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Abstract
Deep learning-based MRI diagnosis of internal joint derangement is an emerging field of artificial intelligence, which offers many 
exciting possibilities for musculoskeletal radiology. A variety of investigational deep learning algorithms have been developed to 
detect anterior cruciate ligament tears, meniscus tears, and rotator cuff disorders. Additional deep learning-based MRI algorithms 
have been investigated to detect Achilles tendon tears, recurrence prediction of musculoskeletal neoplasms, and complex segmenta-
tion of nerves, bones, and muscles. Proof-of-concept studies suggest that deep learning algorithms may achieve similar diagnostic 
performances when compared to human readers in meta-analyses; however, musculoskeletal radiologists outperformed most deep 
learning algorithms in studies including a direct comparison. Earlier investigations and developments of deep learning algorithms 
focused on the binary classification of the presence or absence of an abnormality, whereas more advanced deep learning algorithms 
start to include features for characterization and severity grading. While many studies have focused on comparing deep learning 
algorithms against human readers, there is a paucity of data on the performance differences of radiologists interpreting musculoskel-
etal MRI studies without and with artificial intelligence support. Similarly, studies demonstrating the generalizability and clinical 
applicability of deep learning algorithms using realistic clinical settings with workflow-integrated deep learning algorithms are 
sparse. Contingent upon future studies showing the clinical utility of deep learning algorithms, artificial intelligence may eventually 
translate into clinical practice to assist detection and characterization of various conditions on musculoskeletal MRI exams.

Key points 
• Deep learning-based MRI diagnosis of internal joint derangement is an emerging field of musculoskeletal radiology with various  

promising applications for detecting and characterizing abnormalities.
• Current algorithms focus on detecting anterior cruciate ligament tears, meniscus tears, and rotator cuff disorders on MRI exams of the knee 

and shoulder.
• Proof-of-concept studies suggest that deep learning algorithms may achieve similar diagnostic performances when compared to human 

readers in meta-analyses; however, musculoskeletal radiologists outperformed most deep learning algorithms in studies including a direct 
comparison.

• Deep learning-based segmentation algorithms of nerves, bones, and muscles are promising tools for automated quantification and 
potentially improved reproducibility and efficiency.

• There is a paucity of data on the performance differences of radiologists interpreting musculoskeletal MRI studies without and with artificial 
intelligence support and on the generalizability and clinical applicability of deep learning algorithms.
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of this new category of DL algorithms have been demon-
strated in several proof-of-concept studies, of which many 
may be on the verge of demonstrating proof-of-generaliza-
bility and proof-of-clinical-applicability.

We provide a clinically focused review of the current state 
of DL-based MRI diagnosis of joints.

Knee MRI

The majority of DL algorithms for detecting and character-
izing internal derangement on MRI have been developed for 
the knee joint, which is likely motivated by the high num-
ber of knee MRI exams, overall good image quality, high 
clinical impact, finite complexity of anatomy, standardized 
positioning, and defined set of common injuries.

From a clinical perspective, MRI of the knee yields high 
diagnostic accuracy for many osseous and soft tissue lesions, 
including radiographically occult fractures, ligament and 
meniscus tears, articular cartilage defects, neoplastic dis-
eases, and synovial conditions, thus obviating the need for 
diagnostic arthroscopy in many cases.

ACL tears

ACL tears are among the most frequent acute knee injuries. 
In the USA, the estimated incidence is 200,000 cases annu-
ally [8]. The diagnosis is primarily based on skilled clinical 
testing for knee instability. The clinical Lachman test is 81% 
sensitive and 81% specific for diagnosing a complete rupture 
of the ACL [9]. In addition to confirming an ACL tear, the 
main contributions of MRI is to characterize the tear type 
for surgical decision-making and diagnose concomitant knee 
injuries.

In 2017, one of the first studies demonstrated the ability 
of two machine-learning models to diagnose and differen-
tiate lower-grade partial-thickness and full-thickness ACL 
tears [10]. The algorithms used preselected and annotated 
sagittal MR images that contained regions outlining the 
ACL. One algorithm achieved an area under the receiver 
operating characteristic curve (AUC) of 89% for diagnos-
ing partial-thickness tears and 94% for full-thickness tears. 
This semi-automated approach demonstrated the ability 
to train a machine-learning algorithm for diagnosing and 
characterizing ACL tears on MRI with potentially clinically 
useful diagnostic accuracy. Several fully automated stud-
ies followed with increasingly promising results of refined 
algorithms.

In 2018, a study demonstrated the ability of a deep convo-
lutional neural network (CNN) to diagnose a variety of knee 
injuries, including ACL tears [11]. The network used sagittal 
T2-weighted, coronal T1-weighted, and axial PD-weighted 

Introduction

In the field of artificial intelligence (AI), different classes of 
computer algorithms have been applied to carry out a broad 
variety of diagnostic radiology tasks. Artificial intelligence’s 
seemingly limitless possibilities have generated enormous 
interest among radiologists and imaging scientists with a 
constantly increasing number of annual publications [1].

Specifically, AI algorithms that learn from data without 
human intervention offer exciting prospects for musculo-
skeletal radiology, including improvements in productivity, 
diagnostic performance, health preservation, disease predic-
tion, and imaging utilization.

Within AI, deep learning (DL) algorithms can learn many 
different tasks that directly apply to musculoskeletal radiol-
ogy, including image reconstruction, synthetic image crea-
tion, tissue segmentation, and detection and characterization 
of musculoskeletal diseases and conditions on radiographs, 
ultrasonography, CT, and MR images.

The interest in DL algorithms for disease detection and 
image interpretation is primarily based on two value propo-
sitions: improving the diagnostic performance of image 
interpretations by reducing the 3–5% human error rate and 
expediting image interpretation and report generation [2].

Although musculoskeletal MRI interpretations of sub-
specialized radiologists have high accuracies [3, 4], many 
years of training are usually required to attain proficiency 
for the broad range of musculoskeletal MRI exams. Disease-
detecting DL algorithms may aid in providing expert-level 
interpretations for readers with less expertise and may also 
play a role in teaching residents and fellow [5].

However, within musculoskeletal radiology, the largest 
number of disease-detecting DL algorithms has been applied to 
interpreting radiographs, whereas a comparably smaller number 
of studies have been published on DL algorithms interpreting 
musculoskeletal MRI exams.

The lower number of studies and regulatory agency-approved 
DL algorithms for musculoskeletal MRI exams is likely based 
on the substantially higher complexity, variability, and number 
of images of MRI exams when compared to radiography.

There is an almost infinite variety of MRI protocols for each 
joint based on local preference, pulse sequence technology, and 
available equipment. Many pulse sequence parameters substan-
tially influence signal, contrast, and anatomical detail of muscu-
loskeletal MR images, including field strength, repetition time, 
echo time, matrix size, slice thickness, field-of-view, accelera-
tion, coil technology, flip angle, echo train lengths, bandwidths, 
and vendor-specific image processing techniques [6, 7].

Notwithstanding the formidable challenges MRI poses for 
disease-detecting DL algorithms, several groups have devel-
oped pioneering DL algorithms to detect internal derange-
ment on musculoskeletal MRI exams. The novel capabilities 
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MR images and achieved a sensitivity of 76%, a specific-
ity of 97%, and an AUC of 97% for diagnosing ACL tears. 
Radiologists had a significantly higher sensitivity of 91% 
and similar specificity of 93%. Notably, the study also evalu-
ated the performance of radiologists working with the sup-
port of the DL algorithm (DL-augmented radiologists) and 
found that the DL algorithm significantly increased radiolo-
gists’ sensitivity by 5%, whereas the specificity remained 
unchanged. The DL algorithm was also applied to the pub-
licly available external knee MRI data set “KneeMRI” [10]. 
The DL performance decreased to an AUC of 82% but could 
be increased to 91% after dedicated retraining with the exter-
nal data set, highlighting the important role of external data 
sets to test the generalizability of DL algorithms.

A study published in 2019 presented a different CNN 
for fully automated ACL tear detection [3]. Using sagit-
tal fat-suppressed proton density-weighted and sagittal 
fat-suppressed T2-weighted 3-Tesla (T) MR images, the 
model achieved a sensitivity of 96%, a specificity of 96%, 
and an AUC of 98%. In comparison, the participating radi-
ologists achieved sensitivities of 96–98% and specificities 
of 96–98%, whereas a resident achieved a lower specificity 
of 90%. There was no significant performance difference 
between the CNN and radiologists.

Another study published in the same year evaluated differ-
ent CNNs for diagnosing full-thickness ACL tear on coronal 
proton density-weighted MR images without fat suppression 
[12]. Cases with mucoid degeneration and partial-thickness 
ACL tear were excluded. Ground truth was established by 
a musculoskeletal radiologist. The best performance was 
achieved when cropping the MR images to the ACL region 
rather than using full-size MR images. The model using five 
contiguous MR images performed best, achieving a sensitivity 
of 100% and specificity of 93% in a small test set. Compari-
sons to human readers were not reported.

In 2020, a study described a customized CNN for diagnos-
ing ACL tears using sagittal fat-suppressed proton density-
weighted 1.5-T and 3-T MR images [13]. The CNN achieved 
a sensitivity of 98%, specificity of 94%, and accuracy of 96%. 
On the same data set, senior radiologists achieved a sensitiv-
ity of 96% and a specificity of 86%, but testing for statisti-
cally significant differences was not reported.

In the same year, a study described a serial CNN for 
detecting ACL tears in a fully automated fashion, using cor-
onal and sagittal fat-suppressed fluid-sensitive MR images 
and arthroscopic surgery as the reference standard [4] 
(Fig. 1). Using a more homogenous in-house test data set of 
1.5-T and 3.0-T MRI exams, the CNN achieved a sensitivity 
of 99%, specificity of 94%, and AUC of 97%. The diagnos-
tic performance of the CNN was lower for a heterogeneous 
external test data set consisting of 234 outside knee MRI 
exams from over 50 different institutions, achieving a sen-
sitivity of 93%, specificity of 87%, and AUC of 90%. Three 

musculoskeletal radiologists had significantly higher diag-
nostic performances with sensitivities of 97–98%, specifici-
ties of 99–100%, and AUCs of 98–99% for either test set.

Until that point in time, most CNNs used two-category 
classifications of the ACL into intact versus tear. In 2020, 
a multi-class CNN described a hierarchical severity stag-
ing of four different ACL patterns, including intact, partial-
thickness tear, full-thickness tear, and ACL graft following 
reconstruction. The CNN achieved a sensitivity of 97–100% 
and a specificity of 100% for identifying ACL grafts. For 
intact ACL, the CNN sensitivities were 89–93% and specifi-
cities were 88–90%, whereas the CNN achieved sensitivities 
of 76–82% and specificities of 94–100% for full-thickness 
ACL tears [14]. The ground truth was based on radiological 
assessments, and comparisons to human readers were not 
reported.

Several additional studies using variations of publicly 
available and custom architecture CNNs reported sensitivi-
ties and specificities between 85 and 95% [15–17]. Table 1 
summarizes key characteristics and performance levels of a 
group of representative studies.

Four meta-analyses from 2003 to 2016 estimating the 
diagnostic performances of human readers for detecting 
ACL tears derived pooled sensitivities of 87–95% and spe-
cificities of 93–95% [18–21] (Fig. 2). Comparing human 
readers with proof-of-concept studies of DL algorithms 
may suggest similar performances for diagnosing ACL tears 
(Fig. 2). However, this assumption requires caution, as there 
is a paucity of studies evaluating the generalizability and 
clinical applicability of DL algorithms.

Studies attempting to evaluate real-life scenarios by 
including heterogeneous and external MRI test sets of var-
ying field strengths, pulse sequence protocols, and vendors 
found decreasing diagnostic performances, suggesting that 
diagnostic performances of deep learning algorithms may 
not easily translate and be lower in clinical practice [4, 
11].

The performance level of fellowship-trained muscu-
loskeletal radiologists is likely substantially higher than 
meta-analyses using historical data and heterogeneous 
reader pools suggest [3, 4] (Fig. 2). The clinical usefulness 
of DL algorithms will likely scale with the experience level 
of readers, where readers with less expertise benefit more 
and musculoskeletal radiologists with advanced expertise 
benefit less [5, 11].

In addition, most published studies compared the diag-
nostic performance of DL algorithms against radiologists, 
whereas the more like practice scenario will be radiologists 
working with DL algorithms [11].

To understand potential efficiency gains afforded by DL-
based ACL diagnosis, more studies using realistic study 
designs emulating the daily work of radiologists with imple-
mentation into their practice environment will be needed.
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Meniscus tears

Like ACL injuries, meniscus tears are among the most com-
mon indications for knee MRI [22]. Meniscus tears may be 
due to acute trauma, but most are degenerative [23]. The 

prevalence of degenerative meniscus tears is 19% in the 6th 
decade of life and increases to 56% in individuals between 
the age of 70 and 90 [23]. While meniscus tears can be pain 
generators and incite inflammation and dysfunction, some 
meniscus tears, such as coapted horizontal tears, are often 

A B

C D

Fig. 1  Deep learning algorithm evaluation of the anterior cruciate 
ligament. A A 46-year-old woman who sustained an acute knee injury 
during tennis. Sagittal fat-suppressed proton density-weighted MR 
image shows an arthroscopy-confirmed full-thickness anterior cruci-
ate ligament tear (arrow), which was correctly diagnosed by the deep 
learning algorithm (true positive). B A 40-year-old man who sus-
tained an acute knee injury during ice hockey. Sagittal fat-suppressed 
proton density-weighted MR image shows an arthroscopy-confirmed 
intact anterior cruciate ligament (arrow), which was correctly diag-
nosed by the deep learning algorithm (true negative). C A 40-year-
old man with chronic knee pain. Sagittal fat-suppressed proton den-
sity-weighted MR image shows mucoid degeneration of an intact 

anterior cruciate ligament (arrow), which was erroneously diagnosed 
as a tear by the deep learning algorithm (false positive). D A 19-year-
old man with acute knee pain after fall. Sagittal fat-suppressed proton 
density-weighted MR image shows a full-thickness anterior cruciate 
ligament tear with a displaced bucket-handle tear of the lateral menis-
cus, resembling a double posterior cruciate ligament sign. The dis-
placed meniscus fragment in the intercondylar notch (arrow) may be 
the underlying reason for the CNN assessing the anterior cruciate lig-
ament erroneously as intact (false negative). Data were derived with a 
deep learning algorithm described in a study published by Germann 
et al. [4]
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asymptomatic [24–26]. In the USA, approximately 50% of 
arthroscopic knee surgeries are performed to treat meniscus 
tears, indicating high socioeconomic importance [27].

Physical examination tests diagnose meniscus tears with 
60–70% sensitivity and 70–71% specificity [28]. MRI can 
confirm a clinically suspected meniscus tear in indetermi-
nate cases and identify additional or alternative abnormali-
ties. However, potentially more important contributions of 
MRI include the characterization of the tear depth, location, 
pattern, tissue quality, length, and the amount and integrity 
of previous partial meniscectomy or meniscal repair.

Several studies describe the ability of deep learning algo-
rithms for binary meniscus classification into tear and no tear.

In 2018, a CNN was described to detect meniscus tears 
using axial, sagittal, and coronal stacks of two-dimensional 
fast spin echo MR images of different contrast weightings 
[11]. The tear laterality was not part of the reporting. Radio-
logical interpretation served as the standard of reference. The 
CNN achieved a sensitivity of 71%, a specificity of 74%, and 
an AUC of 85%. In comparison, participating radiologists and 
orthopedic surgeons performed significantly better with a sen-
sitivity of 82%, a specificity of 88%, and an accuracy of 85%.

Two studies published in 2019 as part of a meniscus 
tear detection challenge of the French Radiology Soci-
ety describe deep learning algorithms to detect meniscus 
tears. Both studies used the same test data set consisting 
of single preselected and annotated sagittal fat-suppressed 
T2-weighted MR images [29, 30], achieving AUCs of 91% 
and 94%, respectively, for diagnosing the presence of a 

meniscus tear and characterization of the tear orientation 
into vertical or horizontal.

Also in 2019, the feasibility of fully automated CNN-
based meniscus tear detection on sagittal PD-weighted three-
dimensional MR image reformations was demonstrated [31]. 
Since only sagittal reformations were analyzed, only meniscus 
lesions of the anterior and posterior horns were included. The 
laterality was not reported. With radiologists serving as the 
reference standard, the CNN achieved a sensitivity of 82%, 
specificity of 90%, and AUC of 89% for detecting a meniscus 
tear. The CNN also applied a three-class model for severity 
staging, which achieved an accuracy of 82% for intact menisci, 
78% for mild-to-moderate tears, and 75% for severe tears.

In 2020, a fully automated CNN was clinically evaluated 
to detect and differentiate medial and lateral meniscus tears 
on coronal and sagittal fat-suppressed fluid-sensitive MR 
images [32]. In contrast to other published studies evalu-
ating AI for meniscus tear detection, arthroscopic surgery 
was used as the reference standard. The CNN achieved a 
sensitivity of 84%, a specificity of 88%, and an AUC of 
78% for the medial meniscus (Fig. 3). For lateral meniscus 
tears, the CNN achieved a sensitivity of 58%, a specificity 
of 92%, and an AUC of 78%. Compared to musculoskeletal 
radiologists, the specificities for medial and lateral meniscus 
tears were similar; however, the sensitivities of the muscu-
loskeletal radiologists were approximately 10% higher in 
each compartment.

In 2021, a different CNN was described for detect-
ing meniscus tears on coronal and sagittal fat-suppressed 

Fig. 2  Comparative performances of AI and human readers for MRI 
diagnosis of anterior cruciate ligament tears. Plots show the diag-
nostic performances of deep learning (DL) algorithms (A), musculo-
skeletal radiologists participating in artificial intelligence (AI) stud-
ies (B), and meta-analyses of human readers (C) for anterior cruciate 
ligament tear detection. The solid dots indicate the estimates of sen-
sitivities (y-axis) and specificities (x-axis). The surrounding ellipses 
represent the corresponding 95% confidence intervals. Most studies 
are located exclusively in the left upper zone (white background), 
indicating at least acceptable diagnostic performance for diagnosis 

[62]. Right lower cut-out boxes represent a magnification of the left 
upper area (dashed box). In A and B: dark gray = Liu et al. [3]; yel-
low = Germann et al. [4]; blue = Namiri et al. [14]; green = Bien et al. 
[11]. In C: gray = Oei et  al. [18]; orange = Smith et  al. [20]; light 
blue = Phelan et al. [21]; red = Crawford et al. [19]. Note: Only stud-
ies reporting 95% CI were included. Test data set rules, settings, ref-
erence standards, and experience levels of readers differed between 
studies, which may limit the direct comparability of diagnostic per-
formances
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PD-weighted MR images [33]. Radiologists served as the 
standard of reference. On an internal test data set, the CNN 
achieved sensitivities of 89%, specificities of 84%, and 
AUCs of 93% for detecting medial meniscus tears, and 67%, 
88%, and 84% for detecting lateral meniscus tears, respec-
tively. Using the previously published external test data 
set “MRNet” [11], the overall performance decreased to a 
sensitivity of 77%, specificity of 84%, and an AUC of 83% 
without differentiating medial from lateral meniscus tears. 
Retraining with the external data set improved the perfor-
mance to 81%, 87%, and 89%, respectively. As an additional 
feature, the CNN was trained to detect displaced meniscus 
fragments, achieving a sensitivity of 80% and specificity of 
85% for the medial meniscus, and a sensitivity of 57% and 
specificity of 95% for the lateral meniscus.

Two other studies evaluated DL algorithms for meniscus 
tear detection using the publicly available “MRNet” data 
set [11]. For meniscus tear detection without differentiating 
laterality, one study using various CNNs achieved sensitivi-
ties of 62–69% and specificities of 76–81% [17]. The other 
study’s CNN achieved a sensitivity of 86% and specificity of 
89% by reportedly using coronal T1-weighted MR images 
only, which, however, are least accurate for radiologists to 
diagnose meniscal tears [15].

Based on meta-analyses, human readers achieve pooled 
sensitivities of 89–93% and specificities of 81–88% for diag-
nosing medial meniscus tears and 76–79% and 93–96% for 
lateral meniscus tears, respectively [18, 19, 21].

Published data suggest that CNNs may achieve similar 
diagnostic performance parameters than human readers 
to diagnose medial and lateral meniscus tears (Table 2) 
(Fig. 4). However, similar to CNN-based detection of ACL 
tears, various factors require consideration.

To estimate the diagnostic performance of deep learning 
algorithms in clinical practice, the use of an independent 
standard of reference may be critically important. There is 
a paucity of studies using a surgical reference standard [32], 
whereas most studies reference radiological interpretation. 
While this is a practical approach that compares diagnostic 
performance levels to radiologists, the clinical standard of 
reference for MRI interpretations is surgical inspection.

The use of clinically realistic test data sets, including het-
erogeneous MRI exams acquired with different field strength, 
variable MRI protocols, and different pulse sequence tech-
niques, is another important factor. Similar to trends with 
ACL tears, the application of DL algorithms to external data 
sets will likely result in lower diagnostic performances than 
found with internal test data sets [33].

While assigning the laterality to meniscus tears is a fun-
damental requirement, the MRI characterization of menis-
cus tears, including location, type, and the degree of tissue 
degeneration, are equally important features for future AI-
based algorithms to add clinical value.

Other abnormalities

Few studies have reported the diagnostic performance of 
CNNs for diagnosing other internal derangement abnormali-
ties. One study reported a sensitivity of 88% and specificity 
of 71% for detecting osteoarthritis, joint effusions, iliotibial 
band syndromes, bone contusions and fractures, posterior 
cruciate ligament tears, the presence of a plica, and medial 
collateral ligament tears without differences in performance 
compared to general radiologists [11].

Using the same “MRNet” data set but different CNN, two 
other studies describe different performances for detecting 

A B C

Fig. 3  MRI of the left knee joint in a 59-year-old patient with chronic 
medial knee pain. A Coronal short tau inversion recovery (STIR) 
MR image through the mid-body segment of the medial meniscus 
shows a horizontal cleavage tear (arrow). B Sagittal proton density-
weighted MR image with spectral fat suppression shows the horizon-
tal meniscus tear extending to the posterior horn of the medial menis-

cus (arrow). C AI-based assessment of the medial and lateral menisci 
predicted a medial meniscus tear with a probability of 84%. The heat 
map located the tear (colored area) correctly to the mid-body segment 
and junction to the posterior horn (C). Arthroscopic knee surgery 
confirmed the meniscus tear. Data were derived with a deep learning 
algorithm described in a study published by Fritz et al. [32]
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the same knee abnormalities, including a higher sensitiv-
ity of 97% and similar specificity of 72% [15], as well as a 
higher sensitivity of 97% but markedly lower specificities 
of 28-40% [17].

Shoulder MRI

After the knee, the shoulder is the second most common site 
of joint pain and the second most common referral for joint 
MRI in many departments worldwide [34].

Many conditions can be diagnosed and successfully man-
aged with history, skilled clinical examination, and radiogra-
phy evaluation. However, MRI and MR arthrography are the 
most accurate tests for non-invasive internal derangement 
assessment in indeterminate and recalcitrant cases, including 
the rotator cuff, long head biceps tendon, glenoid labrum, 
glenohumeral ligaments, capsule, and articular cartilage [35]

In addition to the presence of a rotator cuff tear, differen-
tiation of bursal surface from articular surface partial-thick-
ness tears, partial-thickness from full-thickness tears, tear 
size, degree of tendon fiber retraction, and grade of muscle 

Table 2  Summary of AI studies for fully automated meniscus tear detection

Sag sagittal, cor coronal, ax axial,PD proton density, TSE turbo spin echo, AUC  area under the receiveroperating curve, 3D three-dimensional, 
AI artificial intelligence, both both menisci combined, med medial meniscus, lat lateral meniscus

Diagnostic perfor-
mance of AI algorithm

Diagnostic performance 
of human readers

Study Reference 
standard

Label Analyzed 
sequence

Field 
strengths 
[T]

Both Med Lat Both Med Lat Comments

Bien et al. 
[11]

Radiologist 
interpre-
tation

Intact, 
tear

Sag T2, cor 
T1, ax PD

1.5, 3.0 Sensitivity
Specificity
AUC 

71%
74%
85%

- - 82%
88%
-

- -

Pedoia 
et al. 
[31]

Radiologist 
interpre-
tation

Intact, 
tear

3D fat-
suppressed 
PD

3.0 Sensitivity
Specificity
AUC 

82%
90%
89%

- - - - - Severity grading 
into no tear, 
mild-moderate 
tear, and severe 
tear achieved 
accuracies of 
81%, 78%, and 
75%, respec-
tively

Fritz et al. 
[32]

Surgical 
inspec-
tion

Intact, 
tear

Sag and 
cor fat-
suppressed 
fluid-
sensitive

1.5, 3.0 Sensitivity
Specificity
AUC 

91%
87%
96%

84%
88%
88%

58%
92%
78%

94%
90%
92%

95%
88%
92%

69%
97%
83%

Performances of 
human readers 
are given as 
averages

Rizk et al. 
[33]

Radiologist 
interpre-
tation

Intact, 
tear

Cor fat-
suppressed 
PD, sag 
fat-sup-
pressed 
PD

1.0, 1.5, 
3.0

Sensitivity
Specificity
AUC 

- 89%
84%
93%

67%
88%
84%

- - - Validation 
with external 
“MRNet” 
data set [11] 
achieved a 
sensitivity, 
specificity, and 
AUC of 77%, 
84%, and 0.83, 
respectively

Irmakci 
et al. 
[17]

Radiologist 
interpre-
tation

Intact, 
tear

Sag T2, cor 
T1, ax PD

1.5, 3.0 Sensitivity
Specificity
AUC 

62–
69%

76–
81%

78–
81%

- - - - -

Tsai et al. 
[15]

Radiologist 
interpre-
tation

Intact, 
tear

Cor T1 1.5, 3.0 Sensitivity
Specificity
AUC 

86%
89%
90%

- - - - -

322 Skeletal Radiology (2022) 51:315–329



1 3

bulk atrophy and fatty infiltration are important MRI charac-
teristics that aid in surgical decision-making and prognosis.

A growing number of studies describe the use of deep 
learning algorithms for diagnosing rotator cuff tears and 
segmenting rotator cuff muscles.

Rotator cuff tear detection

Rotator cuff tear incidence increases with age and is present 
in over 70% of patients with shoulder pain over the age of 
70 [36]. Small rotator cuff tears may heal with conservative 
treatments, whereas more advanced rotator cuff tears may 
require surgical repair.

MRI contributes information on several cuff-related factors 
that influence the success of surgical cuff repair to relieve pain 
and retain or restore shoulder mobility, including tear size 
(anteroposterior tear length, mediolateral tear length, and tear 
size area), tear depth, tendon quality, tendon fiber retraction, 
fatty infiltration of the rotator cuff muscles, and the number 
of torn tendons [37, 38]. For example, tear size is associated 
with surgical repair success rate, which can vary from 79% for 
small to 24% for massive rotator cuff tears [39, 40].

A network meta-analysis of 144 diagnostic studies 
determining the diagnostic performances of MRI and MR 
arthrography for diagnosing rotator cuff tears estimated 
pooled sensitivities of 80–87% and specificities of 81–90% 
[41]. MRI and MR arthrography had higher performances 
than ultrasonography.

In 2019, a CNN was described for rotator cuff detection. 
The network was trained on almost 2000 patients, used a 
three-dimensional approach based on native coronal two-
dimensional T2-weighted MR images, and differentiated nor-
mal tendon, partial-thickness tears, and full-thickness tears 
[42]. Radiologists served as the standard of reference. Using 
a homogenous data set from a single institution, the three-
dimensional deep learning approach achieved a high diag-
nostic accuracy of 87% and an AUC of 96%, outperforming 
several baseline machine-learning approaches. There was no 
comparison with the diagnostic performance of radiologists.

In 2020, another CNN also using a three-dimen-
sional approach was described for automated rotator 
cuff tear detection on axial T1-weighted and sagittal 
and coronal fat-suppressed T2-weighted MR images 
[43]. The CNN employed a 2-class categorization into 

Fig. 4  Comparative performances of AI  (red and gray circles) and 
human readers (yellow and blue circles) for MRI diagnosis of menis-
cus tears. Plots show the diagnostic performances of selected deep 
learning (DL) algorithms and meta-analyses of human readers for 
MRI-based diagnosis of medial (A) and lateral (B) meniscus tears. 
The solid dots indicate the estimates of sensitivities (y-axis) and spe-
cificities (x-axis). The surrounding ellipses represent the correspond-
ing 95% confidence intervals. For medial meniscus tears (A), all stud-
ies are located exclusively in the left upper zone (white background), 
indicating at least acceptable diagnostic performance for diagnosis 
[62]. For lateral meniscus tears, the performance estimates of the two 

DL studies of Fritz et al. and Rizk et al. occupy the left lower zone 
(light gray background), indicating a limited sensitivity for clinical 
application. Right lower cut-out boxes represent a magnification of 
the left upper area (dashed box). In A and B: gray = DL algorithm of 
Fritz et al. [32]; red = DL algorithm of Rizk et al. [33]; yellow = meta-
analysis of Phelan et al. [21]; blue = meta-analysis of Oei et al. [18]. 
Note: Only studies reporting 95% CI and differentiating between the 
medial and lateral meniscus were included. Test data set rules, set-
tings, reference standards, and experience levels of readers differed 
between studies, which may limit the direct comparability of diagnos-
tic performances
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intact and torn tendons and a 5-class categorization 
into intact tendons, partial-thickness tears, and small-
size, medium-size, and large-size full-thickness tears. 
The CNN was trained on 1924 exams and tested on a 
data set of 200 exams. Surgical inspection served as 
the standard of reference. For 2-class categorization, 
the CNN achieved a sensitivity of 94%, a specificity of 
90%, and an accuracy of 93%. In comparison, surgeons 
achieved sensitivities of 86–90%, significantly lower 
specificities of 29–58%, and significantly lower accu-
racies of 68–76%. For 5-class categorization, the CNN 
achieved a sensitivity of 92% and a specificity of 86%, 
whereas the surgeons achieved sensitivities of 89–93% 
and significantly lower specificities of 26–61%. Sur-
geons required between 20 and 34 s for interpretation, 
whereas the algorithm required a fraction of a second. 
The diagnostic performance of the CNN was compared 
with surgeons but not with radiologists.

Rotator cuff muscle segmentation

The preoperative degree of atrophy and fatty infiltration 
of the rotator cuff muscles are predictors that are inversely 
associated with the long-term functional outcome of rota-
tor cuff repair [44]. Furthermore, the progression of rota-
tor cuff muscle atrophy and fatty infiltration after surgical 
repair correlates with poor functional outcomes [45]. As the 
commonly used Goutallier classification agreements vary 
between studies and measurements are time-consuming to 
obtain [46–49], automated deep learning-based quantifica-
tion could add clinical value through improved reproduc-
ibility and efficiency gains.

In 2019, a study described a fully convolutional deep 
learning algorithm for segmenting the boundaries of the 
supraspinatus fossa and the supraspinatus muscle bulk 
[50]. Using sagittal T1-weighted MR images, the algorithm 
allowed for calculating the supraspinatus occupation ratio 
as a surrogate marker for supraspinatus muscle atrophy 
[51]. The algorithm achieved 99.8% pixel-wise accuracies 
and high similarity with manual segmentation (Dice coef-
ficients of 0.94–0.97), promising automation, and improved 
efficiency for this task.

In 2020, a study described fully automated deep 
learning segmentation of supraspinatus, infraspinatus, 
subscapularis, and deltoid muscle on three-dimensional 
T1-weighted gradient-echo MR images in pediatric 
patients with neuromuscular diseases. Compared with 
manual segmentation, the algorithm achieved Dice sim-
ilarity scores of 82%, 82%, 71%, and 83% for deltoid, 
infraspinatus, supraspinatus, and subscapularis muscles, 
respectively [52].

In a 2021 study, two serial deep learning algo-
rithms successfully identify the most suitable sagittal 
T1-weighted MR images resembling Y-views and sub-
sequently segmented the subscapularis, supraspinatus, 
and infraspinatus/teres minor muscles (Fig.  5) [49]. 
The fully automated algorithms performed the tasks 
with greater than 98% accuracy to select an appropri-
ate Y-view, and there was a high similarity with human 
manual segmentation on internal (Dice score greater than 
0.96) and external (Dice score greater than 0.93) data 
sets, which build the foundation for future AI-based MRI 
quantification of muscle atrophy and classification of 
fatty infiltration.

Other joints and musculoskeletal MRI 
applications

There is a paucity of published deep learning applications 
for joints other than the knee and shoulder. However, deep 
learning solutions for disease detection and quantification 
may similarly add value for higher volume MRI exams of 
the ankle, foot, and hip.

Ankle

In 2019, a deep learning approach was described for detect-
ing tears and monitoring healing of the Achilles tendon on 
MRI [53]. MRI exams of 30 healthy and 60 participants 
with Achilles tendon rupture were used for training, valida-
tion, and testing. In addition, postoperative MRI exams were 
included. The best network had a sensitivity, specificity, and 
accuracy greater than 97%, respectively, for binary classi-
fication of intact and torn tendons. In addition, the ability 
for MRI assessment of tendon healing following surgical 
repair was shown.

MR neurography

In 2019, deep learning-based, fully automated seg-
mentation of the sciatic nerve was demonstrated on 
MR neurography exams using axial non-fat-suppressed 
T2-weighted images of the thigh [54]. The CNN was 
trained on 42 participants with sciatic neuropathy and 
ten healthy participants, demonstrating human-level 
segmentation accuracy in 1 s, whereas human segmen-
tation required 19  min. Automated segmentation of 
nerves could be an important step for quantitative MR 
neurography, which may improve objectivity in MR 
neurography-based diagnosis of sciatic neuropathy and 
monitoring of treatments.

Similarly, deep learning-based segmentation has been 
described for thigh muscles and wrist bones [55, 56].
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Oncology

MRI is accurate for detecting and defining the extent of mus-
culoskeletal neoplasms but has lower accuracies for typing 
and grading neoplasms, predicting treatment response, and 
detecting tumor recurrence.

Different computer-aided detection and radiomics techniques 
have been applied over the past 5 years with mixed success 
[57–59]. Probabilistic artificial intelligence algorithms have 
been used successfully to determine bone tumors with the use 
of external data, such as reference of anatomic and demographic 
statistics [60]. Applying DL-based approaches may improve the 
diagnostic performance of MRI for those tasks.

In 2019, a deep learning algorithm was described for pre-
dicting local recurrence of giant cell tumor of bone after 
curettage based on pre-surgical MRI [61]. The model was 
trained on pre-surgical T1-weighted and T2-weighted MR 
images of 56 participants, which were followed for 6 years. 
The algorithm had an accuracy of 76% to predict tumor 
recurrence, which increased to 79% with age and location 
inclusion using a regression model. Four radiologists had a 
mean accuracy of 64%. In this study, data augmentation was 
used to improve training with a small data set, which might 
be a key technique to train algorithms with small available 
data sets inherent to rare diseases.

Clinical perspective

Deep learning-based analysis of joint MRI exams is an 
emerging field of artificial intelligence. Several studies 
describe promising techniques to master the high complexity 
of MRI data, many of which primarily focus on the binary 

classification of the presence or absence of a feature. How-
ever, in many clinical situations, the added value of MRI for 
surgical decision-making and outcomes is often based on 
the characterization of an abnormality, such as tear location, 
configuration, size, and quality of a torn ligament, tendon, 
or meniscus. As such, algorithms with multi-class features, 
such as differentiating normal, partial-thickness, and small, 
moderate, and large full-thickness tears, may prove most 
useful in clinical practice.

Regardless of the features, an important question is who 
will benefit from algorithms for DL-based MRI diagnoses? 
The study-based diagnostic performance analyses of current 
deep learning algorithms for ACL and meniscus tear detec-
tion approach may not exceed the diagnostic performances 
of radiologists. While studies demonstrate high diagnostic 
performances of musculoskeletal radiologists, the added 
value of disease-detecting DL algorithms may scale with 
the radiologist’s expertise using it, which is an interesting 
topic for future studies.

Many research studies naturally report the initial perfor-
mance of DL algorithms based on homogenized data sets, 
which are dissimilar from the daily mix of MRI exams in 
clinical practice and thus may not translate.

The use of a surgical standard of reference may be equally 
important for results to translate into clinical practice.

Many studies evaluated the performance of DL algo-
rithms compared to radiologists, rather than comparing the 
performance of radiologists without and with using DL algo-
rithms, which is the more likely practice scenario.

Studies emulating real-life practice settings, including 
readers with different levels of expertise and surgical refer-
ence standards, are needed to understand better the added 
value of DL-based MRI diagnosis.

A B C

Fig. 5  Sagittal T1-weighted MR image of the right shoulder (A), 
with manual (B) and AI-based (C) segmentations of the subscapu-
laris (blue overlay), supraspinatus (red overlay), and infraspinatus/
teres minor (yellow overlay) muscles. The manual (B) and AI-based 

(C) segmentations had high similarity with a Dice score > 0.93. The 
segmentation was derived with an AI-based algorithm described by 
Medina et al. [49]. Images courtesy of Martin Torriani M.D., Harvard 
Medical School, Massachusetts General Hospital, Boston, MA
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Efficiency gains may be highest for DL algorithms per-
forming tasks that require human operators a long time, such 
as segmentation of muscles and nerves. The speed of DL-
based segmentation and quantification of muscle volume and 
fatty atrophy may eventually facilitate including this infor-
mation routinely in radiology reports.

Additional efficiency gains may be delivered through 
AI-based pre-population of radiology reports, as dictating 
reports may require radiologists more time than interpreting 
MR images.

The combination of radiomics features and artificial intel-
ligence may improve the performance and prediction power 
of MRI in evaluating musculoskeletal neoplasms, which 
could move MRI closer to being a tool for virtual tissue 
biopsy.

Practice integration

Practice integration, including interfacing with scanner 
technology, hospital and radiology information systems, and 
picture archiving and communication system (PACS), and 
compatibility with departmental workflows, may be equally 
important for the clinical utility of the DL algorithms than 
diagnostic performance and efficiency gains.

Figure 6 resembles the current structure in our institu-
tion for the evaluation of DL algorithms for MRI diag-
noses. All MRI studies can automatically be routed to 
the AI server and DL algorithm, or select studies may be 
routed manually by the radiologist. While routing every 
MRI exam may create high network traffic and work 
the DL server to full capacity, manual routing may cre-
ate dead time and longer turnaround times than without 
using DL algorithms. Result reports may be added in 
various formats to the MRI study (Fig. 7).

Picture this…

…at some point in the future, there may be DL algorithms for 
MRI diagnosis of many different anatomical structures, injury 
patterns, and pathological conditions fully integrated into 
departmental workflows. DL algorithms will fully prepopu-
late MRI report templates using predefined syntax and termi-
nology upon opening MRI studies. Abnormal findings will 
be highlighted and linked with the respective images, which 
are already annotated with arrows and quantifying meas-
urements. Binary DL algorithms for detecting the presence 
or absence of an abnormality will have evolved to include 
detailed characterizations and quantifications of abnormalities 
and additionally incorporate ancillary patient-specific and big 
data for determining urgency, predicting associated injuries, 
supporting treatment decisions, and rendering prognosis. At 
this stage, DL algorithms will have truly changed the practice 
of musculoskeletal MRI interpretation.

Our predictions for 5 years from now: There will be an 
increasing number of DL algorithms for MRI diagnoses of 
internal derangement approved for use in clinical practice, 
focusing mostly on detecting major abnormalities with 
limited complexity. DL algorithms will focus on large-vol-
ume MRI studies, such as the knee and shoulder, whereas 
a paucity of DL algorithms for MRI studies with smaller 
volumes and more complex anatomy will exist. There will 
be increasing but incomplete knowledge of which readers 
benefit from DL algorithms and what applications translate 
efficiency gains into clinical practice. Practice integration, 
maintenance and support, and search for viable business 
models to bear the cost will remain obstacles for broad use 
of DL algorithms.

Our predictions for 10 years from now: The number 
of DL algorithms for MRI diagnoses of internal derange-
ment has increased detecting a broad variety of internal 

Fig. 6  Artificial intelligence (AI) workflow as deployed at our institu-
tion. After acquiring the MRI study, the digital imaging and commu-
nications in medicine (DICOM) images are sent to the picture archiv-
ing and communication system (PACS). From the PACS, DICOM 

images can be routed to the local AI server either manually or based 
on the fulfillment of predefined criteria, such as DICOM header 
descriptions. After processing, the AI server sends the report as a 
PDF document back to the PACS
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derangement of large joints, and a growing number of DL 
algorithms for diagnosing internal derangement of smaller 
joints, with improved abilities for pre-population of radiol-
ogy reports. Improving integration options supported by 
most PACS, RIS, and HIS vendors result in more insti-
tutions using DL algorithms for MRI diagnoses, which 
eventually results in lower cost. Based on an improved 
understanding of the usefulness of AI, institutions will 
implement DL algorithms based on local expertise and 
practice patterns. Radiologists may slowly change their 
practice pattern from primary detection of abnormalities 
to supervision and quality control of DL-based detection.

Conclusion

Deep learning-based analysis of joint MRI exams is an 
emerging field of artificial intelligence, which offers many 
exciting possibilities for musculoskeletal radiology. Current 

DL algorithms for MRI diagnoses of internal derangement 
focus on the detection of ACL tears, meniscus tears, and 
rotator cuff tears, as well as rotator cuff muscle segmenta-
tion. Additional studies are needed to understand the added 
value of deep learning-based MRI diagnoses in clinical prac-
tice, including reader expertise and teaching of residents and 
fellow.
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Fig. 7  Artificial intelligence (AI)-augmented knee MRI interpre-
tation using an investigational AI algorithm. The AI report appears 
as part of the MRI study in the left column (yellow-framed arrow) 
and can be displayed in a viewport (lower right viewport) or separate 
window (not shown). In this patient, the AI algorithm predicted inter-

nal degeneration of the medial meniscus with a probability of 52% 
(red-framed arrow), based on the intrasubstance signal hyperintensi-
ties (white-framed arrows), as well as absent meniscus tear, meniscus 
extrusion (subluxation), meniscus ganglions cyst, anterior cruciate 
ligament tear, and medial collateral ligament tear
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