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Abstract
Objectives We developed the deep neural network (DNN) model to automatically measure hallux valgus angle (HVA) and 
intermetatarsal angle (IMA) on foot radiographs. The objective is to assess the accuracy of the model by comparing to the 
manual measurement of foot and ankle surgeons.
Materials and methods A DNN was developed to predict the bone axes of the first proximal phalanx and all metatarsals from 
the first to the fifth in foot radiographs. The dataset used for model development consisted of 1798 radiographs collected 
from a population-based cohort and patients at our foot and ankle clinic. The retrospective validation cohort comprised of 
92 radiographs obtained from 92 consecutive patients visiting our foot and ankle clinic. The mean absolute error (MAE) 
between automatic measurements by the model and the median of manual measurements by three foot and ankle surgeons 
was compared to 3° using one-tailed t-test and was also compared to the inter-rater difference in manual measurements 
among the three surgeons using two-tailed paired t-test.
Results The MAE for HVA was 1.3° (upper limit of 95% CI 1.6°), and this was significantly smaller than the inter-rater differ-
ence of 2.0 ± 0.2° among the surgeons, demonstrating the superior accuracy of the model. In contrast, the MAE for IMA was 0.8° 
(upper limit of 95% CI 1.0°) that showed no significant difference from the inter-rater difference of 1.0 ± 0.1° among the surgeons.
Conclusion Our model demonstrated the ability to measure the HVA and IMA with an accuracy comparable to that of 
specialists.
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Introduction

Hallux valgus is one of the most common forefoot deformi-
ties, characterized by a lateral deviation of the hallux and a 
medial protrusion of the first metatarsal head [1]. The sever-
ity of the hallux valgus deformity is commonly assessed using 
two radiographic indices: the hallux valgus angle (HVA) and 
the intermetatarsal angle (IMA) between the first and second 

metatarsals. HVA was defined as the angle between the bone 
axes of the proximal phalanx of the hallux (PH1) and the first 
metatarsal (MT1) on the dorsoplantar view in foot radiographs. 
The IMA is defined as the angle between the bone axes of MT1 
and the second metatarsal (MT2) [2, 3]. These angles serve not 
only in diagnosing and assessing the severity of hallux valgus 
but also in guiding surgical procedure selection and evaluating 
the effectiveness of different surgical techniques [4–6].

Manual measurement methods for HVA and IMA were 
standardized by the ad hoc committee of the American 
Orthopedic Foot and Ankle Society (AOFAS) in 2002 [2, 
3]. Although these standardized methods have proven to be 
highly reliable within 5°, the potential for bias and indi-
vidual variability among different raters can still introduce 
challenges when comparing studies conducted by different 
evaluators.

Artificial intelligence including deep neural network 
(DNN) is one of a major breakthrough in translational 
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medicine in orthopedic surgery [7]. Through the implemen-
tation of DNN for automated measurements, orthopedic sur-
geons can conduct bias-free assessments, enabling consist-
ent and precise evaluations of hallux valgus severity across 
geographical boundaries. This standardized approach will 
foster a global interpretation of research outcomes related 
to hallux valgus, leading to advancements in both the under-
standing of the condition and improvements in its treatment. 
Although several previous studies have reported automatic 
measurement models for HVA, extracting the bone region 
details using DNN, these models have not achieved suffi-
cient accuracy or undergone systematic validation [8–10]. 
An obstacle in automated measurements in foot radiographs 
is the potential overlap of bone areas, complicating the seg-
mentation of individual bones, especially in cases of severe 
deformity. Another challenge arises from factors like spur 
formation, erosion, or joint dislocations affecting bone 
contours.

To address these challenges, we considered it advanta-
geous to explore an approach that does not rely solely on 
the accurate extraction of bone regions. In this study, we 
adopted a novel method in which line segments representing 
bone axes drawn by a surgeon were directly used as annota-
tion data. This innovative approach involved converting the 

drawn line segments into a probabilistic heatmap, enabling 
the training of the DNN.

The primary aim of this study was to develop a DNN 
capable of automatic bone axis estimation of PH1 and five 
metatarsals (MT1–5), thereby enabling the automatic meas-
urement of the HVA and IMA. The secondary aim was to 
assess the accuracy of this model by comparing with the 
manual measurements.

Materials and methods

Model development

Datasets for model development

The data collection process is illustrated in Fig. 1. A total 
of 1798 dorsoplantar foot radiographs were obtained from 
two distinct populations. Of these, 1166 radiographs were 
obtained through the secondary use of data acquired in the 
resident cohort study known as Research on Osteoarthritis 
Against Disability (ROAD) study [11, 12]. All 1166 radio-
graphs were obtained from bilateral imaging in a non-weight-
bearing condition, but only right-sided images were utilized. 

Fig. 1  Datasets for model 
development
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The remaining 632 radiographs were acquired from 199 
patients who visited the foot and ankle department of our hos-
pital between January 2016 and December 2021. These 632 
radiographs were taken under weightbearing conditions and 
encompassed images of both the healthy and affected sides, 
as well as radiographs taken at various time points.

The 1798 radiographs collected were randomly assigned to 
three groups: a training dataset comprising 1258 radiographs, a 
validation dataset containing 359 radiographs, and a test data-
set with 181 radiographs. The radiographs in the training data-
set were augmented up to 6 times with random horizontal flips, 
and random rotations ranging from − 15° to 15°. To standard-
ize the input for our deep learning model, the radiographs were 
adjusted by adding a black border for creating square images 
and resizing them to 512 × 512 pixels, preserving the original 
aspect ratio during the reduction. Subsequently, the pixel val-
ues were rescaled to fall within the range of 0 to 1.

Architecture of the model

The model had a U-net architecture, featuring five encoder-
decoder blocks [13]. In this model, the input size was set to 
512 × 512 pixels, and the output size was 512 × 512 × 6. This 
implies that the model generates 6-channel heatmaps, each 
representing a probabilistic area corresponding to the bone 
axes of PH1, MT1, MT2, MT3, MT4, and MT5. The output 
layer of the model contains a loss function known as root 
mean square error (RMSE).

Processing of annotation data

The process of handling the annotation data is outlined in 
Fig. 2. First, the bone axes of PH1, MT1, MT2, MT3, MT4, 
and MT5 were manually drawn by the author (R.T.), who 
is a board-certified specialist in orthopedic surgery, using 
a simple application developed specifically for this study. 
These drawings of the bone axes followed the recommen-
dations of the AOFAS [2]. The endpoints of these line seg-
ments were placed at the end of the corresponding bone 
region along the bone axis. Next, the line segments were 
converted into 6-channel binary images in which the pix-
els situated beneath the lines were assigned a value of 1, 
whereas all other pixels were set to 0. To enhance the vis-
ibility and accuracy of these lines, the 1-pixel-wide lines 
were thickened to 5 pixels in width. Finally, a Gaussian filter 
was applied to the thickened lines to create a smoother repre-
sentation. The standard deviation used in this Gaussian filter 
varied according to the specific bone. For the PH1 axis, the 
standard deviation was set to h/2.5L, while for MT1–MT5, 
it was set to h/L where “h” denotes the height of the image 
in pixels, and “L” denotes the length of the line segment.

Training and fine tuning of the neural network model

We utilized the Adam optimizer [14], for the training of our 
DNN. The maximal number of epochs was set to 12. Addi-
tionally, we fine-tuned other crucial parameters such as the 

Fig. 2  Flowchart illustrating the generation of the training annotation data for the neural network model from a line segment drawn by a surgeon
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minibatch size, initial learning rate, validation frequency, 
and validation patience. The Bayesian optimization algo-
rithm was used in this process [15].

Angle calculations from the predicted model

Angle calculations were computed from the predicted model by 
employing linear regression of the high-value areas in the heat-
maps. A more comprehensive explanation of this algorithm is 
described in Supplementary 1. From this process, the inclination 
angles of the PH1 and MT1–5 axes were obtained. These angles 
were used to calculate the HVA and IMA. Each angle is defined 
as either a positive or a negative value, as shown in Fig. 3.

Retrospective validation cohort of the trained 
model

Dataset for the validation cohort

A database of 200 consecutive patients who firstly visited 
our foot and ankle clinic in the hospital between May 2022 
and June 2023 was retrospectively reviewed for the valida-
tion of our model. We excluded the patients with rear-foot 
disease (91 patients), without weightbearing radiographs 
(11 patients), with foot fractures (4 patients), with massive 
tumoral osteolysis (1 patient), and with previous forefoot 
surgery (1 patient). Ultimately, 92 radiographs of 92 patients 
were included in the validation cohort (Fig. 4).

The minimal number of radiographs required for this 
study was estimated to be 92, using a t-test power analy-
sis with a power of 0.99, to prove that the mean absolute 
error (MAE) was less than 3°, assuming that the MAE was 
1.5° and the standard deviation (SD) of the error was 3.58°. 
Errors of less than 3° were considered good in a previous 
validation study for manual measurement by AOFAS [3]. 
An SD of 3.58° was derived from a previous study that 
attempted automatic HVA measurement [8].

Manual measurements by foot and ankle surgeons

Three foot and ankle surgeons with over 10  years of 
experience (rater 1 R.T., rater 2 T.K., and rater 3 A.U.) 
performed manual measurements for comparison with 
automatic measurements. Manual measurements were 
performed using the same software that was used to cre-
ate the annotation data (Fig. 2). Each rater performed the 
measurements independently in a blinded manner.

Outcomes of validation

The primary outcome of validation was the MAE between 
manual and automatic measurements. A one-sample t-test 

was performed under the alternative hypothesis that the MAE 
was less than 3°. The MAE was calculated from the median 
of three manual measurements by foot and ankle surgeons. 
Additionally, the proportions of cases with errors of less than 
3°, between 3° and 5°, and exceeding 5° were examined.

To evaluate the variation in manual measurements, 
we calculated the absolute differences in measurements 
between raters 1 and 2  (Diff12), 2 and 3  (Diff23), and 3 and 
1  (Diff31). The interrater difference  (Diff123) was defined 
as the mean of  Diff12,  Diff23, and  Diff31. The MAE and 
 Diff123 were compared using two-tailed paired t-tests. The 
significance level was set at p < 0.05 in the statistical tests.

Software environment

All data processing and statistical analyses were performed 
using Deep Learning Toolbox in MATLAB 2022b (Math-
Works Inc.). The code for the analysis and the trained model 
are available at https:// data. mende ley. com/ datas ets/ c24g4 
md953/1. In addition, a prototype Windows application is 
available on the same site that allows users to experience this 
model without coding.

Fig. 3  Predictions of the neural network model regarding the inclina-
tion angle of bone axes of the first proximal phalanx (PH1a), the first 
metatarsal (MT1a), the second metatarsal (MT2a), the third metatar-
sal (MT3a), the fourth metatarsal (MT4a), and the fifth metatarsal 
(MT5a). The hallux valgus angle (HVA) and intermetatarsal angle 
between the 1st and 2nd metatarsals (IMA) were calculated as the 
difference between PH1a and MT1a, and between MT2a and MT1a, 
respectively. In these angles, positive values indicated counterclock-
wise rotations, while negative values indicated clockwise rotations, 
with the right-facing horizontal line as the reference axis

https://data.mendeley.com/datasets/c24g4md953/1
https://data.mendeley.com/datasets/c24g4md953/1
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Ethics considerations

This study was approved by the Research Ethics Committee 
of The University of Tokyo Hospital (No. 1264, No. 2674–4). 
Written informed consent for the secondary use of data 
was obtained from all participants of the ROAD study. The 
informed consent from the patients who participated in this 
study was waived.

Results

Demographics of cases in the validation cohort

Demographic information for the 92 cases in the validation 
cohort, including age, sex, primary diagnosis, and manually 
measured HVA and IMA, is described in Table 1.

Training and fine tuning of a neural network model

As a result of fine-tuning, the optimal DNN model was selected 
with a minibatch size of seven, an initial learning rate of 0.0001, 
a validation frequency of 200, and a validation patience of 10.

Error analysis of automatic measurements

The results of the error analysis for automatic measurements 
are presented in Table 2. The MAE for HVA was 1.3° that 
was significantly lower than 3° (p < 0.01). Most cases (91%) 
had absolute errors of less than 3° between the manual and 
automatic measurements. Similarly, for the IMA, inclination 
angle of PH1, and inclination angle of MT1–5, the MAE val-
ues were all significantly less than 3°. Most of the cases had 
absolute errors of less than 3° between the manual and auto-
matic measurements for these parameters.

Fig. 4  Validation workflow for 
comparing the automatic meas-
urements made by the neural 
network model with the manual 
measurements made by foot and 
ankle surgeons
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Figure  5 shows the distribution of absolute errors 
from manual measurements by the surgeons for all 92 
radiographs.

Comparison of inter‑rater differences and automatic 
measurement errors

The  Diff123 for HVA, IMA, and the inclination angle of 
the axes of PH1 and MT1–5 were 2.0° ± 0.2°, 1.0° ± 0.1°, 
1.6° ± 0.1°, 1.0° ± 0.2°, 0.5° ± 0.0°, 0.5° ± 0.0°, 0.7° ± 0.1°, 
and 0.8° ± 0.0°, respectively (mean ± SD). The MAE was 

significantly smaller than that of  Diff123 in the HVA and 
inclination angles of the axes of PH1, MT1, MT4, and MT5 
(p < 0.01, < 0.01, = 0.01, < 0.01, and < 0.01, respectively). No 
significant differences were observed in the IMA or inclina-
tion angle of the MT2 and MT3 axes (p = 0.15, 0.72, and 
0.05, respectively).

Visual presentation of automatic measurement 
cases

Visual representations of the predictions made by the devel-
oped neural DNN models for all 92 radiographs are pre-
sented in Supplementary 2.

The case with the worst error in the HVA is shown in 
Fig. 6. In this case, the error is 8.3°. Notably,  Diff123 in this 
case was as high as 4.9°.

Discussion

The current study describes the pioneering development of 
a DNN model designed for the automatic measurement of 
HVA and IMA. This model demonstrated accuracy compa-
rable to manual measurements conducted by experienced 
foot and ankle surgeons.

The methods of manual measurement for HVA and IMA 
were established and assessed for reliability by the ad hoc 
committee of the AOFAS in 2002 [2, 3]. In a prior study, 
HVA was measured on 21 radiographs by 24 physicians 
with an error ranging from 3° (61.3% of physicians) to 5° 
(86.7% of physicians), averaged across 21 radiographs. In 
the current study, the MAE of the HVA and IMA were sig-
nificantly smaller than 3°. Specifically, our model success-
fully measured the HVA and IMA with errors of less than 
5° in 89–90 out of 92 cases (97–98%) and 92 of 92 cases 
(100%), respectively. In addition, the MAE of the HVA was 

Table 1  Demographic data of the patients in the validation cohort

Age, HVA, and IMA are presented as mean ± standard deviation
The diagnosis of “Others” contains one case each of osteomyelitis, 
complex regional pain syndrome, and neuropathy of unknown cause
Abbreviations: HVA, hallux valgus angle; IMA, intermetatarsal angle 
between the first and second metatarsals

Age (years) 61.7 ± 17.4
Sex (male/female) 20/72
Patient side (right/left) 52/40
Diagnosis (number (%))
  Hallux valgus 46 (49%)
  Adult acquired flat foot deformity 11 (12%)
  Rheumatoid arthritis 10 (11%)
  Hallux rigidus 7 (8%)
  Plantar plate injury 4 (5%)
  Sesamoid disorders 4 (5%)
  Tumor 3 (5%)
  Curly toe 2 (2%)
  Psoriatic arthritis 2 (2%)
  Others 3 (4%)

HVA in manual measurements (degrees) 29.9 ± 14.6
IMA in manual measurements (degrees) 14.3 ± 4.3

Table 2  Absolute errors of 
automatic measurements 
compared to the median of 
manual measurements by three 
foot and ankle surgeons

95% CI, 95% confidence interval; AE, absolute error between automatic measurements and the median of 
manual measurements by three foot and ankle surgeons; HVA, hallux valgus angle; IMA, intermetatarsal 
angle between the first and second metatarsals; MAE, mean absolute error between automatic measure-
ments and the median of manual measurements by three foot and ankle surgeons; MT1-5a, inclination 
angle of the axes of 1–5 metatarsals; PH1a, inclination angle of the axis of the first proximal phalanx

Parameters MAE 95% CI upper 
limit of MAE

p-value (one-tailed 
t-test for MAE < 3°)

No. of cases
(AE < 3°)

No. of cases
(AE 3–5°)

No. of cases
(AE > 5°)

HVA 1.3 1.6  < 0.01 84 (91%) 8 (9%) 2 (2%)
IMA 0.8 1.0  < 0.01 90 (98%) 2 (2%) 0 (0%)
PH1a 1.2 1.4  < 0.01 87 (95%) 5 (5%) 1 (1%)
MT1a 0.8 0.9  < 0.01 92 (100%) 0 (0%) 0 (0%)
MT2a 0.6 0.6  < 0.01 92 (100%) 0 (0%) 0 (0%)
MT3a 0.7 0.8  < 0.01 92 (100%) 0 (0%) 0 (0%)
MT4a 0.5 0.6  < 0.01 92 (100%) 0 (0%) 0 (0%)
MT5a 0.6 0.7  < 0.01 92 (100%) 0 (0%) 0 (0%)
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significantly smaller than the inter-rater differences observed 
among the surgeons.

In the case with the most substantial error, with a devia-
tion of 8.3° for the HVA, the inaccuracy can be attributed 
to an error in estimating the PH1 axis. This discrepancy 
may have arisen because of the notably high rotation of PH1 
that compromised its symmetry, making accurate estimation 
challenging. Notably, in this case, the inter-rater differences 
in manual measurements by three surgeons were remarkably 
high at 4.9°, suggesting that even manual measurement faced 
challenges in accurately assessing this particular case.

Regarding the accuracy of the bone-axis estimation of 
MT1–5, the MAE was less than 1°, and no case exhibited 
errors exceeding 3°, indicating almost perfect accuracy.

Furthermore, it is important to consider the reproducibil-
ity of the measurements. In the reliability studies of manual 
measurements conducted by the AOFAS, as mentioned ear-
lier, HVA was measured on 21 radiographs by 24 physicians 
over three sessions. The inter-session error ranged between 
3° (61% of radiographs) and 5° (86.2% of radiographs), with 
results averaged across the 24 physicians [3]. In contrast, 
automated measurements by the DNN offer perfect repro-
ducibility, a clear advantage over manual methods.

The first attempt to develop an automatic measurement 
of the HVA was reported in 2019 [10]. In that report, the 
entire bone area on foot radiographs was segmented using 
semantic segmentation with U-net. Subsequently, contours 
pertaining to the hallux were extracted by recognizing the 

Fig. 5  Scatter plots showing the distribution of absolute errors 
between automatic and manual measurements for various radio-
graphic parameters. The x-axis displays the automatic measurement 
values for each radiographic parameter, while the y-axis represents 
the absolute error of the automatic measurements generated by the 
neural network model compared to the median of manual measure-

ments for each parameter that were made by three foot and ankle sur-
geons. The dashed lines in the figures represent the boundaries for 
the absolute errors of 3° and 5°. Abbreviations: HVA, hallux valgus 
angle; IMA, intermetatarsal angle between the 1st and 2nd metatar-
sals; PH1, inclination angle of the axis of the first proximal phalanx; 
MT1–5, inclination angle of the axes of 1–5 metatarsals
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medial protrusion of the bone contour. Finally, the bone 
axis and HVA were calculated from the midpoint of the 
hallux region. Another attempt was reported in 2020 [9], 
where the bone areas of PH1 and MT1 were identified 
by bounding box and subsequent thresholding. The linear 
regression line fitted to the midpoints of the segmented 
areas was predicted to be the bone axes of PH1 and MT1. 
It is worth noting that both of these previous methods 
face a fundamental challenge when bone areas overlap, 
rendering measurement virtually impossible. This limita-
tion arises from the nature of segmentation that classifies 
each pixel in an image into specified region labels. Fur-
thermore, neither of these earlier attempts systematically 
validated their accuracy.

The most recent attempt at automatic measurement, 
reported in 2022 [8], involved the development of a DNN 
capable of predicting anatomically characteristic points on 
bone contours using angle calculations based on the perpen-
dicular bisector of these predicted points. The report con-
cluded that anatomical point estimation had good accuracy; 
however, the HVA measurement still exhibited a substantial 
MAE of 5.22°. This may be attributable to the reliance of 
the angle calculation on points, making it the angle calcu-
lation sensitive to minor variations in bone contours. Fur-
thermore, although the report conducted a validation using 
an independent dataset separate from the training dataset, 
cases with obvious variation in bone contours or joint dis-
appearance were removed. By contrast, the current study 
employed a validation cohort that included patients with 

bone erosion, joint dislocation, or joint destruction caused 
by various diseases requiring forefoot surgery. This compre-
hensive approach allowed us to thoroughly evaluate accu-
racy and demonstrates a notable advancement in the field.

The high accuracy achieved by the current model is 
attributable to our innovative approach toward annotation 
data. Our method utilized heatmaps as annotation data to 
estimate line segments within the image. The technique 
using heatmaps was firstly proposed to estimate the key 
points in the object by Tompson et. al. in 2014 [16], and 
has since been applied successfully to detect anatomically 
distinct points in various contexts [8, 17, 18]. In the cur-
rent study, we generated heatmaps from the line segment 
drawn by a specialist, and these were then used as annota-
tion data. This approach enabled the ambiguous expres-
sion of the annotation data that usually varies even among 
the experts. Furthermore, converting entire line segments 
into heatmaps, rather than simply endpoints, improved 
prediction stability. This proved to be effective even in 
challenging scenarios involving bone erosion, dislocation, 
and overlapping bone areas.

Some limitations of our study must be acknowledged. 
One primary limitation is that the validation was conducted 
solely on radiographs from a single institute, introducing 
uncertainties about the model’s generalization perfor-
mance. However, it is crucial to note that a significant por-
tion of the radiographs used for training the DNN model 
were obtained from cohort studies, specifically in envi-
ronments distinct from the hospital where the radiographs 

Fig. 6  The largest absolute error in the hallux valgus angle measure-
ment between automatic measurement obtained using the neutral net-
work model and manual measurements, with an error of 8.3°. Abbre-

viations: HVA, hallux valgus angle; IMA, intermetatarsal angle; 
PH1a, inclination angle of the axis of the first proximal phalanx; 
MT1a, inclination angle of the axes of 1–5 metatarsals
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for validation were taken. We consider that the favorable 
results achieved under such circumstances serve as compel-
ling evidence supporting the model’s generalization per-
formance. A second limitation of the current model is its 
inapplicability to postoperative and post-trauma imaging. 
After trauma or postoperative interventions, defining the 
longitudinal axis of the bone becomes problematic due to 
significant structural changes and the inherent difficulty 
in establishing a clear reference point, making both pre-
cise manual measurements and accurate automated meas-
urements challenging. In order to solve this confusion in 
defining the longitudinal axis of the first MT bone after 
the hallux valgus surgery, AOFAS recommends using the 
center of the metatarsal head as the distal reference point 
postoperatively, instead of the midpoint of the diaphysis 
which is used as the reference point preoperatively [2]. To 
develop a model applicable to postoperative radiographs, 
the model should be trained using annotation data accord-
ing to the specific definitions for postoperative radiographs. 
Considering the diversity in hallux valgus surgery methods 
and implant types, it is necessary to collect postoperative 
images from multiple institutions. Future multicenter stud-
ies are expected to develop the automated measurement 
models for postoperative radiographs.

In conclusion, we successfully developed a DNN capa-
ble of accurately measuring the HVA, IMA, and inclina-
tion angles of the bone axes of PH1 and MT1–MT5. Our 
results demonstrate that measurements using this model 
closely replicate manual measurements by experienced 
foot and ankle surgeons. This advanced DNN holds great 
promise for future research involving foot radiographs, 
as it not only eliminates subjectivity, but also ensures 
complete reproducibility in repeated measurements. 
Its potential applications extend to various clinical and 
research settings and offer a reliable tool for assessing 
these critical angles.

Supplementary Information The online version contains supplementary 
material available at https:// doi. org/ 10. 1007/ s00256- 024- 04618-2.
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