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Abstract
Purpose  Subtle spinal compression fractures can easily be missed. AI may help in interpreting these images. We propose to 
test the performance of an FDA-approved algorithm for fracture detection in radiographs on a per vertebra basis, assessing 
performance based on grade of compression, presence of foreign material, severity of degenerative changes, and acuity of 
the fracture.
Methods  Thoracic and lumbar spine radiographs with inquiries for fracture were retrospectively collected and analyzed by 
the AI. The presence or absence of fracture was defined by the written report or cross-sectional imaging where available. 
Fractures were classified semi-quantitatively by the Genant classification, by acuity, by the presence of foreign material, and 
overall degree of degenerative change of the spine. The results of the AI were compared to the gold standard.
Results  A total of 512 exams were included, depicting 4114 vertebra with 495 fractures. Overall sensitivity was 63.2% for 
the lumbar spine, significantly higher than the thoracic spine with 50.6%. Specificity was 96.7 and 98.3% respectively. Sen-
sitivity increased with fracture grade, without a significant difference between grade 2 and 3 compression fractures (lumbar 
spine: grade 1, 52.5%; grade 2, 72.3%; grade 3, 75.8%; thoracic spine: grade 1, 42.4%; grade 2, 60.0%; grade 3, 60.0%). The 
presence of foreign material and a high degree of degenerative changes reduced sensitivity.
Conclusion  Overall performance of the AI on a per vertebra basis was degraded in clinically relevant scenarios such as for 
low-grade compression fractures.
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Purpose

Spinal compression fractures are one of the most com-
mon fracture types, especially in the elderly population [1, 
2]. With radiographs being the initial imaging method of 
choice, radiologists are presented with spine radiographs 
with inquiry for fracture on a daily basis. Interpretation of 
these radiographs may be difficult, as many radiographs 
show severe degenerative changes, patient mobility and 
therefore image quality may be compromised, or prior ortho-
pedic surgery may have taken place. Missing fractures in 
these radiographs may result in delays in treatment, possibly 

resulting in further complications [3]. Slight compression 
fractures in particular may easily be missed [4–7].

An increasing number of AI tools are available for diag-
nostic assistance in radiology. One such tool is Gleamer 
BoneView®, which aids in fracture detection on X-rays. The 
tool has shown overall good sensitivity and specificity for 
fractures, however, vertebral fractures lagged compared to 
other anatomic regions in a study by Guermazi et al. While 
overall sensitivity and specificity for all regions was 88%, 
this was reported to drop to 77% specificity and 80% sensi-
tivity in the thoracolumbar spine [8]. Similar results were 
shown in a study by Oppenheimer et al., with sensitivity at 
89% and specificity at 62% [9]. These studies measured the 
AI performance only on a per case basis, not analyzing each 
potential separate vertebral fracture in the radiograph. Addi-
tionally, it was also not measured which influence the grade 
of compression had on sensitivity and specificity.

The Genant classification allows for a semi-quantita-
tive classification of vertebral compression fractures by 
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percentage of height loss as well as fracture type. Hereby 
grades 1-3 (mild, moderate, severe) are distinguished by the 
percentage of height loss. Grade 1 fractures show a height 
loss of less than 25%, grade 2 fractures 25–50%, and grade 
3 fractures greater than 50%. Fracture type is classified into 
anterior (wedge type), middle (crush type), and posterior 
compression fractures [10].

We aim to retrospectively test the sensitivity and speci-
ficity of a commercially AI system for fracture detection 
(Gleamer BoneView®) for vertebral compression fractures 
in relation to the Genant classification system on a per ver-
tebrae basis as a primary result. A high sensitivity and speci-
ficity for subtle fractures (Genant 1) is necessary for the soft-
ware to aid the radiologist. Additionally, we aim to test the 
performance of the AI on multiple subsets of data that are 
regularly encountered in everyday practice, but may impair 
the diagnosis. Therefore, we will test the performance when 
comparing patients where surgery or cement kyphoplasty 
was previously performed and in patients with various stages 
degenerative changes of the spine. We will also compare 
the performance for acute versus non-acute compression 
fractures.

Materials and methods

Data collection

An overview of the study design is shown in Image 1. Lum-
bar and thoracic spine radiographs with inquiry for frac-
ture were retrospectively collected from a level 3 trauma 
center’s PACS-Database from February 2022 to June 2022. 
The search was performed in our clinic’s RIS-System (GE 
Centricity RIS-I 7.0, GE Healthcare, Chicago, IL, USA), 

filtering for the exam types “lumbar spine radiograph” and 
“thoracic spine radiograph.” Only radiographs with inquiry 
for fracture were included, spine radiographs acquired for 
other inquiries such as degenerative changes or pre- and 
post-surgery imaging were excluded. Cervical spine radi-
ographs were excluded, as these are not supported by the 
software for analysis. Exams not including a sagittal image 
were excluded. A thoracic and lumbar spine exam may have 
been acquired for the same patient in some cases, if so, each 
was included as a separate entity (Table 1).

Patient age and gender were noted. The clinical indication 
for the imaging was broadly categorized into seven catego-
ries, (1) pain without known cause, (2) falls, (3) assault, 
(4) other trauma, (5) osteoporosis, (6) metastatic bone dis-
ease, and (7) other. Each patient’s exam was subjectively 
semi-quantitatively categorized by degree of degenerative 
change, on a scale from 0 (none) to 3 (severe) (see Image 2 
a–d). Mild degenerative changes included minimal height 
loss of the intervertebral space and minimal sclerosis of the 
vertebral end plates. Moderate changes included height loss 
of the intervertebral space over 50% in one or more seg-
ments, extensive end plate sclerosis and/or non-bridging 
osteophytes or syndesmophytes of some vertebrae. Severe 
changes included complete loss of the intervertebral space 
and/or bridging osteophytes or non-bridging osteophytes of 
most vertebrae.

Presence or absence of fracture was defined by the writ-
ten report as a consensus of two radiologists, at least one 
of which was board-certified radiologist with over 5 years 
of experience in musculoskeletal radiology. Where avail-
able, cross-sectional imaging was used as the gold standard. 
Each fracture was graded on the Genant-Scale by measured 
relative height loss and fracture type, in the sagittal radio-
graph, as described above. Where cross-sectional imaging 
was available, and height loss and fracture type were clas-
sified by these images. It was noted if any foreign orthope-
dic material was present in the vertebra, and this material 
was categorized into (1) only metal such as screws, (2) only 
cement, (3) a combination of screws and cement, or (4) full 
vertebral replacement. Each fracture was classified as acute 
or non-acute by imaging characteristics, clinical informa-
tion, and where available comparison to prior imaging. 
Typical imaging characteristics for acute fractures include 
increased density of the endplate due to trabecular impaction 
and endplate disruption while chronic fractures. Non-acute 

Image 1   General overview of the study design

Table 1   Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Thoracic or lumbar spine radiograph Cervical spine radiograph
At least sagittal image acquired No sagittal image
Inquiry for new fracture Other inquiries
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fractures typically show callus formation along the endplate. 
However, these characteristics have an overall low specific-
ity when compared to the gold standard of MRI [11, 12]. To 
better classify the acuity, available clinical information, i.e., 
acute new pain or recent trauma was included where avail-
able. We realize that without MRI imaging for all patients 
the results of this categorization should be regarded with 
caution.

AI analysis

Each included exam was then sent to our on-site server for 
analysis by the fracture detection AI (BoneView© Version 
1.2.0, Gleamer, Paris, France). Results were returned within 
minutes as additional images in the clinic’s PACS System 
(Phönix PACS MERLIN Diagnostic Workcenter Version 

7.0, Phönix-PACS GmbH, Freiburg, Germany). One image 
shows the overall result for the exam as either “Positive,” 
“Doubt,” or “Negative” as well as an image overlay for each 
original image included in the exam marking the fractures. 
These show either images with no results (“Negative,” Image 
3a), with through line bounding boxes marking fractures the 
AI deems as likely having a fracture (“Positive,” Image 3c) 
or dashed-line bounding boxes, where the AI deems a frac-
ture possible (“Doubt,” Image 3b). The AI has a threshold 
of “Doubt” at 50–89% confidence and “Positive” at 90% and 
above [8]. For spine radiographs, these bounding boxes are 
generally placed around an entire vertebra. For each marked 
vertebra it is noted if it is marked as “Positive” or “Doubt,” 
or if the vertebra is unmarked by the software in the a-p and 
sagittal images. Positive and doubt results were classified 
as fracture positive by the AI for further analysis. In rare 

Image 2   a–d From left to right: lateral radiographs of the thoracic (a, b) and lumbar spine (c, d) from different patients. Image a showing no 
mentionable degenerative changes, b showing mild changes, c moderate, and d severe changes

Image 3   A–c From left to 
right with markings by the AI 
software: lateral radiographs of 
the lumbar spine from different 
patients. Overlay of images 
returned by the AI showing no 
regions of interest (a), a dashed-
line bounding box (b) where a 
fracture is deemed possible and 
a through line bounding box 
(c) where a fracture is deemed 
likely. b and c show true posi-
tive results by the AI
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cases where the bounding box is between vertebra, this is not 
noted as any marking on the vertebra (see Image 3).

Statistical analysis

Results of the AI software were compared on a per vertebrae 
basis to the defined Genant classification. Sensitivity, speci-
ficity, positive, and negative predictive value were calculated 
for the overall dataset and then for each of the nine classi-
fications defined by Genant (wedge-type grade 1–3, crush 
type grade 1–3, posterior compression grade 1–3). Results 
are primarily reported only in comparison to the side view 
radiograph, as this view defined the Genant category. Fur-
ther analysis was provided for the entire set with the results 
of the ap-images included, only including vertebra depicted 
on both views.

Sub-group analysis was performed for old vs. new frac-
tures, for grade of degenerative change, as well as for verte-
bra including or not including foreign orthopedic material. 
Results were compared by gender as well as for age cohorts 
in intervals of 20 years.

All exams and vertebrae were regarded as separate for 
purposes of this analysis. Lumbar and thoracic spine results 
were calculated separately. All results are shown with the 
range for 95% confidence intervals (±). Data analysis and 
documentation were performed with Excel 365 (Microsoft 
Corporation, Redmond, WA; USA) and IBM SPSS Statistics 
29 (IBM, Armonk, NY, USA). Means were compared by 
independent t-tests or ANOVA where applicable. Signifi-
cance was defined as p < 0.05.

Results

Patient cohort

A total of 512 exams from 400 patients (357 lumbar spine 
and 155 thoracic spine) were included. Average patient age 
was 67.5 years (± 1.6 years; range 19–100). Two patients 
were in the age cohort 0–19 years, 62 in the cohort 20–39 
years, 88 in the group 40–59 years, 181 in the group 60–79 
years, 178 in the cohort of 80–99 years, and one patient was 
in the group of 100 years of age and older. 37.4% of patients 
were male. The average age of female patients was 70.1 
years (range 19–100), for male patients 63.2 years (range 
21–93). 73.7% of exams were acquired in standing posi-
tion. Cross-sectional imaging was available for 107 (20.9%) 
cases. Three hundred four exams were ordered for pain with-
out trauma, 155 for falls, 6 for assaults, 13 for other trauma, 
five for follow-up in patients with known osteoporosis, and 
26 for known metastatic bone disease. Two exam orders 
were classified as other. Sixty-eight exams showed spinal 
imaging without noteworthy degenerative changes, 142 

with initial degenerative changes, 149 with moderate, and 
152 with severe degenerative changes. One hundred three 
patients had radiographic signs of osteoporosis; 163 patients 
had diagnosed osteoporosis.

Five lumbar spine and eight thoracic spine radiographs 
had to be excluded, as they were rejected by the AI software 
for analysis as being of unsupported anatomical regions 
(either being classified by the AI as chest or abdominal 
exams).

A total of 2504 vertebrae were included in the lumbar 
spine exams (with the sixth thoracic to the fifth lumbar ver-
tebra being included in images). Of these, 2181 had no frac-
ture. A total of 1610 vertebrae in the thoracic spine radio-
graphs were included (with imaging of the first thoracic to 
the fourth lumbar vertebra being included in images), of 
which 1438 had no fracture. The distribution of fractures by 
Genant classification is shown in Table 2. No radiographs 
included posterior fractures, as these often present with con-
cordant neurologic deficits, cross-sectional imaging is the 
initial modality of choice where these are suspected.

Sensitivity and specificity

Overall sensitivity of the AI on lateral images was 63.2% in 
lumbar spine radiographs, significantly better than thoracic 
spine images at 50.6% sensitivity (p = 0.01). Specificity 
was 96.7% and 98.3% respectively. The sensitivity of the AI 
improved somewhat with a higher fracture grade; however, 
there was no significant difference between grade 2 and 3 
fractures (lumbar spine: p = 0.90; thoracic spine: p = 0.99). 
Difference between grade 1 to 2 and 3 was significant in 
the lumbar spine only (lumbar spine: p (1,2) = 0.01 and p 
(1,3) = 0.01; thoracic spine: p (1,2) = 0.13, p (1,3) = 0.62). 
The AI showed slightly, non-significant, better results for 
wedge fractures in lumbar spine radiographs versus crush 
fractures (64.4 vs. 60.8%; p = 0.53), with less difference 
between the two groups in thoracic radiographs (51.9 and 
50.0%; p = 0.81). Sensitivity was lowest for grade 1 crush 
fracture in the thoracic spine (40.0%) and highest for grade 2 

Table 2   Fracture distribution by Genant classification and by thoracic 
and lumbar spine radiographs

Lumbar Thoracic Total

No fracture 2181 1438 3619
Grade 1 Wedge 88 45 133
Grade 2 Wedge 74 28 102
Grade 3 Wedge 54 31 85
Grade 1 Crush 72 40 112
Grade 2 Crush 27 17 44
Grade 3 Crush 8 11 19
Total 2504 1610 4114
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crush fractures in the lumbar spine (81.5%). Sensitivities for 
each fracture grade are shown in Table 3. With the addition 
of ap-images sensitivity significantly increased for lumbar 
spine radiographs to 72.4% (± 4.9; p = 0.01). Improvement 
was shown in thoracic spine radiographs also, albeit non-
significant, with sensitivity increasing to 60.6% (95% CI ± 
7.5; p = 0.08). Specificity remained high at 94.2% (± 1.0) 
and 94.0% (± 1.3) respectively.

Age and gender

Lumbar spine images included 103 fractures in male patients 
resulting in a sensitivity of 62.1% and specificity of 96.0%. 
In female patients, 220 fractures were included, with a sen-
sitivity of 63.6% and specificity of 97.1%. For thoracic spine 
radiographs, the gender difference was more pronounced, 
with a sensitivity of 29.4% in males and 56.5% for females, 
however there were more than twice as many analyzed ver-
tebrae in the female cohort. Sensitivity was 97.7% and 98.5% 
respectively.

The age group of 0–19 and 100 and above were not sepa-
rately analyzed, as they were included too few patients. For 
lumbar spine images, sensitivity varied between 50.0% in the 
age group 20–39 to 64.9% in the 80–99 group. Specificity 
was above 95% in all groups. The age group of 20–39-year-
olds only included a total of 12 fractures, eight of which 
were grade 1 wedge fractures. The difference was even larger 
in the thoracic spine radiographs, where the age group 20–39 
had a sensitivity of only 25%, however with only 4 frac-
tures total. Sensitivity was highest for the 60- to 79-year-old 

group with 54.7%. Specificity also remained above 95% in 
all groups.

Fracture acuity

Of the lumbar spine fractures, 244 (75.5%) were classified as 
non-acute by either imaging characteristics or availability of 
prior studies. Seventy-four were classified as acute fractures 
(22.9%), five fractures were not classifiable. Sensitivity was 
similar for both groups; for acute fractures at 62.2% (± 11.1) 
and for non-acute fractures at 63.1% (± 6.1).

For thoracic spine fractures, 150 were classified as non-
acute (87.2%) and 14 (8.1%) as acute, and 18 were not clas-
sifiable. Sensitivity for non-acute fractures (53.3% ± 8.0) 
was better than for acute fractures (42.9% ± 25.9).

Foreign material

One hundred twenty-three (4.9%) lumbar spine vertebrae 
had foreign material present after orthopedic surgery, of 
which 59 were metal screws, 45 were after treatment with 
cement kyphoplasty, 32 were a combination of screws and 
cement, and 7 were complete vertebral replacements. With 
foreign material present, sensitivity dropped to 58.8% (± 
13.5) and specificity to 89.1% (± 6.4). Sensitivity was 64.2% 
(± 5.9) and specificity 96.6% (± 0.1) when no material was 
present in the vertebra.

In the thoracic spine radiographs, 80 vertebra (5.0%) had 
foreign material present, half of which with screws only, 25 
with cement, 8 with a combination, and 7 vertebral replace-
ments. With material present, sensitivity was 40.5% (± 15.8) 
and specificity 93.0% (± 7.6). Without material, sensitivity 
increased to 53.73% (± 8.4) and specificity to 98.4% (± 0.7).

Degenerative changes

Sensitivity and specificity compared by degree of degenera-
tive changes showed a wide range. Patients with no degen-
erative changes were underrepresented in the dataset, result-
ing in a wide confidence interval. Sensitivity was 50.0% 
(± 26.2) and 50.0% (± 69.3) for the lumbar and thoracic 
spine respectively. For lumbar spine radiographs, sensitivity 
otherwise decreased with increasing degenerative change, 
thoracic spine radiographs showed a higher sensitivity with 
moderate changes compared to mild changes. Full results 
are shown in Table 4.

Discussion

Our study tested the performance of a commercially avail-
able AI software for fracture detection on spine radiographs. 
On a per vertebrae basis, the overall performance of the AI 

Table 3   Overall sensitivity and specificity and sensitivities by frac-
ture grade for lumbar and thoracic spine (in percent; ± 95% confi-
dence interval)

Lumbar spine (in %) Thoracic spine (in %)

Sensitivity lateral only 63.2 (± 5.3) 51.2 (± 7.5)
Specificity lateral only 96.7 (± 0.8) 98.3 (± 0.7)
Sensitivity lateral + ap 72.4 (± 4.9) 60.6 (± 7.5)
Specificity lateral + ap 94.2 (± 1.0) 94.0 (± 1.3)
Sensitivity for:
Grade 1 52.5 (± 7.7) 42.4 (± 10.5)
Grade 2 72.3 (± 8.7) 60.0 (± 14.3)
Grade 3 75.8 (± 10.7) 60.0 (± 14.8)
Wedge 64.4 (± 6.4) 51.9 (± 9.6)
Crush 60.8 (± 9.3) 50.0 (± 11.9)
Grade 1 Wedge 53.4 (± 10.4) 46.7 (± 14.6)
Grade 2 Wedge 68.9 (± 10.6) 57.1 (± 18.3)
Grade 3 Wedge 75.9 (± 11.4) 58.0 (± 17.4)
Grade 1 Crush 51.4 (± 11.5) 40.0 (± 15.8)
Grade 2 Crush 81.8 (± 14.7) 64.7 (± 22.7)
Grade 3 Crush 75.0 (± 30.0) 60.0 (± 13.1)
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algorithm was mediocre, not measuring up to previously 
reported results on a per case basis, where often more than 
one fracture is present in the spinal radiograph, and the iden-
tification of a single of these fractures is enough for a true 
positive AI result [8, 9, 13]. In particular, thoracic spine 
radiographs showed a limited performance, concordant with 
the often difficult interpretation in real-life clinical practice 
due to overlay of the ribcage. Overall detection performance 
slightly improved when adding the ap-spine images for a 
second view, although grade of height loss cannot be accu-
rately determined on these.

Slight compression fractures showed reduced sensitivi-
ties compared to more pronounced fractures, as expected. 
It should be noted that these fractures are also most likely 
to be missed by radiologists, the combination of AI and the 
radiologist may be a potential solution that could lead to 
overall improved fracture detection. Genant 2 and 3 frac-
tures were identified at almost the same rate, likely there 
is no difference in performance after a certain threshold of 
vertebral height loss is reached. AI performance on wedge 
fractures was non-significantly better. Foreign material in 
the vertebra had a marked impact on performance, reducing 
both sensitivity and specificity.

Degenerative changes of the spine also had a marked 
influence on the AI’s performance. The very poor sensitiv-
ity for fractures in patients with no degenerative changes 
should be viewed with caution, as this dataset was very 
small, there is a large possible margin of error. Interestingly, 
mild changes in the thoracic spine performed as poorly as 
severe changes, with moderate changes showing a much bet-
ter overall result, potentially this may be due to a bias in the 
training data originally used for the algorithm.

In some cases, the AI acted unexpectedly to the images 
sent for analysis. The AI rejected a small number of images 
completely, sometimes classifying thoracic spine radio-
graphs as chest radiographs and lumbar spine radiographs 
as abdominal radiographs. This was most often the case in 
obese patients where the field of view for the radiograph 
was very wide, thereby including lots of surrounding tis-
sue. These types of radiographs are not supported by the 
AI for fracture analysis. Other interesting “glitches” seen 
in the AI in a small number of cases were the marking of 
intervertebral space as a fracture (see Image 4), the mark-
ing of the same vertebra by two bounding boxes (see Image 

5), and the marking of different vertebra as fractures in a 
case where additional functional imaging was available (see 
Image 6 a, b).

The reasons for the reduced performance of AI in cases 
where foreign material was included or in patients with 
severe degenerative change cannot be explicitly determined, 
as we only have limited insights into the development of the 
algorithm. In an external validation funded by Gleamer by 
Guermazi et al., some statistics for the software develop-
ment are divulged. The company behind the AI notes that 
over 60,000 images were used in the training and validation 
from 22 different institutions. The training was augmented 
by random changes to the images, such as rotation and resiz-
ing. The AI is validated for fracture detection in “diagnostic 
quality” images; however, an explicit definition of this is 
not provided [8]. A further breakdown of the number of 

Table 4   Sensitivities and 
specificities by degree of 
degenerative change for lumbar 
and thoracic spine radiographs 
(in percent, ± 95% confidence 
interval)

Lumbar (in %) Thoracic (in %)

Sensitivity Specificity Sensitivity Specificity

No degenerative changes 50.0 (± 26.2) 99.3 (± 0.9) 50.0 (± 69.3) 100 (± 0.0)
Mild changes 67.3 (± 12.4) 98.5 (± 0.9) 42.3 (±19.0) 98.5 (± 1.3)
Moderate changes 65.9 (± 8.0) 96.2 (± 15.3) 61.6 (±11.1) 97.7 (± 1.5)
Severe changes 59.7 (± 8.8) 93.9 (± 1.9) 41.7 (±11.4) 97.8 (± 1.3)

Image 4   Lateral radiographs of the lumbar spine with markings by 
the AI software. The arrow indicates a dashed-line bounding box that 
the AI placed in the intervertebral space L4/5 as a region where a 
fracture is suspected, a false-positive result in this case. Such mark-
ings by the AI were disregarded for further analysis
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images per anatomical region or additional edge-cases such 
as with prior instrumentation are not provided. An increase 
in specific training data to fine-tune the model may mitigate 
the performance issues [14].

Other studies have tested different AI algorithms for ver-
tebral fracture detection. Murata et al. were able to achieve 
a sensitivity of 84.7% and specificity of 87.3% for a propri-
etary detection algorithm used for research purposes. How-
ever, only patients with a single or no fracture were included 
and grade 1 compression fractures were excluded from the 
study [15]. Shen et al. were able to achieve sensitivities of 
about 84% with a very high specificity of up to 97% with a 
proprietary detection algorithm for vertebral fractures. Both 
algorithms were for research purposes only and did not have 
clearance by the proper authorities for clinical use as the 
algorithm tested in this study does. There was little differ-
ence in results between thoracic and lumbar spine fractures 
and mild fractures were detected at a rate of 73% in the 
external validation set [16].

There are some limitations to our study. Analysis of 
Genant classification were made by one radiologist only, 
a second opinion may improve accuracy. The presence or 
absence of a fracture was defined by the final report, it is 
possible that some fractures were missed or identified as 
false positives. Some subclassifications of the dataset 
include very small groups, leading to a degree of statistical 
uncertainness in these results. Cross-sectional imaging was 
available only for a partial set of the included studies, with 
which more accurate diagnoses and classifications could 
have been made. The addition of a radiologist’s impression 
with the AI software may improve overall detection rates and 
merits further research.

Image 5   Lateral radiographs of the lumbar spine with markings by 
the AI software. Two dashed-line bounding boxes are erroneously 
placed around the L2 vertebrae as a potential fracture, where kyphop-
lasty was previously performed. All bounding boxes represent a true-
positive, older fracture

Image 6   a, b from left to right: 
lateral spine radiographs of the 
lumbar spine of an identical 
patient in ante- and retroflex-
ion with markings by the AI 
software showing a diversion in 
results. The AI marks an addi-
tional dashed-line bounding box 
on the L3 vertebra in one image, 
while only marking L1 and T11 
in the other image of the same 
patient during the same exam, 
where additional functional 
imaging was obtained. The frac-
tures in T11 and L1 showed true 
positive, grade 1 (L1) and grade 
2 (T11) compression fractures; 
L3 shows a false positive
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Conclusions

Our study researched the performance of a commercially 
available AI algorithm for fracture detection on thoracic and 
lumbar spine radiographs on a large dataset with multiple 
parameters. On a per vertebrae basis, results were mediocre, 
in particular for subtle compression fractures. Overall sen-
sitivity was 63.2% for lumbar spine fractures and 50.6% for 
thoracic spine fractures. For grade 1, fractures performance 
dropped to 52.5% in the lumbar spine and 42.4% in the tho-
racic spine. Factors such as prior surgery with orthopedic 
material in the bone and advanced degenerative changes of 
the spine further mitigate the AI’s performance, reaching 
levels below 60% sensitivity in the lumbar and 50% sensitiv-
ity in the thoracic spine.
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