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Abstract
Objective  To identify which dynamic contrast-enhanced (DCE-)MRI features best predict histological response to neoad-
juvant chemotherapy in patients with an osteosarcoma.
Methods  Patients with osteosarcoma who underwent DCE-MRI before and after neoadjuvant chemotherapy prior to resec-
tion were retrospectively included at two different centers. Data from the center with the larger cohort (training cohort) was 
used to identify which method for region-of-interest selection (whole slab or focal area method) and which change in DCE-
MRI features (time to enhancement, wash-in rate, maximum relative enhancement and area under the curve) gave the most 
accurate prediction of histological response. Models were created using logistic regression and cross-validated. The most 
accurate model was then externally validated using data from the other center (test cohort).
Results  Fifty-five (27 poor response) and 30 (19 poor response) patients were included in training and test cohorts, respec-
tively. Intraclass correlation coefficient of relative DCE-MRI features ranged 0.81–0.97 with the whole slab and 0.57–0.85 
with the focal area segmentation method. Poor histological response was best predicted with the whole slab segmentation 
method using a single feature threshold, relative wash-in rate <2.3. Mean accuracy was 0.85 (95%CI: 0.75–0.95), and area 
under the receiver operating characteristic curve (AUC-index) was 0.93 (95%CI: 0.86–1.00). In external validation, accuracy 
and AUC-index were 0.80 and 0.80.
Conclusion  In this study, a relative wash-in rate of <2.3 determined with the whole slab segmentation method predicted histo-
logical response to neoadjuvant chemotherapy in osteosarcoma. Consistent performance was observed in an external test cohort.

Keywords  Osteosarcoma · Response monitoring · Neoadjuvant chemotherapy · Dynamic contrast-enhanced MRI · 
Histological response · External validation
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Introduction

Presence of residual viable osteosarcoma tissue follow-
ing neoadjuvant chemotherapy is a prognostic factor [1]. 
Although histological determination of percentage viable 
tumor on the resected specimen has limitations, it is still 
the reference standard for response [1, 2]. An imaging 
method allowing prediction of this histological response 
before resection could therefore provide tools for person-
alization of (neo)adjuvant chemotherapy. In this regard, 
several imaging techniques including dynamic contrast-
enhanced (DCE-)MRI, diffusion-weighted MRI and [18F]
FDG PET-CT have been proposed [3–6]. Of particular 
interest is DCE-MRI, which has been shown to allow iden-
tification of viable tumor compartments in osteosarcoma 
after chemotherapy [3, 7–10]. As gadolinium-enhanced 
MRI is included in the standard protocol for tumor imag-
ing, DCE-MRI is the only of these methods that does not 
have a time penalty [11]. Although results look promising, 
there is currently no guideline nor consensus on how to 
use DCE-MRI for response characterization in osteosar-
coma patients [11, 12]. Kubo et al. concluded in a meta-
analysis that features of the time-intensity curve derived 
from DCE-MRI can be useful in predicting histological 
response, but that a significant heterogeneity in prediction 
performance exists. Small patient populations, heterogene-
ous methods, limited statistical power and lack of external 
validations were limitations to the included studies [10].

In this study, we investigated DCE-MRI features in a 
relatively large population and validated performance for 
predicting histological response in an external cohort. 
Two frequently used methods for region-of-interest (ROI) 
selection (whole slab and focal area method) and changes 
in DCE-MRI features during chemotherapy were used 
to create models. Furthermore, the added value of DCE-
MRI features to changes in tumor volume for histological 
response prediction was assessed.

Methods

Patient inclusion

Approval by the institutional review boards was obtained 
prior to the study, and the need for written informed con-
sent was waived due to the retrospective character of the 
study (protocols B19.050/BC-09111). Histologically 
confirmed osteosarcoma patients who underwent MRI 
pre- and post-neoadjuvant chemotherapy and subsequent 
resection between 2005 and 2020 in either Leiden Uni-
versity Medical Center or Ghent University Hospital were 

retrospectively included in a training and test cohort (for 
external validation), respectively. Exclusion criteria were 
MRI performed in different centers (n=165), DCE-MRI 
not performed pre- and post-neoadjuvant chemotherapy 
(n=194), usage of non-identical DCE-MRI scan protocols 
pre- and post-neoadjuvant chemotherapy (n=50) and his-
tory of previous surgery, radiotherapy or chemotherapy 
(n=7). Therefore, out of 501 initially enrolled patients, 
a total of 416 were excluded, leaving 85 patients eligible 
for analysis. Patient age, gender, tumor location, subtype, 
timing of imaging relative to treatment, neoadjuvant treat-
ment and histological response were documented to assess 
patient characteristics in the training and test cohort (Sup-
plementary Material 1).

MRI protocol

Protocol details for both centers are provided in Supple-
mentary Material 2. DCE-MRI series of the entire tumor 
volume were acquired of all patients in the training cohort 
and in 37% of patients in the test cohort. Of the remain-
ing 63% of patients in the test cohort, acquired DCE-MRI 
series consisted of a single slice of the largest tumor area as 
determined on previous non-dynamic images. Acquisition of 
DCE-MRI series was started 6 s before intravenous injection 
of 0.2ml/kg gadolinium contrast medium (0.5mmol/ml) with 
2ml/s by means of an automatic injector. Temporal resolu-
tion during the first minute was 1 s, and from minute 2 to 
5, 3–4 s. Subtraction images of the DCE-MRI sequence in 
which the first baseline image is subtracted from all subse-
quent images were generated automatically to support visual 
detection of early and fast enhancing regions and allow cal-
culation of DCE-MRI features.

Imaging assessment and imaging features

All DCE-MRI images were processed in Philips Intellis-
pace (version 10.1, Philips Medical Systems Nederland B.V., 
Best, The Netherlands). All images were independently seg-
mented by G.M.K. (4 years of experience) and T.V.D.B. (4 
years of experience) under supervision of two experienced 
musculoskeletal radiologists, J.L.B. (34 years of experience) 
and K.L.V. (33 years of experience), respectively, for assess-
ment of interobserver variability. Measurement of largest 
tumoral diameters was performed on conventional T1- or 
fat-saturated T2-weighted static images. Segmentations and 
measurements were performed manually, blinded for histo-
logical and clinical information.

Two methods were used to segment ROIs, corresponding 
to the methods used in previous studies [3, 7–10]. For the 
whole slab method, the entire tumor was segmented on a 
single slice containing the largest tumor area. For the focal 
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area method, two circular ROIs of approximately 10–20mm2 
were placed within the earliest and fastest enhancing regions 
of the tumor, as identified on the subtracted DCE-MRI 
images (Fig. 1A). When the start of enhancement between 
areas could not be differentiated, two areas with visually most 
intense enhancement were segmented. In addition, a circular 
ROI was placed into the artery closest to the tumor. From the 
ROIs, time-intensity curves (TICs) were created. A total of 
four perfusion features on both the pre- and post-neoadjuvant 
chemotherapy DCE-MRI images were derived from the TICs 
(Fig. 1B). These features were selected based on previous 
studies and the ability to capture different aspects of TICs 

[13, 14]. For calculation of these features, the time of onset 
of enhancement (T0) had to be determined for all ROIs of the 
tumor and closest regional artery. T0 is defined as the first 
time point after starting the DCE-MRI acquisition at which 
the signal intensity increases for more than 20% compared to 
the mean signal intensity at baseline (all points in time before 
T0). Subsequently, the time to enhancement (TTE), wash-in 
rate (WIR), maximum relative enhancement (MRE) and area 
under the curve (AUC) were determined. TTE is defined as 
the time difference between T0 in the tumor and the regional 
artery. WIR is defined as the maximum rise in signal inten-
sity per second between T0 of the tumor and the time point of 

Fig. 1   Overview of segmentation methods, feature extraction, 
model building and model testing. A; Dynamic contrast-enhanced 
MRI image of an osteosarcoma in the distal femur showing the 2D 
segmentation of the entire tumor (whole slab, light blue area) and 
regions-of-interest placed in the most intensely and early enhancing 
parts of the tumor (focal area method, dark blue circles). Arterial 
segmentation (red circle) is performed as reference tissue compari-
son to the tumoral segmentations. B; Schematic dynamic contrast-
enhanced MRI derived time-intensity curve and perfusion features 
for an artery and a tumor region depicting changes in average pixel 
signal intensity over time due to influx and outflux of gadolinium 

contrast medium and its distribution over the vascular versus tumoral 
compartments. The features time to enhancement (TTE), wash-in 
rate (WIR), maximum relative enhancement (MRE) and area under 
the curve (AUC) are illustrated. C; Overview of model training 
with logistic regression, internal cross-validation, model selection 
and external validation on a test cohort. Models were cross-vali-
dated to test all single features separately and all feature pairs per 
segmentation method. AUC area under the curve, MRE maximum 
relative enhancement, T0 time of onset of enhancement, TTE time to 
enhancement, WIR wash-in rate
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maximum enhancement (maximum signal intensity) relative 
to the signal intensity on the non-enhanced baseline image. 
MRE is defined as the maximum signal intensity relative to 
the signal intensity on non-enhanced images. AUC is defined 
as the integral of the signal intensities over time relative to 
the signal intensity at baseline. For the focal area method, 
the DCE-MRI features from the two ROIs were averaged for 
further analyses. In order to capture changes in tumor biology 
over time, relative change of WIR, MRE and AUC (rWIR, 
rMRE and rAUC, respectively) was calculated by dividing 
the features on pre-neoadjuvant chemotherapy by post-neo-
adjuvant chemotherapy images. Furthermore, the difference 
in TTE was determined by subtracting pre- from post-neoad-
juvant chemotherapy TTE (ΔTTE). Finally, changes in tumor 
volume were determined by dividing tumor volume (esti-
mated as the volume bounded by an ellipsoid based on tumor 
diameters) on pre-neoadjuvant chemotherapy images by the 
tumor volume on the post-neoadjuvant chemotherapy images 
(rVolume).

Reference standard—histological response 
assessment

Histological response was determined on a complete coronal, 
sagittal or transverse slab of the resected tumor through its 
largest dimension according to current guidelines for histo-
logical response assessment [12, 15–17]. Good histological 
response was defined as <10% viable tumor cells and poor 
histological response as ≥10% viable tumor after neoadju-
vant chemotherapy [1, 2]. In the training cohort, histological 
response was extracted from the patient files and reassessed 
and rescored by an expert pathologist (J.V.M.G.B., 25 years 
of experience) in border-line cases to optimize the reference 
standard. Due to difference in scoring methods in the past, 
response was rescored blinded for pathological reports for all 
patients from the test cohort by an expert pathologist (D.C., 
15 years of experience) to assure consistency. Both in the 
training and test cohort, the pathologist was fully blinded for 
clinical and imaging features. On average, the time interval 
between DCE-MRI evaluation and resection was 18 and 8 
days in the training and test cohort, respectively.

Statistical analysis

The intraclass correlation coefficient (ICC) was used for 
assessment of interobserver agreement for all relative imag-
ing features and tumor volume in the training cohort. Differ-
ences in features between good response and poor response in 
the training cohort were compared using the Kruskall-Wallis 
test. Significance level (p-value) was set at 0.05. Before mod-
eling histological response, all features were log transformed 
to reduce the effects of data skewness. In the training cohort, 
cross-validation was performed (5-folds, 50 repeats) to build 

models and evaluate performance of the different features 
(and feature combinations) (Fig. 1C). Within every training 
and validation fold combination, data was normalized on 
training fold data. Modeling was performed using logistic 
regression. This model cross-validation was performed once 
with all single features separately, once with all seperate per-
fusion features combined with rVolume, and once with all 
combinations of two perfusion features within a segmentation 
method. Due to the limited cohort size, the maximum number 
of included features was limited to two. The mean area under 
the receiver operating characteristic curve (AUC-index) was 
used to determine the model with the best performance for 
poor versus good response prediction. The 95% confidence 
intervals (95%CI) for performance scores were constructed 
using corrected resampled t-test [18]. The optimal probabil-
ity threshold in the training cohort was determined with the 
Youden’s index [19]. The best performing model and cor-
responding probability threshold were tested twice in the 
external test cohort, once with, and once without using the 
combating batch effects while combining batches (ComBat) 
method to harmonize test cohort data to training cohort data. 
The aim of this harmonization step is to reduce center spe-
cific effects, such as differences in timing of post-neoadjuvant 
chemotherapy DCE-MRI (typically performed on the last day 
of neoadjuvant chemotherapy in the training cohort and on 
average 9 days later in the test cohort) while attempting to 
preserve biological meaning in the data [20–22]. Statistical 
analysis was performed in Python (Python Software Founda-
tion, Python Language Reference, version 3.7. Available at 
http://​www.​python.​org).

Results

Study sample and patient characteristics

A total of 55 patients (median age 20) were included in the 
training cohort and 30 (median age 15) were included in 
the test cohort. In the training cohort, 27 (49%) patients had 
a poor response to neoadjuvant chemotherapy. In the test 
cohort, 19 (63%) patients had a poor response. Patient char-
acteristics are shown in Supplementary Material 1.

Interobserver variability and feature analysis

The range of ICC values for the relative DCE-MRI features 
was 0.81–0.97 for the whole slab and 0.57–0.85 for the focal 
area method (Table 1). ICC for relative change in tumor 
volume was 0.72. Relative feature values were significantly 
lower in the poor response compared to the good response 
group for all features (p-values <0.001) (Table 1). Figures 2 
and 3 show examples of (DCE-)MRI and histology in a good 
and a poor responder to neoadjuvant chemotherapy.

http://www.python.org
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Imaging assessment, imaging features, model 
performance and selection

Modeling solely based on tumor volume had, in cross-val-
idation, a mean accuracy of 0.70 (95%CI: 0.59–0.82) and 
AUC-index of 0.75 (95%CI: 0.61–0.90). Mean AUC-index 
ranges in cross-validations were 0.84–0.93 for the whole 
slab and 0.83–0.93 for the focal area method (Table 2). The 
best performing segmentation method and modeling com-
bination was whole slab method-based and included only 
rWIR. The cross-validated means for this model were 0.85 
(95%CI: 0.75–0.95) for accuracy, 0.90 (95%CI: 0.76–1.00) 
for sensitivity, 0.81 (95%CI: 0.63–0.99) for specificity and 
0.93 (95%CI: 0.86–1.00) for AUC-index. Because the best 
performing model included only 1 feature, a threshold for 
prediction of poor histological response of rWIR <2.3 was 
determined (Fig. 4).

External validation on a test cohort

In external validation after ComBat harmonization in an 
unseen test cohort, this model showed an accuracy of 0.80, 
sensitivity of 0.74, specificity of 0.91 and AUC-index of 
0.80. External validation without the use of Combat harmo-
nization resulted in an accuracy of 0.70, sensitivity of 0.58, 
specificity of 0.91 and AUC-index of 0.80.

Discussion

In a relatively large patient group, internal and external vali-
dation showed that changes in DCE-MRI features between 
start and completion of neoadjuvant chemotherapy are 

associated with histological response in patients with osteo-
sarcoma. The best performing model included only rWIR 
derived from the whole slab segmentation method with an 
optimal threshold of <2.3 for prediction of poor response. 
The use of one feature based on segmentation of the largest 
tumor slab rather than subjectively selecting ROIs of the 
highest enhancing regions makes this method straightfor-
ward to implement. The model showed good classification 
performance to distinguish poor from good histological 
response before surgical resection.

The use of DCE-MRI in predicting tumor response is not 
new. However, due to limited cohort sizes, cohort heteroge-
neity and absence of external validation, studies on DCE-
MRI or other imaging modalities have not yet resulted in a 
widely accepted method for response assessment. Reported 
accuracies generally range between 0.60 and 0.77 [3, 5, 
6, 23]. The determined threshold for prediction of poor 
response of rWIR <2.3, corresponding to a <57% decrease 
in WIR over time, is of the same order of magnitude as the 
threshold of <60% decrease in the WIR studied in the meta-
analysis by Kubo et al., with a reported pooled sensitivity, 
specificity and AUC-index of 0.73, 0.83 and 0.89, affirming 
the robustness of the current results [10].

Decrease in performance between internal cross-valida-
tion in the training cohort and external validation reported in 
the current study is partially explained by differences in MRI 
vendor, scan protocols and cohort characteristics between 
centers. For example, in 63% of 30 scans in the external 
validation test cohort, DCE-MRI images were acquired in 
one slice, making it impossible to assess the entire tumor on 
the dynamic images. Furthermore, median days between last 
neoadjuvant chemotherapy and response scans was 9 days 
longer in the test cohort as compared to the training cohort. 

Table 1   Intraclass correlation 
coefficients with 95% 
confidence intervals for 
predictive features and feature 
summaries expressed as 
median and interquartile range 
in the training cohort with 
comparison of the good versus 
poor responder groups. p-values 
represent statistical differences 
in feature values between good 
and poor responders calculated 
with the Kruskall-Wallis test

95%CI 95% confidence interval, ΔTTE delta time to enhancement, ICC intraclass correlation coefficient, n 
number, p probability, rAUC relative area under the curve, rMRE relative maximum relative enhancement, 
rVolume relative volume, rWIR relative wash-in rate

ICC and 95% CI Feature values (median and interquartile range) p-value

Training cohort
(n=55)

Good responders
(n=28)

Poor responders
(n=27)

rVolume 0.72 (0.43–0.86) 0.97 (0.71–1.76) 1.43 (0.95–2.02) 0.78 (0.64–1.00) < 0.001
Whole slab method
rWIR 0.81 (0.68–0.89) 1.92 (0.69–5.67) 4.81 (2.52–13.45) 0.69 (0.43–1.14) < 0.001
rMRE 0.95 (0.91–0.97) 1.35 (0.85–2.97) 2.66 (1.46–7.68) 0.85 (0.72–1.33) < 0.001
rAUC​ 0.97 (0.94–0.98) 1.65 (0.72–5.81) 3.90 (1.87–16.23) 0.72 (0.46–1.27) < 0.001
ΔTTE 0.85 (0.60–0.91) 1.54 (–0.01–6.15) 7.04 (3.47–24.76) 0.00 (–3.08–3.09) < 0.001

Focal area method
rWIR 0.81 (0.67–0.89) 1.47 (0.63–3.67) 3.22 (1.93–7.53) 0.63 (0.46–1.21) < 0.001
rMRE 0.58 (0.28–0.76) 1.38 (0.83–1.99) 1.86 (1.42–2.59) 0.83 (0.60–1.36) < 0.001
rAUC​ 0.85 (0.74–0.91) 1.19 (0.65–2.34) 2.16 (1.20–4.28) 0.65 (0.52–0.82) < 0.001
ΔTTE 0.57 (0.25–0.75) 0.93 (0.80–1.25) 4.68 (–1.70–10.31) 0.00 (–1.96–1.54) < 0.001
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As expected, accuracy was lower when ComBat was not 
used to correct for these center specific effects.

DCE-MRI reflects tumoral vascularization, perfusion 
and capillary permeability, which are hallmarks of tumor 
viability [24]. This allows differentiation between remain-
ing viable osteosarcoma cells and histological reaction to 
chemotherapy such as necrosis, fibrosis, oedema and hem-
orrhage (Figs. 2 and 3) [8, 9]. The current results show 
significantly larger decrease in WIR, MRE and AUC and 
increase in TTE in good responders in comparison to poor 

histological responders for both the focal area and whole 
slab segmentation method. Heterogeneity of osteosarcoma 
has been the rationale for using the focal area segmentation 
method. Viable tumor parts show relatively early, fast and 
intense enhancement compared to less viable tumor parts 
[25]. However, whole slab segmentation provides an over-
all estimation of average tumor response in the largest slice 
of the tumor on cross section, which is more similar to the 
histological response assessment as proposed by the World 
Health Organization [16]. Interobserver variability for the 

Fig. 2   Differences in (dynamic) 
contrast-enhanced MRI 
images and time-intensity 
curve analysis in osteosarcoma 
patients between good and 
poor responders to neoad-
juvant chemotherapy. A–B; 
Pre-neoadjuvant chemotherapy 
T1-weighted gadolinium 
contrast-enhanced spectral 
pre-saturation with inversion 
recovery (SPIR) images of 
an osteosarcoma in the femur 
diaphysis and in the distal 
femur in a good (A) and poor 
(B) responder, respectively. 
C–D; Subtraction images of the 
pre-neoadjuvant chemotherapy 
dynamic contrast-enhanced 
MRI sequence at 6 s after 
arrival of gadolinium contrast 
medium in a good (C) and poor 
(D) responder. E–F; Subtraction 
images of the post-neoadjuvant 
chemotherapy dynamic con-
trast-enhanced MRI sequence at 
6 s after arrival of gadolinium 
contrast medium showing an 
absence of residual enhance-
ment in the good responder (E) 
and persistent and heterogene-
ous enhancement of the poor 
responder (F). After resection, 
the percentage of viable tumor 
cells post-neoadjuvant chemo-
therapy was estimated to be 1% 
versus 20–40% in the good and 
poor responder, respectively. 
G–H; Dynamic contrast-
enhanced MRI-derived time-
intensity curves in correspond-
ing tumors (whole slab method) 
pre-neoadjuvant chemotherapy 
(red) and post-neoadjuvant 
chemotherapy (blue) in a good 
responder (G) and in a poor 
responder (H). NAC neoadju-
vant chemotherapy
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whole slab segmentation method was lower than for the 
focal area segmentation method. This is expected because 
the focal area method requires identification of the earliest 
and fastest enhancing tumor areas on the subtraction images, 
a process that is subjective. In this regard, predictive perfor-
mance and repeatability might be improved by performing 

3D and automated tumor segmentations to make volume 
estimations more precise in future studies.

Modeling DCE-MRI features outperformed modeling 
solely based on changes in tumor volume. While the intra-
osseous tumor volume does not change, the soft tissue com-
ponent may decrease in size following neoadjuvant therapy. 

Fig. 3   Representative histology of osteosarcomas depicted in Fig.  2 
(good versus poor responder). Black scale bars represent 100 μm. 
A–B; Good responder post-neoadjuvant chemotherapy with 1% vital 
tumor cells remaining and showing loose edematous as well as more 
condensed fibrotic areas with remnants of tumor osteoid (arrows). 

C–D; Poor responder post-neoadjuvant chemotherapy with 30% 
vital tumor cells remaining and showing pre-existing lamellar bone, 
surrounded by a proliferation of pleomorphic and vital tumor cells 
depositing osteoid
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However, there is consensus in literature that change in 
tumor volume is unreliable for response monitoring in osteo-
sarcomas [26–28]. Although in our study good responders 
typically exhibited more tumor shrinkage, change in tumor 
volume was less predictive than changes in perfusion charac-
teristics and did not add any predictive value to our models.

The chosen focus of our study on DCE-MRI has several 
limitations. The number of excluded patients is large because 
many patients were referred to our centers with MR studies 
that did not have adequate DCE-MRI protocols. The retro-
spective nature of our study did not give us the opportunity 
to repeat these MR studies. Also in our clinical DCE-MRI 

protocol we did not add T1-mapping, which excludes phar-
macokinetic modeling of quantitative permeability param-
eters as an option [3, 29]. A combination of DCE-MRI with 
[18F]FDG-PET and diffusion-weighted imaging, quantifying 
glucose metabolism and cellularity respectively, might fur-
ther improve understanding of biological changes in osteo-
sarcomas during therapy [3, 5, 6, 23, 30]. Another limitation 
of the current study is the subjective method to determine 
percentage of viable tumor in histology and the absence of 
direct matching of imaging and histopathological slabs. This 
method is still considered the optimal reference standard 
as it has been shown to correlate with prognosis. However, 

Table 2   Area under the receiver operating characteristic curve (AUC-index) with 95% confidence intervals in cross-validation of the training 
cohort for all predictive features separately and combined in pairs per segmentation method

ΔTTE delta time to enhancement, rAUC relative area under the curve, rMRE relative maximum relative enhancement, rVolume relative volume, 
rWIR relative wash-in rate
a The highest mean area under the receiver operating characteristic curve and 95% confidence interval was observed when testing rWIR, deter-
mined with whole slab segmentation, as a single feature (not combined with another feature in a pair)

Features Single feature Paired with

rMRE rAUC​ ΔTTE rVolume
Whole slab method rWIR 0.93 (0.86–1.00)a 0.92 (0.84–1.00) 0.93 (0.85–1.00) 0.93 (0.85–1.00) 0.93 (0.85–1.00)

rMRE 0.86 (0.74–0.97) - 0.90 (0.82–0.99) 0.86 (0.75–0.97) 0.84 (0.72–0.97)
rAUC​ 0.89 (0.80–0.97) - - 0.93 (0.86–0.99) 0.90 (0.82–0.99)
ΔTTE 0.88 (0.78–0.98) - - - 0.85 (0.73–0.97)

Focal area method rWIR 0.92 (0.84–1.00) 0.93 (0.85–1.00) 0.92 (0.84–1.00) 0.93 (0.86–0.99) 0.91 (0.82–0.99)
rMRE 0.88 (0.77–0.99) - 0.84 (0.73–0.94) 0.83 (0.71–0.95) 0.88 (0.77–0.99)
rAUC​ 0.89 (0.79–0.98) - - 0.89 (0.79–0.98) 0.89 (0.80–0.98)
ΔTTE 0.83 (0.71–0.96) - - - 0.83 (0.71–0.95)

rVolume 0.75 (0.61–0.90) – - - -

Fig. 4   Receiver operating char-
acteristic curves for the final 
model (rWIR as a single feature 
of the whole slab segmentation 
method) with internal cross-val-
idation and external validation 
on the test cohort results. ROC 
receiver operating characteris-
tic, rWIR relative wash-in rate
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more recent studies report conflicting results on its associa-
tion with survival [1, 31, 32]. Future research should there-
fore aim to test predictive imaging features for histological 
response and especially survival prediction.

Although response evaluation is currently not used to 
modulate neoadjuvant therapy, a method that can accu-
rately determine or predict response at an individual patient 
level may have this potential. In this regard, the challenge of 
establishing the level of accuracy needed for such a method 
to be of clinical value should be acknowledged. Ultimately, 
accurate identification prior to treatment of patients with 
osteosarcoma who will benefit from neoadjuvant chemo-
therapy might potentially have an impact on treatment strate-
gies. Quantification of tumor heterogeneity on pre-treatment 
imaging using a radiomic texture analysis on T1-weighted 
MRI, CT and [18F]FDG-PET data before neoadjuvant chem-
otherapy has been used to predict response to neoadjuvant 
therapy in patients with osteosarcoma [33–35].

In conclusion, monitoring perfusion characteristics based 
on DCE-MRI at diagnosis and after neoadjuvant chemo-
therapy is predictive for histological response in osteosar-
coma. The proposed model shows a good discrimination of 
poor and good histological response to neoadjuvant chemo-
therapy in an external validation test cohort. The model only 
includes the relative wash-in rate, providing a threshold for 
response evaluation of 2.3. This feature is thus one of the 
important biomarkers that can be used in future multimodal-
ity studies.
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