (i.e. reduced ROM) in patients without ROA (R2 = 0.24); in ROA patients, increased BMI, 
radiographic osteophytes, MRI meniscal extrusion and female sex showed significantly worse lower leg gait (R2 = 0.18). 
Higher BMI was significantly associated with reduced upper leg function for non-ROA patients (R2 = 0.05); ROA patients 
with male sex, higher BMI and less MRI synovitis showed significantly worse upper leg gait (R2 = 0.12).
Conclusion  Structural OA pathology was significantly associated with gait in patients with clinical knee OA, though BMI 
may be more important. While associations were not strong, these results provide a significant association between OA 
symptoms (gait) and joint structure.
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Introduction

Gait alterations, such as a reduced range of motion (ROM) 
[1–7], have been observed in knee osteoarthritis (OA) 
patients, and are often considered to be associated with knee 
pain, as patients may alter their gait to minimize pain [8, 9]. 
However, it has not been explored to what extent such altera-
tions could be related to the structural pathology of the joint, 
such as osteophyte formation, loss of cartilage, subchondral 
bone sclerosis, meniscal pathology, or synovitis [10]. For 
example, osteophyte formation has been shown to limit pas-
sive and active knee ROM, and as such might also affect gait 
[11–13]. While the relation between gait and radiographic 
joint structure has been analyzed using the Kellgren-Law-
rence grade (KLG) in knee OA patients [14–16], it is not 
known how specific structural joint characteristics of knee 
OA, including those seen by MRI, are related to gait altera-
tions. However, elucidation of this relationship is important, 
because understanding which structural alterations cause 
actual changes in symptoms and function as experienced 
by patients could provide important information on clini-
cally relevant structural treatment targets. For this reason, 
the objectives of the current study were to determine the 
association between joint structure and gait in patients with 
clinical knee OA.

Methods

Participants

In the multicenter IMI-APPROACH (Applied Public–Pri-
vate Research enabling OsteoArthritis Clinical Headway) 
cohort, 297 participants with clinical femorotibial (FT) 
knee OA, according to American College of Rheumatology 
(ACR) criteria, were included in five centers throughout 
Europe [17]. Machine learning algorithms were used to 
include participants with the greatest likelihood of progres-
sion in pain and/or structural joint pathology; the selection 
criteria and cohort profile have been published previously 
[17]. Exclusion criteria included predominantly patel-
lofemoral OA, secondary knee OA (due to, e.g., severe 
leg deformity or inflammatory joint disease), generalized 
pain syndrome (fibromyalgia), and contraindications for 
undergoing MRI. At the first visit, the participants’ index 
knee was selected based ACR criteria [18]. If both knees 
met these, the more affected knee as indicated by the par-
ticipant was selected as index knee or, if no difference was 
indicated, the right one was selected. Participants visited 
the hospital where data was collected, which included gait 
measurements, imaging and collection of clinical data such 

as the Western Ontario and McMaster Universities Arthri-
tis Index (WOMAC) questionnaire.

The study was approved by the regional ethical committees 
and Institutional Review Boards (UMC Utrecht, Leiden Uni-
versity Medical Center, Complejo Hospitalario Universitario 
de A Coruña, AP-HP Saint-Antoine Hospital, and Diakon-
hjemmet Hospital) and was conducted in compliance with the 
study protocol, Good Clinical Practice (GCP), the Declaration 
of Helsinki, and the applicable ethical and legal regulatory 
requirements. All participants have received oral and written 
information and provided written informed consent. The study 
was registered under clinicaltrials.gov nr: NCT03883568.

Gait measurements

Gait was assessed with the GaitSmart system, which uses 
six inertial measurement units (IMU), each comprising 
three tri-axial accelerometers and three tri-axial gyroscopes 
that allow for movement analysis in the sagittal and frontal 
plane [19]. The thigh sensors were attached along the sagit-
tal plane of the thigh over the lateral aspect approximately 
10 cm above the lateral joint line. The shin sensors were 
likewise attached over the widest part of the calf muscle 
taking different patient heights into consideration, see Fig. 1. 
The system has been validated in comparison with 3D analy-
sis in an optical gait lab [19, 20]. The key finding was that 
the system was reproducible and there was no evidence of 
a difference in pelvic tilt and knee ROM, although the IMU 
system showed slightly less hip flexion.

After a 10 s stationary period for calibration, participants 
were asked to walk 15–20 m at their own speed and return, 
after which the IMUs were removed and connected to the 
laptop for analysis. The gait parameters assessed in the cur-
rent study that were considered most relevant for the knee 
OA population, based on previous research [1, 3–7, 21–23], 
were walking speed (m/s) and stride duration (s), range of 
motion (ROM) of the hip and the knee in swing and stance 
phase. The ROM of the calf (tibia) and thigh (femur) seg-
ments in the sagittal plane was also quoted. All values were 
for the leg of the index knee (in ◦). The difference between 
the index leg and the contralateral leg was assessed as well, 
in order to use the less affected contralateral limb as refer-
ence for the target limb.

Structural joint evaluation

The imaging protocol included 1.5 T or 3 T MRI scans and 
weight-bearing semi-flexed, posterior-anterior radiographs 
of the index knee [24]. Radiographs were performed accord-
ing to the Buckland-Wright protocol and analyzed using 
KIDA software by one experienced observer, evaluating 
minimum joint space width (JSW, mm), femorotibial angle 
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(FT angle, ◦ valgus), mean whole-joint subchondral bone 
density (SBD, mm Aluminum equivalent (mm Al eq) in ref-
erence to an aluminum step wedge), and total whole-joint 
osteophyte area (mm2) [25–28]. Kellgren-Lawrence grad-
ing (KLG) of both the index knee and contralateral knee 
was performed on the radiographs as well by an experienced 
rheumatologist.

The MRI protocol included sagittal and coronal interme-
diate weighted fat suppressed sequences, to perform semi-
quantitative MRI Osteoarthritis Knee Scores (MOAKS) 
scoring by an experienced radiologist (FWR) of bone mar-
row lesions (BML, total number in FT joint), meniscal extru-
sion (score 0–3), meniscal tear (score 0–7), synovitis (score 
0–3), and effusion (score 0–3) [29]. MOAKS scores are fur-
ther explained in Supplementary Table S1. For the meniscal 
parameters, the maximum score across all regions was used 
[30]. Patellofemoral (PF) MOAKS scoring was performed 
as well (maximum PF cartilage loss and osteophyte scores 
used as sensitivity measures to correct for PF OA in the cur-
rent study). The MRI protocol further included sagittal 3D 
SPGR sequences for quantitative analysis of the cartilage 

thickness in the femorotibial joint. The mean total FT joint 
cartilage thickness (FTJ ThC, mm) was determined from 
manual cartilage segmentations of the four femorotibial car-
tilages, which were performed by experienced readers with 
blinding to time point (Chondrometrics GmbH, Freilassing, 
Germany). All cartilage segmentations were quality con-
trolled by an expert reader. Study-specific precision errors 
and two-year change in the IMI-APPROACH cohort have 
been published [24].

Statistical analysis

While all IMI-APPROACH had clinical knee OA, only about 
half exhibited definite radiographic OA (ROA; KLG ≥ 2) 
in their index knee, as published previously [17, 31]. As 
preliminary analyses suggested differences in structure-gait 
associations between participants with and without ROA, 
participants with and without ROA were analyzed sepa-
rately. Baseline demographics are presented for the two 
groups separately, and compared using Mann–Whitney U 
tests for continuous variables (as most were not normally 
distributed), and chi-square tests for categorical variables.

Gait parameters were compared between participants 
with and without ROA using independent t-tests, to help 
interpret gait parameters. Similarly, analyses of the dif-
ferences between the index leg and contralateral leg were 
included only to better interpret gait parameters, but were 
not included in further analyses, since the focus of the cur-
rent study was on the index leg for which structural evalua-
tion was available.

Principle component analysis (PCA) was performed 
on the gait parameters, to reduce data and discover gait 
domains, before comparing these gait domains (princi-
ple components) with structural joint structure param-
eters. Spearman correlation coefficients were determined 
between gait domains and structural measures, to evaluate 
associations of individual structural measures with gait. For 
a more complete analysis of how joint structure is associ-
ated with gait, multivariable linear regression models were 
applied. Separate models were used, with each gait domain 
as dependent variable. All structure measures, which were 
selected based on expected clinical relevance, as well as age, 
sex, and BMI, were included as independent variables. From 
these full models, variables were removed one by one based 
on p-value with an exclusion threshold of p = 0.15, so that 
the final models would include only variables associated 
with gait. All models were adjusted for presence of con-
tralateral ROA (fixed inclusion in the regression models). 
Sensitivity analyses were performed with additional inclu-
sion of WOMAC pain and of PF OA parameters in the final 
models, to adjust associations for pain or presence of PF OA. 
A p-value of < 0.05 was considered statistically significant; 
no multiple testing correction was applied. Only patients 

Fig. 1   Example of GaitSmart system in use
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with gait measurements, radiographs and MRI scans present 
were included.

Results

Participants

Of the 297 participants in IMI-APPROACH, 271 had gait 
measurements and imaging, and thus were included in 
the current analyses. Of those, 122 (45%) participants did 
not have ROA. Baseline characteristics and joint structure 
measures of both groups are shown in Table 1, identifying a 
greater BMI and age, stronger WOMAC pain, and generally 
more severe structural damage in the index and contralateral 
knee for participants with ROA.

Gait parameters

Gait parameters for participants with and without ROA are 
shown in Table 2. Participants with ROA had a significantly 
reduced ROM of the thigh, calf, knee in swing and stance 
phase (all p < 0.02), but not for the hip (Table 2). Partici-
pants with ROA showed a statistically significantly larger 
(negative) difference between index and contralateral leg 
than participants without ROA for all ROMs except the hip.

Two principal components/gait domains could be identi-
fied using PCA. The first PC consisted mostly of walking 
speed (weight coefficient 0.909), thigh ROM (0.801), hip 
ROM (0.787) and walking duration (-0.730), while knee 
ROM in swing phase (0.019), knee ROM in stance phase 
(0.403) and calf ROM (0.361) contributed less. The second 
PC consisted mostly of knee ROM in swing phase (0.926), 
knee ROM in stance phase (0.656) and calf ROM (0.854), 
while walking speed (0.334), thigh ROM (0.416), hip ROM 
(0.364) and walking duration (0.021) contributed less. As 
such, the first PC was considered to represent predominantly 
upper leg gait (upper leg gait domain), and the second PC 
was considered to represent lower leg gait (lower leg gait 
domain).

Associations between gait and individual features 
of joint structure

No statistically significant Spearman correlations were 
observed between the upper leg gait domain and any of the 
individual features of joint structure, for either group. In 
participants without ROA, the KIDA FT angle (ρ = -0.21; 
95%CI -0.38–-0.03; p = 0.021) was negatively correlated 
with the lower leg gait domain, while FTJ ThC (ρ = 0.21; 
95%CI 0.03–0.38; p = 0.022) was positively correlated with 
lower leg gait, indicating that less severe varus malalign-
ment and thinner cartilage were associated with worse gait 

Table 1   Baseline characteristics and joint structure parameters of par-
ticipants with and without radiographic knee osteoarthritis

Parameter Without ROA
(n = 122)

With ROA
(n = 149)

P-value

Age, years 66.5 (26.0–70.0) 68.0 (63.0–72.0) 0.048
Male sex, n (%) 33 (27) 30 (20) 0.180
BMI, kg/m2 26.5 (23.3–30.2) 27.1 (25.0–32.3) 0.018
WOMAC pain, 

0–100*
75.0 (60.0–90.0) 70.0 (55.0–80.0) 0.005

Right index knee, 
n (%)

69 (57) 88 (59) 0.678

KLG, n (%)  < 0.001
  -0 46 (38) 0 (0)
  -1 76 (62) 0 (0)
  -2 0 (0) 60 (40)
  -3 0 (0) 78 (53)
  -4 0 (0) 11 (7)

Contralateral KLG, 
n (%)

 < 0.001

  -0 57 (49) 14 (10)
  -1 50 (43) 38 (26)
  -2 7 (6) 49 (34)
  -3 3 (3) 39 (27)
  -4 0 (0) 5 (3)

Minimum JSW, mm 3.1 (2.6–3.7) 2.1 (0.8–3.1)  < 0.001
FT angle, ◦ -2.6 (-4.5 – -1.8) -4.0 (-5.9 – -2.2) 0.003
SBD, mm Al eq 29.4 (27.0–33.2) 31.7 (27.5–35.1) 0.058
Osteophytes, mm2 8.2 (4.6–12.3) 26.3 (16.0–40.7)  < 0.001
FTJ, ThC, mm 3.3 (3.0–3.6) 3.0 (2.7–3.4)  < 0.001
Total # BML, n (%)  < 0.001
  -0 87 (72) 44 (30)
  -1 21 (17) 32 (22)
  -2 12 (10) 14 (10)
  -3 0 (0) 18 (12)
  -4 1 (1) 25 (17)
  -5 +  0 (0) 15 (10)

Meniscal extrusion, n  < 0.001
  -0 67 (55) 16 (11)
  -1 40 (33) 36 (24)
  -2 13 (11) 52 (35)
  -3 1 (1) 44 (30)

Meniscal tear, n  < 0.001
  -0 70 (58) 25 (17)
  -1 0 (0) 0 (0)
  -2 19 (16) 7 (5)
  -3 10 (8) 2 (1)
  -4 11 (9) 13 (9)
  -5 0 (0) 0 (0)
  -6 9 (7) 87 (59)
  -7 2 (1) 14 (10)

Synovitis, n  < 0.001
  -0 53 (44) 35 (24)
  -1 56 (46) 78 (53)
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(i.e. gait with reduced ROM values, more resembling that 
in ROA patients). In ROA participants, osteophyte size 
(ρ = -0.22; 95%CI -0.38–-0.06; p = 0.006) and meniscal 
extrusion (ρ = -0.23; 95%CI -0.38–-0.06; p = 0.006) were 
negatively correlated with lower leg gait, indicating that 
larger osteophytes and greater meniscal extrusion were asso-
ciated with worse gait. All results including non-significant 
associations can be found in Supplementary Table S2.

Regression models for relationship between gait, 
demographics and joint structure

In participants without ROA, higher BMI was significantly 
associated with worse upper leg gait (Table 3), although 
the R2 was low (0.05). For participants with ROA, male 
sex, higher BMI, and less synovitis were associated with 
worse upper leg gait, although again the R2 was low (0.12). 
Worse lower leg gait was associated with higher age and 
BMI, female sex, decreased varus deviation and higher SBD 
in participants without ROA (R2 = 0.24), and with female 
sex, higher BMI, larger osteophytes and increased meniscal 
extrusion in participants with ROA (R2 = 0.18). See Sup-
plementary Figures S1 and S2 for full regression output, 
including all independent variables.

Including WOMAC pain in the models did not change 
results, except that BMI was no longer associated with upper 
leg gait in participants without ROA, and the R2 of the lower 
leg model improved markedly in participants without ROA 
(lower leg R2 = 0.32). Including PF cartilage loss and osteo-
phytes in the models did not change results.

Discussion

This study shows that structural joint pathology measured by 
radiography or MRI is statistically significantly associated 
with gait in people with clinical knee OA, both in those with 
and in those without ROA, although the associated param-
eters differed between groups. In all cases, structural joint 
pathology related to more severe OA was associated with 
more abnormal gait, as expected. This is with the exception 
of the FT angle, where more severe malalignment in varus 
direction resulted in a better gait pattern, though this was 
only the case in participants without ROA with somewhat 
less severe malalignment. While previous studies noted that 
varus movement during dynamic joint loading was associ-
ated with knee OA severity, but not with static leg align-
ment, it will be certainly worthwhile to investigate this asso-
ciation further in future studies [32, 33]. It is also important 
to note that for all models, R2 values were low, and clinical 
relevance of these findings should be studied further.

No structural joint pathology measures were associated 
with upper leg gait patterns in participants without ROA, 

Table 1   (continued)

Parameter Without ROA
(n = 122)

With ROA
(n = 149)

P-value

  -2 11 (9) 32 (22)
  -3 1 (1) 2 (1)

Effusion, n  < 0.001
  -0 93 (77) 50 (34)
  -1 23 (19) 60 (41)
  -2 1 (1) 29 (20)
  -3 4 (3) 8 (5)

PF cartilage loss, n 
(%)

 < 0.001

  -0 19 (16) 7 (5)
  -1 21 (17) 10 (7)
  -2 69 (57) 84 (57)
  -3 12 (10) 46 (31)

PF osteophytes, n (%)  < 0.001
  -0 73 (60) 17 (12)
  -1 45 (37) 75 (51)
  -2 3 (3) 37 (25)
  -3 0 (0) 19 (13)

BMI, body mass index; WOMAC, Western Ontario and McMas-
ter Universities Arthritis Index; KLG  Kellgren-Lawrence grade; 
JSW joint space width; FT femorotibial; SBD subchondral bone den-
sity; mm Al eq; mm aluminum equivalent; FTJ ThC FT joint cartilage 
thickness; BML bone marrow lesion; PF patellofemoral. Median and 
interquartile range or n (%) are given. *Lower values indicate more 
severe pain

Table 2   Gait parameters for participants with and without radio-
graphic knee osteoarthritis

ROM range of motion; ROA radiographic osteoarthritis

GaitSmart Parameter Without ROA
(n = 122)

With ROA
(n = 149)

P-value

Speed (m/s) 1.0 (0.2) 1.0 (0.2) 0.095
Duration (s) 1.1 (0.1) 1.1 (0.1) 0.868
Index leg
  ROM hip (◦) 34.1 (6.9) 32.7 (7.4) 0.108
  ROM thigh (◦) 38.0 (6.0) 36.5 (5.5) 0.013
  ROM knee (◦) 60.2 (7.6) 56.4 (6.6)  < 0.001
  ROM calf (◦) 74.0 (5.8) 70.2 (6.6)  < 0.001
  ROM knee stance phase (◦) 17.4 (4.6) 14.6 (4.7)  < 0.001

Difference index leg and contralateral leg
  ROM hip (◦) -0.4 (4.3) -0.8 (5.1) 0.495
  ROM thigh (◦) 0.1 (3.1) -0.8 (3.7) 0.029
  ROM knee (◦) -0.0 (4.3) -1.7 (5.4) 0.004
  ROM calf (◦) 0.6 (3.0) -1.3 (3.4)  < 0.001
  ROM knee stance phase (◦) 0.0 (4.1) -1.7 (4.5) 0.002
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while in participants with ROA, higher synovitis scores 
were surprisingly associated with better upper leg gait. 
Like the varus angle, this result is unexpected and cannot 
be directly explained, as the association remained signifi-
cant and negative even after including pain in the model. 
However, after closer inspection, this result is strongly 
influenced by the only two patients with synovitis score 
3. After exclusion of these two participants, synovitis 
is no longer significantly associated with upper leg gait 
(p = 0.25). As such, these results should be verified in a 
larger, well-balanced cohort.

Apart from joint structure, higher BMI and female sex 
were associated with worse gait in both the upper and lower 
leg, especially in participants with ROA. This is consistent 
with previous studies that also found these differences for 
both BMI and sex, to the largest extent in people with knee 
OA [34, 35]. The effect of BMI is possibly most important 
in OA patients, with every 1 kg greater load resulting in 
a 2.2 kg greater peak force at the knee joint [36]. This re-
emphasizes the importance of weight control in knee OA 
patients.

The current post-hoc study was designed to evaluate 
whether gait patterns are associated with radiographic or 
MRI structural joint pathology. While association does 
not necessarily mean causation, these results indicate that, 
aside from BMI, subchondral bone density, osteophytes, 
and meniscal extrusion may be interesting structural tar-
gets. Prevention or treatment of these targets could have 
clinical impact by improving patients’ gait, but this should 
be confirmed in future studies, evaluating structure and 
gait changes. Further, it would be interesting to evaluate 
whether gait can predict structural changes in a future 
study, since gait may be relatively easy to modify and gait 
modification might (partially) allow preventing or slowing 
structural deterioration. Preliminary analyses using the cur-
rent study setup showed no significant relation, but associa-
tions with separate gait measures instead of domains might 

yield different results and could be more interesting in this 
case, as individual gait modifications would be easier to 
interpret and implement than the gait domains as used in 
the current study.

This is the first study to find a significant association 
between OA symptoms, with gait as a measure for func-
tional symptoms, and specific joint structure characteris-
tics. Importantly, these results are statistically significant 
also when including WOMAC pain or PF OA measures 
in the model, indicating that the relationship exists even 
when accounting for pain or PF OA. A consistently sig-
nificant relationship between patient-reported symptomatic 
outcomes, such as function and pain, and joint structural 
pathology that are characteristic of OA has been difficult 
to find, although some studies did find significant asso-
ciations between pain and bone marrow lesions and, to a 
lesser degree, effusion [37–40]. For knee function, no clear 
relations have previously been found. The fact that SBD 
and osteophytes were the relevant joint structure measures 
included in the regression models in the current study fur-
ther indicates the importance of bone in knee OA symp-
toms as experienced by patients, either directly (evaluated 
as patient-reported outcome measures) or indirectly (in this 
case, gait analysis).

This study had several limitations. First, while we cor-
rect for the presence of contralateral knee OA, the partici-
pants’ gait might be influenced by other factors as well. 
Having hip, ankle or foot OA, or other skeletal problems 
such as leg length discrepancy or hip dysplasia, could influ-
ence gait, and the analyses were not corrected for that. Sec-
ond, 10 participants did not have ROA in their index leg, 
but did have ROA in their contralateral leg. This is possible 
because the index leg selection was based on clinical knee 
OA, not on structural characteristics. Since the regression 
models were corrected for the presence of contralateral 
ROA, these 10 participants were not excluded in the cur-
rent study. Last, leg muscles could be expected to influence 

Table 3   Baseline characteristics and joint structure parameters included in final regression models

PC principal component; ROA radiographic osteoarthritis; BMI body mass index; SBD subchondral bone density

PC Without ROA With ROA

Variables B (95%CI) Beta P R2 Variables B (95%CI) Beta P R2

PC1 (upper leg) BMI -0.03 (-0.07 – 0.01) -0.15 0.108 0.05 Sex -0.30 (-0.70 – 0.10) -0.12 0.135 0.12
BMI -0.05 (-0.08 – -0.02) -0.28  < 0.001
Synovitis 0.19 (-0.03 – 0.42) 0.14 0.092

PC2 (lower leg) Age -0.02 (-0.04 – 0.00) -0.14 0.115 0.24 Sex 0.56 (0.19– 0.94) 0.23 0.004 0.18
Sex 0.66 (0.33 – 1.00) 0.34  < 0.001 BMI -0.04 (-0.06 – -0.01) -0.20 0.010
BMI -0.04 (-0.07 – -0.01) -0.22 0.015 Osteophytes -0.01 (-0.02 – -0.00) -0.22 0.014
FT angle -0.09 (-0.16 – -0.01) -0.19 0.029 Meniscal Extrusion -0.12 (-0.29 – 0.04) -0.12 0.144
SBD -0.04 (-0.07 – -0.00) -0.20 0.034
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gait, but these were not evaluated in the IMI-APPROACH 
cohort and not included in the current analyses, which 
focused on OA-related joint structure only.

In conclusion, joint structure measures appear to be asso-
ciated with lower leg gait characteristics in patients with 
clinical knee OA, although sex and especially BMI may be 
more important and R2 values were generally low. Overall, 
structural parameters indicating more severe knee OA were 
associated with more impaired gait, showing a significant 
association between functional gait and joint structure in 
OA, independent from pain.
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