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Abstract Actinomycetota have been widely described as valuable sources for the acquisition of secondary metabolites. 
Most microbial metabolites are produced via metabolic pathways encoded by biosynthetic gene clusters (BGCs). Although 
many secondary metabolites are not essential for the survival of bacteria, they play an important role in their adaptation and 
interactions within microbial communities. This is how bacteria isolated from extreme environments such as Antarctica could 
facilitate the discovery of new BGCs with biotechnological potential. This study aimed to isolate rare Actinomycetota strains 
from Antarctic soil and sediment samples and identify their metabolic potential based on genome mining and exploration 
of biosynthetic gene clusters. To this end, the strains were sequenced using Illumina and Oxford Nanopore Technologies 
platforms. The assemblies were annotated and subjected to phylogenetic analysis. Finally, the BGCs present in each genome 
were identified using the antiSMASH tool, and the biosynthetic diversity of the Micrococcaceae family was evaluated. Taxo-
nomic annotation revealed that seven strains were new and two were previously reported in the NCBI database. Additionally, 
BGCs encoding type III polyketide synthases (T3PKS), beta-lactones, siderophores, and non-ribosomal peptide synthetases 
(NRPS) have been identified, among others. In addition, the sequence similarity network showed a predominant type of 
BGCs in the family Micrococcaceae, and some genera were distinctly grouped. The BGCs identified in the isolated strains 
could be associated with applications such as antimicrobials, anticancer agents, and plant growth promoters, among others, 
positioning them as excellent candidates for future biotechnological applications and innovations.

Key points
• Novel Antarctic rare Actinomycetota strains were isolated from soil and sediments
• Genome-based taxonomic affiliation revealed seven potentially novel species
• Genome mining showed metabolic potential for novel natural products
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Introduction

Actinomycetota have attracted increasing scientific interest 
in the vast field of microorganisms owing to their impor-
tance in the production of biologically and pharmaceuti-
cally relevant natural products (Matsumoto and Takahashi 
2017; Albarano et al. 2020). Natural products derived 
from microorganisms have a broad spectrum of biologi-
cal activities, making them promising candidates for the 
development of new drugs. However, the discovery of new 
bioactive compounds poses a great challenge to the scien-
tific community due to the need to identify new sources of 
bioactive compounds with antimicrobial potential (Kumar 
et al. 2020; Núñez-Montero et al. 2019). Within the phy-
lum Actinomycetota, Micrococcaceae plays a key role in 
the synthesis of bioactive compounds with a wide range 
of therapeutic properties. Exploration of these microor-
ganisms and their natural products has opened new per-
spectives to address public health challenges (Borker et al. 
2021; Núñez-Montero et al. 2019), such as the increasing 
antimicrobial resistance observed in pathogenic species.

Antarctica and its extreme environment have emerged 
as promising sources for the discovery of extraordinary 
taxa (Benaud et al. 2021) and the exploration of novel 
natural products (Silva et al. 2020). The extreme environ-
mental conditions present, such as low temperatures, high 
radiation, and nutrient scarcity, have driven the develop-
ment of unique adaptations in Antarctic microorganisms, 
contributing to richer biodiversity and high potential for 
bioactive compound discovery (Gummerlich et al. 2020). 
Actinomycetota, in particular, has been the subject of great 
attention in Antarctica because of their ability to produce 
secondary metabolites with pharmacological and biotech-
nological properties (Oyedoh et al. 2023) (Reis-Mansur 
et al. 2019). In recent years, Antarctic bacteria have been 
found to produce plant growth promoters, pigments, 
bioremediation agents, bioactive compounds, antibiofilm 
agents, nanoparticles, and enzymes for the food industry 
(Styczynski et al. 2022; Ramasamy et al. 2023).

On the other hand, advancements in DNA sequencing 
technology have revolutionized the study of microorgan-
isms and their biosynthetic capabilities (Singh et al. 2021). 
Next-generation sequencing and related technologies have 
significantly accelerated and improved access to genetic 
information on microorganisms (Scherlach and Hertweck 
2021), aiding the swift and accurate identification of bio-
synthetic gene clusters responsible for the production of 
natural products. These bioinformatics tools play a crucial 
role in the discovery (Tizabi et al. 2022) and characteriza-
tion of new bioactive compounds (Albarano et al. 2020; 
Benaud et al. 2022) as well as in understanding the under-
lying molecular mechanisms of their biosynthesis.

While there is no certainty regarding the expression or 
silencing of the gene clusters identified through genomics, 
this initial exploration enabled us to detect their presence 
and structure. Mechanisms for the activation and overexpres-
sion of these genes could be proposed based on genome min-
ing to obtain novel bioactive molecules. Therefore, genomic 
exploration of emerging microorganisms and their biosyn-
thetic gene clusters lays the foundation for advanced metabo-
lomics studies and characterization of novel biomolecules 
(Javed et al. 2021). In this context, the objective of our study 
was to isolate rare Actinomycetota strains from Antarctic soil 
and sediment samples and identify their metabolic potential 
based on genome mining and exploration of biosynthetic 
gene clusters.

Material and methods

Isolation and sample treatment of actinobacterial 
strains

In this study, soil and sediment samples were collected 
from Antarctica during the Chilean Antarctic Expedition 
conducted between 2019 and 2020. For isolation of rare 
Actinomycetota strains (less frequently isolated species), the 
samples were treated with high temperature, detergent solu-
tions and plated with antibiotics supplementation to avoid 
the growth of most frequent species in the soil. To do this, 
1 g of each sample was exposed to 100 °C for 60 min, fol-
lowed by a  10−1 dilution in each of the following chemical 
treatments: 1.5% phenol, 0.05% SDS, or 1% chloramine-
T, incubating for 30 min at 30 °C. A 0.85% solution was 
used for the control samples. Dilutions of  10−2 and  10−3 
of each pre-treated sample were cultured on soil agar (100 
g/L Antarctic soil, 18 g/L agar) and oatmeal agar (60 g/L 
oatmeal, 18 g/L agar) supplemented with nalidixic acid (25 
μg/mL). The cultures were incubated for 4 weeks at 15 °C. 
The resulting colonies were isolated and subsequently plated 
until purification in ISP-2 agar medium (4 g/L yeast extract, 
4 g/L glucose, 10 g/L malt extract, and 20 g/L agar). Pure 
cultures were preserved by freezing at −80 °C in glycerol 
(20% v/v) until further use.

Culture of actinobacterial strains

In this work, nine isolated strains deposited at the Colec-
ción Chilena de Cultivos Tipo – CCCT (Universidad de La 
Frontera, Chile) under accession codes CCCT 24.01–CCCT 
24.09 were utilized. These strains were inoculated on ISP-2 
agar plates, nutrient agar (Liofilchem, Italy), and R2A agar 
(Merck Millipore, Germany) and incubated at 15 °C for 2 
weeks until suitable microbial growth was observed.
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DNA extraction from actinobacterial strains

From the above cultures, DNA extraction was performed 
using DNeasy UltraClean Microbial Kit (QIAGEN, Ger-
many) following the manufacturer’s instructions. Subse-
quently, DNA was quantified using a Qubit dsDNA HS 
Assay Kit (Invitrogen, USA), considering a minimum range 
of concentrations equal to or greater than 50 ng/µL. Finally, 
the integrity of the obtained DNA was visualized on an aga-
rose gel in TAE 1 × 0.9% m/v buffer.

Library preparation and whole genome sequencing

The samples were sequenced using Illumina and Oxford 
Nanopore Technologies (ONT). The Illumina library was 
prepared with 2 × 150 bp paired-end fragments on an Illu-
mina NovaSeq platform. Quality control of the reads was 
assessed using FastQC v0.11.9 (Andrews 2010). Subse-
quently, adapters were cut from the reads and quality fil-
tered using Fastp v0.20.0 tool (Chen et al. 2018) with the 
following parameters: --detect_adapter_for_pe -f 12 -F 
12. For genome sequencing using long reads, the Rapid 
Sequencing Kit SQK-RBK004 (ONT) was used for library 
preparation, and sequencing was performed using an R9.4 
flow cell (FLO-MIN106D) on a MinION Mk1C machine 
(ONT) using MinKNOW v4.3.7 software. Basecalling was 
performed using Guppy v5.0.12, in the fast mode. Quality 
control of the reads was assessed using the Nanoplot v1.40.0 
tool (De Coster et al. 2018). Subsequently, the adapters were 
cut with Porechop v0.2.4, and sequences with a quality equal 
to or greater than 10 were filtered out using Nanofilt v2.8.0 
(De Coster et al. 2018).

Hybrid genome assembly

To achieve de novo hybrid assembly, short and long reads 
that passed quality control and filtering were assembled 
using Unycicler v.0.4.8 tool (Wick et  al. 2017). Subse-
quently, the hybrid genomes were polished with Medaka 
v1.2.3 (https:// github. com/ nanop orete ch/ medaka) using 
ONT reads. Then, the genomes were again polished with 
Polypolish v0.5.0 (Wick and Holt 2022) and poLCA v4.0.5 
(Zimin and Salzberg 2020) using short reads. Finally, qual-
ity and contamination determination of the polished hybrid 
genomes were performed using Quast v5.0.2 and CheckM 
v1.1.3 (Gurevich et al. 2013; Parks et al. 2015). 

Genomic and taxonomic annotation

Annotation of genomic sequences was achieved using 
Prokka v1.14 (Seemann 2014). The taxonomic annota-
tion was performed by uploading the hybridized assem-
bled genomes to the Type Strain Genome Server (TYGS) 

available under https:// tygs. dsmz. de (Meier-Kolthoff and 
Göker 2019). Subsequently, the average nucleotide identity 
(ANI) was calculated using the FastANI v1.32 tool (Jain 
et al. 2018), and digital DNA-DNA hybridization (dDDH) 
was performed using the web tool Genome-to-Genome Dis-
tance Calculator (GGDC) (Meier-Kolthoff et al. 2022). In 
addition, a genome-based phylogenetic tree was inferred 
using the autoMLST: Automated Multi-Locus Species 
Tree pipeline (https:// autom lst. zieme rtlab. com/), where the 
“denovo mode” was used and the IQ-TREE Ultrafast Boot-
strap analysis (1000 replicates) option was selected (Alan-
jary et al. 2019). The constructed tree was visualized and 
annotated using the Interactive Tree Of Life (iTOL) avail-
able at https:// itol. embl. de/ (Letunic and Bork 2021).

Identification and analysis of biosynthetic gene 
clusters (BGCs)

The biosynthetic gene clusters in the nine strains were iden-
tified using antiSMASH v6.1.1 (Blin et al., 2021) with the 
following parameters: --taxon bacteria --fullhmmer --cc-
mibig --cb-knownclusters --rre --hmmdetection-strictness 
strict and --genefinding-tool prodigal. Finally, to summarize 
the number of BGCs identified in the samples, a matrix plot 
was created using RAWGraphs (Mauri et al. 2017).

Biosynthetic gene clusters network of the family 
Micrococcaceae

Genome assemblies belonging to the family Micrococ-
caceae were recovered from the Biosample database of the 
National Center for Biotechnology Information (NCBI), 
which includes the environmental packages of soil (50), 
plant-associated (43), water (11), sediments (7), and waste-
water/sludge (4). Subsequently, the BGCs were identified 
using the same methodology described in this manuscript. 
To determine biosynthetic biodiversity, sequence similar-
ity networks were generated using the “biosynthetic gene 
similarity clustering and prospecting engine” BiG-SCAPE 
v1.1.2 (Navarro-Muñoz et al. 2020) with the PFAM data-
base (v35.0) (Mistry et al. 2021). A distance matrix was 
created by calculating the distance between every pair of 
BGCs within the dataset. This distance matrix incorporates 
three metrics: (i) Jaccard index, representing the percent-
age of shared domain types; ii) domain sequence similarity, 
reflecting the similarity between aligned domain sequences; 
and (iii) adjacency index, which measures the similarity of 
domain pair types. In addition, the MiBIG database v3.1 
(Minimum Information about a Biosynthetic Gene cluster) 
(Terlouw et al. 2023) was used. The .gbk files of the BGCs 
obtained from antiSMASH were used as the inputs. The 
following settings were used to run the analysis: --mode 
auto --mix --no_classify --mibig --cutoffs 0.3 0.4. Finally, 

https://github.com/nanoporetech/medaka
https://tygs.dsmz.de
https://automlst.ziemertlab.com/
https://itol.embl.de/
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the networks obtained were annotated and visualized using 
Cytoscape v3.6.0 (Shannon et al. 2003).

Results

Antarctic isolates genome sequencing 
and taxonomic affiliation

We successfully isolated nine Actinomycetota strains from 
different soil and sediment samples from the Antarctic, fol-
lowing different sample treatments (Table 1). The hybrid 
assembly of those nine genomes, isolated from samples 
collected in the Antarctic territory, exhibited completeness 
exceeding 98% and contamination of less than 1%. The num-
ber of contigs varied between 1 and 5 for all assemblies, 
demonstrating a high quality of contiguity. Specifically, all 
assemblies had an L50 value of 1 and a notably high N50 
value. The strain Sec 6.3 exhibited the lower contiguity. Fur-
thermore, a large number of reads were obtained for each 
assembly, contributing to the genomic coverage and continu-
ity (Supplementary Table S1). Additionally, all assemblies 
obtained had a guanine-cytosine content (GC) ranging from 

61.5 to 72.9%, with predicted coding sequences number-
ing between 2348 and 5007, as expected for Actinomycetota 
phylum (Table 2).

The genomics-based tree revealed that the strains 
belonged to the families Micrococcaceae and Dermat-
ophilaceae within the phylum Actinomycetota, as per the 
information sourced from the Genome Taxonomy Database 
(available at https:// gtdb. ecoge nomic. org/) (Figure 1). Spe-
cifically, within the family Micrococcaceae, strains Sec 5.8 
and Sec 7.4 were closely grouped, and Sec 5.7 formed a 
distinct phylogenetic lineage within the genus Arthrobacter. 
On the other hand, strain Se 16.17 was grouped with Pae-
narthrobacter nicotinovorans 231Sha2.1M6, while Sec 5.1 
formed a distinct phylogenetic lineage within the genus Pae-
narthrobacter. Strain Sec 6.3 was placed in a separate phy-
logenetic lineage within the genus Micrococcus. Addition-
ally, strain Sec 5.9 was clustered with the species Janibacter 
terrae, and strains Sec 6.4 and Soc 4.6 formed a distinct 
phylogenetic lineage within the Dermatophilaceae family.

Comparing the whole genomic sequences using ANI and 
dDDH values, we found that almost all the strains exhib-
ited the closest ANI values to species obtained through the 
NCBI database via autoMLST. However, these values were 

Table 1  Origin and isolation description of nine bacterial strains obtained from soil and sediment samples from the Antarctic

Isolate strain Geographical location Sample source Sample type Pretreatment Isolation medium

Soc 4.6 Antarctica: Deception Island Deception soil Soil No Oatmeal agar
Sec 5.1 Antarctica: Deception Island Deception lagoon Sediment Phenol Oatmeal agar
Sec 5.7 Antarctica: Deception Island Deception lagoon Sediment No Soil agar
Sec 5.8 Antarctica: Deception Island Deception lagoon Sediment No Soil agar
Sec 5.9 Antarctica: Deception Island Deception lagoon Sediment SDS Oatmeal agar
Sec 6.3 Antarctica: Doumer Island Yelcho soil Soil Phenol Soil agar
Sec 6.4 Antarctica: Doumer Island Yelcho soil Soil Chloramine-T Oatmeal agar
Sec 7.4 Antarctica: Doumer Island Yelcho channel sediment Sediment No Oatmeal agar
Se 16.17 Antarctica: Rey Jorge (King 

George) Island, Fildes Peninsula
Lake sediment Sediment Chloramine-T Oatmeal agar

Table 2  Quality assessments and annotation of hybrid genome assemblies from nine Antarctic isolates

Strain Genome length Contigs N50 L50 GC (%) Complete-
ness (%)

Contamina-
tion (%)

CDS rRNA tRNA tmRNA

Soc 4.6 4,806,652 3 4,746,819 1 71.57 99.46 0 4407 6 52 1
Sec 5.1 5,426,886 1 5,426,886 1 61.49 99.12 0.39 5007 18 56 1
Sec 5.7 4,402,594 2 4,307,194 1 63.92 99.71 0 4215 12 55 1
Sec 5.8 3,870,955 1 3,870,955 1 66.14 99.71 0 3534 15 53 2
Sec 5.9 3,530,731 2 3,492,674 1 71.81 99.82 0.14 3493 6 50 1
Sec 6.3 2,568,479 4 1,294,273 1 72.88 98.21 0.23 2348 6 50 1
Sec 6.4 3,792,347 3 3,718,359 1 65.54 100 0.36 3579 6 49 1
Sec 7.4 4,384,395 5 3,981,032 1 66.81 99.71 0.49 3973 12 60 1
Se 16.17 4,883,589 4 4,495,321 1 62.67 99.71 0.73 4440 18 56 1

https://gtdb.ecogenomic.org/
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relatively low, except for strain Se 16.17, which shared a 
high similarity with P. nicotinovorans 231Sha2.1M6, 
showcasing ANI and dDDH values of 98.8% and 86.6%, 
respectively, and allowing its affiliation as a P. nicotinovo-
rans strain. Another exception was strain Sec 5.9, showing 
98.8% ANI and 90.1% dDDH, classifying it as the species 
Janibacter terrae (Table 3). Based on our results, seven out 
of nine strains might be representative of novel species of 
the genera Lapillicoccus sp. (Soc 4.6), Pseudarthrobacter 
sp. (Sec 5.7, Sec 5.8 and Sec 7.4), Micrococcus sp. (Sec 6.3), 
and Allobranchiibius sp. (Sec 6.4).

Analysis and comparison of biosynthetic gene 
clusters

The nine genomes isolated from the Micrococcaceae and 
Dermatophilaceae families collectively possess 49 BGCs. 
Remarkably, about 84% of these BGCs exhibit a similar-
ity of less than 50% with the closest clusters in the MiBIG 
database. The most prevalent BGC types within the strains 
were beta-lactones, type III polyketide synthases (T3PKS), 
and non-alpha-poly amino acids (NAPAA), with all of them 
containing NAPAA. Furthermore, BGCs corresponding to 

Fig. 1  Multi-locus phylogenetic species tree indicating the distances 
between isolated strains (highlighted in yellow) and closely related 
species. The tree was constructed using the web tool autoMLST with 
the denovo mode and 1000 bootstrap replicates. Circles on branches 
indicate bootstrap values of > 74%. The Genome Taxonomy Data-
base was used to obtain taxonomic information. Geodermatophilus 

obscurus DSM 43160 (GCF_000025345) was used as an outgroup. 
Bar charts in the middle represent the genome size of the strains in 
the tree. The barplot on the right side shows the number of BGCs of 
the species in the tree, where each color belongs to a type of BGCs 
according to the legend

Table 3  Average nucleotide identity and digital DNA-DNA hybridization values between the isolated strains and their closely related species 
obtained by the Type Strain Genome Server (TYGS) and Automated Multi-Locus Species Tree (autoMLST)

Strain Closest genome (TYGS) ANI (%) dDDH (%) Closest genome (autoMLST) ANI (%) dDDH (%)

Soc 4.6 Lapillicoccus jejuensis DSM 18607 81.7 21.4 Phycicoccus sp. Root563 79.5 20.4
Sec 5.1 Paenarthrobacter nicotinovorans DSM 

420
83.3 23.7 Paenarthrobacter nitroguajacolicus HG 85.3 24.3

Sec 5.7 Pseudarthrobacter psychrotolerans YJ56 81.8 23.6 Arthrobacter sp. KBS0703 82.9 23.2
Sec 5.8 Pseudarthrobacter albicanus NJ-Z5 83.2 25.4 Arthrobacter sp. U41 86.7 29.5
Sec 5.9 Janibacter terrae NBRC 107854 98.8 90.1 Janibacter terrae NBRC 107854 98.8 90.1
Sec 6.3 Micrococcus endophyticus BCRC 16908 88.7 33.6 Micrococcus luteus RIT305 88.9 25.5
Sec 6.4 Allobranchiibius huperziae DSM 29531 80.0 20.7 Dermacoccus sp. PE3 74.9 19.6
Sec 7.4 Pseudarthrobacter albicanus NJ-Z5 84.8 27.1 Arthrobacter sp. U41 89.5 35.5
Se 16.17 Paenarthrobacter nitroguajacolicus HG 85.2 27.2 Paenarthrobacter nicotinovorans 

231Sha2.1M6
98.8 86.6
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siderophores, terpenes, thiopeptide, and non-ribosomal pep-
tide synthetase (NRPS), among others, were identified in 
smaller quantities (Supplementary Figure S1).

Among the BGCs exhibiting a similarity identity greater 
than 50% with known clusters in the database, we found 
siderophores with 75% and 100% similarity to the desferri-
oxamine E cluster; a type III polyketide synthase with 100% 
similarity to the alkylresorcinol; a cluster with 75% similar-
ity to the ectoine; and a terpene from strain Sec 6.3, showing 
66% similarity to the carotenoid cluster (Supplementary Fig-
ure S2). The strains belonging to the Micrococcaceae family 
shared NAPAA, beta-lactone, and T3PKS clusters. Then, 
we wanted to further investigate whether this feature could 
be associated with the taxonomic family or could be part 
of genetic material related to strains inhabiting the extreme 
environment.

Biosynthetic gene cluster network analysis 
in the Micrococcaceae family

To assess the biosynthetic biodiversity of the Micrococ-
caceae family, we employed the biosynthetic gene similar-
ity clustering and prospecting engine (BiG-SCAPE) to gen-
erate sequence similarity networks. The analysis involved 
597 BGCs identified from 121 genomic assemblies within 
the Micrococcaceae family (Fig.  2 and Supplementary 
Table S2). Among these, six assemblies were from strains 
isolated in Antarctica, while the rest were retrieved from 
the Biosample database of the NCBI. These genomes were 
classified under different environmental categories, includ-
ing soil (50), plant-associated (43), water (11), sediments 

(7), and wastewater/sludge (4). The similarity cutoff used 
for the clustering was set at 0.3.

The sequence similarity network of the BGCs unveiled 
six predominant types: beta-lactone, NAPAA, T3PKS, 
siderophores, terpenes, and ectoine. Moreover, the net-
works containing BGCs from the genera Micrococcus and 
Nesterenkonia were distinctly grouped, unlike other genera 
that shared their BGCs within the same network. Within the 
identified clusters, two were noteworthy for their annota-
tions from six MiBIG reference BGCs with known func-
tions. Five of these were associated with siderophores, 
encompassing natural products such as desferrioxamine 
B (MIBiG BGC0000940 and BGC0000941), desferriox-
amine E (MIBiG BGC0001478), and legonoxamine A 
(MIBiG BGC0002305). Conversely, one was linked to the 
thiopeptide category but grouped in the same cluster as ter-
penes, representing a compound called “TP-1161” (MIBiG 
BGC0000615). This limited representation of networks 
containing previously characterized BGCs underscores the 
extensive BGC diversity within the Micrococcaceae family. 
We attempted to generate networks based on the source of 
isolation and continent, but no discernible relationships were 
identified related to the origin of the isolated (Supplemen-
tary Figure S3 and S4).

Discussion

The Antarctic stands as the coldest, driest, windiest, and 
most challenging-to-access continent on Earth. Due to its 
extreme conditions, it has been identified as a potential 

Fig. 2  Sequence similarity network of 597 BGCs with a cutoff of 0.3 
belonging to the Micrococcaceae family generated by BiG-SCAPE 
and visualized with Cytoscape v3.9.1. Each node represents an indi-
vidual BGC, colored according to the antiSMASH product predic-
tion. The nodes with black borders represent the BGCs identified in 

our Antarctic strains. Singletons, which are unique BGCs with no 
connections, are not displayed. NAPAA, non-alpha-polyamino acids; 
T3PKS, type iii polyketide synthases; RiPP, ribosomally synthesized 
and post-translationally modified peptides; NRPS, non-ribosomal 
peptide synthetase
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source for the discovery of novel natural products from bac-
teria (Núñez-Montero and Barrientos 2018). We isolated 
and analyzed nine strains from soil and sediment samples 
collected across diverse locations within the Antarctic terri-
tory. These strains were obtained through selective isolation 
methods to increase the probability of obtaining rare strains 
and to facilitate the discovery of natural products. Heating 
in the pretreatment of the samples, the use of chemicals 
such as phenol and sodium dodecylsulfate and antimicrobial 
agents, such as nalidixic acid, was used to reduce the growth 
of undesirable bacteria and increase the selectivity of rare 
Actinomycetota strains. This is possible because there are 
several strains of Actinomycetota resistant to a broad spec-
trum of antibiotics, together with the addition of chemical 
compounds toxic to bacteria, which allows for a decrease in 
the number of bacteria sensitive to these agents, thus ena-
bling the isolation of new strains for the search of new natu-
ral products (Subramani and Aalbersberg 2013).

Genomic assembly of the isolated strains was facilitated 
using a hybrid approach, integrating short reads through 
Illumina sequencing and long reads using Oxford Nanop-
ore Technology (ONT). Combining these sequencing tech-
nologies enhances genome assembly, addressing the inher-
ent limitations of Illumina, which struggles with errors in 
sequencing repetitive structures and relies on short read 
sizes, typically less than 500 base pairs. These challenges are 
mitigated with ONT, generating large reads, often exceed-
ing 10,000 bp. This allows for the assembly of complex 
genomes, resulting in fewer contigs and enhanced precision 
and contiguity (De Maio et al. 2019). This is evidenced by 
genomic annotation, wherein all assemblies display a high 
N50 value and a low L50 value, except for strain Sec 6.3, 
which demonstrates a slightly lower N50 value. The L50 
and N50 values represent the number of contigs and contig 
lengths, respectively, crossing the 50% mark of the assem-
bly. Hence, higher N50 values and lower L50 values signify 
a more contiguous assembly (Jayakumar and Sakakibara 
2019). Additionally, we achieved a substantial depth of cov-
erage in the genomic assemblies utilizing both technologies, 
as outlined in the supplementary tables. Consequently, this 
precise analysis allows for a thorough examination of the 
biosynthetic gene clusters and various genomic characteris-
tics of the obtained strains.

Taxonomic annotation revealed that strains Sec 5.9 and 
Se 16.17 exhibited high dDDH and ANI values, with their 
closest genomes being Janibacter terrae NBRC 107854 
and Paenarthrobacter nicotinovorans 231Sha2.1M6, 
respectively. The generally accepted cutoff values for iden-
tifying new species within a genus are 95–96% for ANI 
and AAI and 70% for dDDH (Richter and Rosselló-Móra 
2009; Chun et al. 2018). Consequently, these strains are 
identified as belonging to the mentioned species. Strains 
affiliated with the J. terrae species were previously 

isolated from environmental water and soil samples, show-
casing the capability to degrade environmental pollutants 
(Lang et al. 2003). On the other hand, P. nicotinovorans 
231Sha2.1M6 was isolated from Arabidopsis thaliana soil 
samples. As for the remaining seven strains, both their 
dDDH and ANI values fell below the defined cutoff val-
ues, designating them as new species within the Micrococ-
caceae and Dermatophilaceae families.

In the analysis of the identified BGCs within the iso-
lated strains, a variable number, ranging from three to 
eight BGCs, was observed. Among them, three main 
types stood out: NAPAA, beta-lactone, and T3PKS. Beta-
lactone-associated BGCs have demonstrated applications 
as anticancer agents, such as Marizomib (salinosporamide 
A) and antimicrobial and antiobesity agents, like Xeni-
cal (Robinson et al. 2019; Wang et al. 2021a, b). T3PKS, 
responsible for biosynthesizing a plethora of natural prod-
ucts, encompass antibiotics, immunosuppressants, and 
cancer chemotherapy (Nivina et al. 2019). NAPAA, such 
as ε-poly-L-lysine, exhibit bacteriostatic and biodegrad-
able properties, leading to their use as food preservatives 
and in the pharmaceutical industry (Wang et al. 2021a, 
b). Another noteworthy category of BGCs with potential 
public health applications includes RiPPs, which feature a 
domain known as the RiPP recognition element (RRE-con-
taining). This domain is prevalent in various RiPP clus-
ters (Kloosterman et al. 2020) and has been instrumental 
in addressing therapeutic challenges, such as combating 
cystic fibrosis and acting as antimicrobials (Hetrick and 
Donk 2017).

Furthermore, concerning BGCs with a similarity greater 
than 50% to known BGCs in the MiBIG database, we iden-
tified alkylresorcinol in the Soc 4.6 strain. Alkylresorcinol 
is a lipophilic molecule with a polyphenol structure known 
for its antimicrobial, anticancer, antilipidemic, antioxidant, 
and other properties (Zabolotneva et al. 2022). Additionally, 
we found BGCs linked to siderophores, particularly desfer-
rioxamine E in the Sec 5.1, 5.7, 5.9, and Se 16.17 strains, 
which play a crucial role in microbial growth (Yamanaka 
et al. 2005). On a different note, we also identified BGCs 
associated with more physiological functions, such as ter-
penes and ectoine. Terpenes are linked to electron transport, 
light uptake, photoprotection, and signaling (Caulier et al. 
2019), while ectoine is known for its protective properties 
on enzymes, DNA, cell membranes, and cells against vari-
ous types of stress, including osmotic, cold, and heat stress 
(Zhang et al. 2009). Hence, our results showed that the pos-
sibly known molecules are related to primary microbial 
metabolism and or common functions across. On the other 
hand, our strains showed a large number of BGCs with low 
or non-similarity to other clusters, and belonging to types 
of specialized metabolites previously related to biological 
activities. Hence, our data highlights the metabolic potential 
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for the production of novel natural products from novel 
strains isolated from the Antarctic continent.

The network analysis of BGCs allows us to visualize a 
phylogenetic correlation between certain genera of the fam-
ily Micrococcaceae, especially observed in genera such 
as Micrococcus and Nesterenkonia. This observation has 
been observed in studies of other species belonging to the 
phylum Actinomycetota, such as the genera Amycolatopsis, 
Salinispora, and Streptomyces, among others, where these 
correlations were detected using different bioinformatic 
approaches, such as the identification of gene cluster fami-
lies, operational biosynthetic units, and BGCs (Doroghazi 
and Metcalf 2013; Ziemert et al. 2014; Adamek et al. 2018). 
In addition, it has been detected in the phylum Firmicutes, 
with the genus Bacillus, where clade- and species-specific 
BGCs have been found (Steinke et al. 2021). These BGCs-
related families might be associated with core metabolism 
of the genus. Furthermore, among the three most abundant 
groups of BGCs within this family, T3PKS have been previ-
ously reported for the genus Arthrobacter (Doroghazi and 
Metcalf 2013), but not the beta-lactone BGCs, which are 
grouped in one network and currently do not have a close 
reference and could be part of the core genome of these 
strains because of their high level of conservation.

In addition, no relationship was found between the source 
of isolation and the BGCs. This might be because there are 
many types of environments and different conditions of 
temperature, humidity, and pressure, among others, which 
generates a very diverse grouping in the network. On the 
other hand, there are many BGCs to be studied within this 
family, since only two groups are similar to any known natu-
ral product, being siderophores and thiopeptides. The lat-
ter obtained from an Actinomycetota, Nocardiopsis sp., has 
potent antibiotic properties (Engelhardt et al. 2010). There-
fore, it is important to further investigate BGCs belonging to 
this family as several beneficial properties have been dem-
onstrated, such as the ability to act as plant growth promot-
ers in various plant species, as seen in members belonging 
to the genera Arthrobacter and Pseudarthrobacter (Chhetri 
et al. 2022; Jiang et al. 2022; Ham et al. 2022; Platamone 
et al. 2023). In addition, species of the genera Arthrobac-
ter and Micrococcus have been used for the bioremediation 
of organic compounds and heavy metals (Behera and Das 
2023). For the species belonging to the genus Micrococ-
cus, extracts with pharmaceutical properties, such as anti-
microbial, antifungal, and antioxidant properties, have been 
obtained, which are described in more detail in the review 
by Tizabi and Hill (2023).

In summary, the species isolated and sequenced 
in this study exhibit BGCs with significant potential 
across various domains including clinical applications, 

pharmaceuticals, the food industry, and agriculture. More-
over, we observed a substantial gap in our understanding 
of the functionality of different BGC groups within the 
Micrococcaceae family, which holds significant implica-
tions for the future. Our research also provides valuable 
genomics data from untapped microorganisms from rare 
Actinomycetota strains from extreme environments.

Given that this analysis was conducted in silico, we 
were unable to confirm whether these BGCs are actively 
expressed or silenced. Future investigations integrating 
transcriptomics and metabolomics are essential to deter-
mine their expression and functionality. This comprehen-
sive approach will pave the way for these BGCs to emerge 
as promising candidates for future applications and bio-
technological advancements.
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