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Abstract 
Shotgun metagenomics sequencing experiments are finding a wide range of applications. Nonetheless, there are still lim-
ited guidelines regarding the number of sequences needed to acquire meaningful information for taxonomic profiling and 
antimicrobial resistance gene (ARG) identification. In this study, we explored this issue in the context of oral microbiota by 
sequencing with a very high number of sequences (~ 100 million), four human plaque samples, and one microbial commu-
nity standard and by evaluating the performance of microbial identification and ARGs detection through a downsampling 
procedure. When investigating the impact of a decreasing number of sequences on quantitative taxonomic profiling in the 
microbial community standard datasets, we found some discrepancies in the identified microbial species and their abun-
dances when compared to the expected ones. Such differences were consistent throughout downsampling, suggesting their 
link to taxonomic profiling methods limitations. Overall, results showed that the number of sequences has a great impact on 
metagenomic samples at the qualitative (i.e., presence/absence) level in terms of loss of information, especially in experi-
ments having less than 40 million reads, whereas abundance estimation was minimally affected, with only slight variations 
observed in low-abundance species. The presence of ARGs was also assessed: a total of 133 ARGs were identified. Notably, 
23% of them inconsistently resulted as present or absent across downsampling datasets of the same sample. Moreover, 
over half of ARGs were lost in datasets having less than 20 million reads. This study highlights the importance of carefully 
considering sequencing aspects and suggests some guidelines for designing shotgun metagenomics experiments with the 
final goal of maximizing oral microbiome analyses. Our findings suggest varying optimized sequence numbers according 
to different study aims: 40 million for microbiota profiling, 50 million for low-abundance species detection, and 20 million 
for ARG identification.

Key points
• Forty million sequences are a cost-efficient solution for microbiota profiling
• Fifty million sequences allow low-abundance species detection
• Twenty million sequences are recommended for ARG identification

Keywords Shotgun metagenomics · Sequencing depth · Antimicrobial resistance · Experimental design

Introduction

Microbiota is known as the entire set of microorganisms—
comprising bacteria, archaea, viruses, and eukaryotes—
present in a defined niche (Berg et al. 2020). Its compo-
sition and functions can be explored through a variety of 

methods, the most widespread ones being 16S rRNA gene 
sequencing and shotgun metagenomics. The former is also 
known as metabarcoding or metataxonomics and consists 
of the targeted sequencing of 16S rRNA gene hypervari-
able regions. Such an approach allows to obtain an over-
view of the bacterial community under study by estimat-
ing its taxonomical composition starting from a relatively 
small number of sequences (18,000–30,000 sequences per 
sample) (Kozich et al. 2013). In particular, metabarcoding 
analyses allow to gain insights into microbial community 
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diversity and richness and draw comparisons between differ-
ent niches or sample types; nonetheless, little to no informa-
tion can be collected regarding the functional potential and 
activity of the communities. Moreover, it has been reported 
that the choice of primers used during sample preparation 
could lead to potential biases in the representation of some 
taxonomic groups (Campanaro et al. 2018) and that some 
taxa—especially less abundant ones—could be lost (Durazzi 
et al. 2021).

Shotgun metagenomics overcomes such shortcomings by 
sequencing all the genetic content (i.e., sampling genes from 
all microbial genomes) retrievable from a defined niche (i.e., 
untargeted sequencing). This method has recently found a 
wide range of applications that encompass human health 
(Rampelli et al. 2020), ecological niches characterization 
(Loza et al. 2022), and public health risk assessment, with a 
particular focus on antimicrobial resistance reservoirs (Rubi-
ola et al. 2022). Indeed, antimicrobial resistance is currently 
a cause of growing concern, and many fear a “post-antibiotic 
era” in which even common infections could become life-
threatening (Noyes et al. 2016). This highlights the need 
to understand and characterize the mechanisms underly-
ing antimicrobial resistance and calls for attentive and 
coordinated monitoring of resistance reservoirs worldwide 
(Mader et al. 2022). Shotgun metagenomics sequencing 
allows to analysis of the entire set of antimicrobial resist-
ance genes (ARGs) carried by all microorganisms in a sam-
ple: this approach might improve the understanding of how 
and where resistance develops and spreads, as well as the 
discovery and characterization of still unknown resistance 
determinants.

However, this approach has a much higher cost than 
metabarcoding due to the need for a greater number of 
sequences (millions of sequences per sample) and produces 
high-complexity datasets that require extensive expertise to 
be analyzed (Quince et al. 2017), and there are still lim-
ited guidelines regarding the number of sequences needed 
to acquire meaningful information from shotgun metagen-
omics sequencing datasets, especially regarding ARGs 
identification.

Molecular studies have recently enabled researchers 
to dissect the complexity of microbiota composition and 
metabolic potential in different anatomical niches (Integra-
tive HMP (iHMP) Research Network Consortium 2019). 
Among them, the oral cavity is drawing the attention of the 
scientific community as one of the most important interac-
tion windows between the human body and the environ-
ment. Oral microbiota—with more than 700 species identi-
fied—is one of the most diverse microbial communities in 
the human body, and different microbial profiles have been 
associated with systemic diseases and cancer (Peng et al. 
2022; Tuominen and Rautava 2021). In the present work, 
we analyzed the oral microbiota from four individuals that 

were investigated with a very high number of sequences 
(~ 100 million each), and we evaluated the performance 
of microbial identification and ARG detection through a 
downsampling procedure (i.e., randomly discarding frac-
tions of sequences). Thus, we gained knowledge that can 
help design shotgun metagenomics experiments that are 
cost-efficient (i.e., to obtain the maximum useful informa-
tion with the minimum cost possible) and suitable for the 
intended purposes in the oral microbiome context.

Methods

Sample collection and sequencing

Dental plaque samples were collected from four patients fol-
lowed at Verona Hospital who were 18–75 years of age, did 
not receive antimicrobial therapy in the 4 weeks preceding 
sampling, did not wear mobile dentures or prosthetic dental 
appliances, and did not have active smoking or alcohol hab-
its, dietary disorders, immune system disorders, or diabetes. 
Sampling collection of subgingival plaque was carried out 
using a sterile periodontal curette. The collected samples 
were placed in a 1.5-ml sterile centrifugal tube containing 
RNAlater solution (QIAGEN GmbH, Hilden, Germany), 
immediately transported to the laboratory, and centrifuged 
at 12,000 g for 15 min at 4 ℃. Genomic DNA was extracted 
within 1 h from the collection using the QIAamp DNA 
Blood Mini Kit (Qiagen, Milan, Italy) according to the man-
ufacturer’s instructions. DNA was eluted in 100 µL double-
distilled water and temporally stored at − 20 °C. The quality 
of extracted DNA was assessed using Qubit (Thermo Fisher 
Scientific, Wilmington, DE, USA) and Fragment Analyzer 
System (Agilent Technologies, Santa Clara, CA, USA). As 
a sequencing quality control, a Microbial Community DNA 
Standard (Zymo Research, Irvine, CA, USA) was processed 
together with the samples starting from the library genera-
tion step. The theoretical composition of the microbial com-
munity standard comprises 10 species with the following 
abundances: Pseudomonas aeruginosa (6.1%), Escherichia 
coli (8.5%), Salmonella enterica (8.7%), Lactobacillus fer-
mentum (21.6%), Enterococcus faecalis (14.6%), Staphylo-
coccus aureus (15.2%), Listeria monocytogenes (13.9%), 
Bacillus subtilis (10.3%), Saccharomyces cerevisiae 
(0.57%), and Cryptococcus neoformans (0.37%). Sequenc-
ing libraries were prepared using the KAPA PCR-free kit 
(Roche Sequencing Solutions, Pleasanton, CA, USA). All 
samples underwent shotgun metagenomic sequencing at the 
Technological Platform Centre of the University of Verona 
on a NextSeq500 Illumina platform (Illumina, Hayward, CA, 
USA) generating 150-bp paired-end reads.
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Sequencing data downsampling and quality 
controls

Raw reads of plaque samples (n = 4) and of the microbial 
community standard (n = 1) were downsampled obtaining 
a total of eight datasets of five samples each characterized 
by a decreasing number of sequences (Fig. 1). In particu-
lar, eight datasets were generated for each DNA sample by 
selecting the first N sequences in the FASTQ files. Data-
sets with the following number of sequences were gener-
ated: original number (range, 88–110 million sequences), 
80, 50, 40, 35, 20, 10, and 5 million sequences. Each 
dataset was labeled according to the following nomen-
clature: one letter among S or M (S = sample, M = mock 
microbial community standard), identification number, 
underscore, number of million sequences in the dataset, 
e.g., S2_40M indicates the dataset from sample 2 with 40 
million sequences (see Supplementary Table S1 for a list 
of all generated datasets). Quality controls of sequencing 
data were performed using the KneadData tool (available 
at https:// github. com/ bioba kery/ knead data) with default 
settings; briefly, the quality of raw reads was assessed 
using FastQC v0.11.9 (Andrews 2010), and adapter and 
base quality trimming was performed accordingly with 
Trimmomatic v0.39 (Bolger et al. 2014) using the fol-
lowing parameters: Illuminaclip:adapter_file.fa:2:30:20 

leading:3 trailing:3 slidingwindow:4:20 minlen:50. Reads 
were then aligned to the Homo sapiens (human) genome 
GRCh38 using bowtie2 v2.3.5.1 (Langmead and Salzberg 
2012) for host DNA contamination removal (i.e., sequence 
mapping to the human genome were discarded from fur-
ther analyses).

Quantitative taxonomic profiling

Sequencing data was analyzed with the MetaPhlAn3 
v3.1.0 tool (Beghini et al. 2021) for profiling the commu-
nities’ composition (Bacteria, Archaea, and Eukaryotes). 
The quantitative profiling was obtained using bowtie2 to 
map reads against the CHOCOPhlAn v30 database for tax-
onomic classification, which comprehends ~ 1.1 M unique 
clade-specific marker genes identified from ~ 100,000 ref-
erence genomes (~ 99,500 bacterial and archaeal and ~ 500 
eukaryotic). In particular, taxonomic profiling relies on 
detecting the presence and estimating the coverage of a 
collection of species–specific marker genes to estimate the 
relative abundance of known and unknown microbial taxa 
in shotgun metagenomic samples. Graphs and figures were 
generated using ggplot2 and fmsb packages in R v4.2.1 (R 
Core Team 2021).

Fig. 1  Schematic representation 
of sequencing data downsam-
pling and dataset generation. 
Raw sequences (reads) of 
plaque samples and the micro-
bial community standard were 
downsampled by generating 
8 datasets with a decreasing 
number of sequences for each 
DNA sample

https://github.com/biobakery/kneaddata
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ARGs identification

ARGs identification was performed using bwa the v0.7.17-
r1188 (Li and Durbin 2009) to align microbial sequences to 
MEGARes 2.0 (Doster et al. 2020) database (downloaded 
on 1st August 2022, n = 6635 nucleotide sequences), which 
contains antimicrobial drugs, biocides, and metal resistance 
determinant sequences. A Java-based script developed by 
Noyes et al. (2016) (available at: https:// github. com/ colos 
tatem eg/ gene_ fract ion_ script/ relea ses) was used to parse 
the resulting SAM files such that for each ARG identified in 
each sample, the proportion of nucleotides in the MEGARes 
ARG sequence that aligned with at least one read was calcu-
lated. In order to decrease the number of false positive ARG 
identifications (Gibson et al. 2015), only ARGs with > 50% 
of nucleotides covered by at least one read were defined as 
present in the sample and included in subsequent analyses. 
Graphs and figures were generated using ggplot2, forcats, 
and pheatmap packages in R v4.2.1 (R Core Team 2021).

Results

Sequencing and downsampling

The sequencing run yielded a mean of 101,241,917 
reads (range = 87,950,201–109,004,045) per sample, and 

downsampling datasets containing 80, 50, 40, 35, 20, 10, 
and 5 million sequences were generated (Fig. 2). Consid-
ering all generated datasets, on average 88% of the reads 
(range = 87–89%) passed base quality and adapter trimming 
whereas 50% of the total number of reads (range = 28–87%) 
passed the subsequent host decontamination step (Supple-
mentary Table S2). Overall, the downsampling datasets con-
served the characteristics of the original dataset in terms of 
GC content, average read length, and proportion of reads 
passing each step of the quality control and decontamina-
tion procedure.

Taxonomic profiling

Firstly, we investigated the impact of downsampling on 
quantitative taxonomic profiling in the M1 datasets (micro-
bial community standard), since the real composition of 
the sample—both in terms of microorganisms and abun-
dances—is known and reported in the product datasheet 
(Fig. 3). The theoretical composition of M1 (Fig. 3A) com-
prises 10 species, namely Pseudomonas aeruginosa, Escher-
ichia coli, Salmonella enterica, Lactobacillus fermentum, 
Enterococcus faecalis, Staphylococcus aureus, Listeria 
monocytogenes, Bacillus subtilis, Saccharomyces cerevi-
siae, and Cryptococcus neoformans. When comparing the 
theoretical composition with the original shotgun metagen-
omics sequencing dataset (M1_88M) profiling—which is the 

Fig. 2  Quality controls results. Boxplot of the number of reads of the 
analyzed datasets at each quality control step: The number of reads 
passing adapter and quality trimming is reported in green, whereas 

reads passing host decontamination are reported in blue. Host decon-
tamination was performed by removing reads mapping to the human 
genome (GRCh38)

https://github.com/colostatemeg/gene_fraction_script/releases
https://github.com/colostatemeg/gene_fraction_script/releases
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one with the highest sequencing depth—we noticed some 
differences in the identified species. In particular, some S. 
aureus sequences were identified as S. argenteus, B. subtilis 
reads were entirely classified as Bacillus intestinalis, some 
C. neoformans sequences were reported as belonging to 
Cryptococcus gattii, and a lower abundance of P. aeruginosa 
species was reported (Supplementary Table S3).

Since microbial community standards are simple com-
munities composed of few and abundant species and do not 
reflect the complexities and difficulties of real metagenomic 
samples analysis, we performed qualitative taxonomic pro-
filing (i.e., evaluation of the presence or absence of micro-
organisms’ taxa) and compared results across four down-
sampling datasets with decreasing number of sequences 

Fig. 3  Microbial community standard quantitative taxonomic profil-
ing. The x-axis indicates percent abundance and underlined names 
indicate species present in the microbial community standard com-
position declared in the product datasheet. A Theoretical microbial 

community composition as reported in the product datasheet. B Orig-
inal shotgun metagenomics dataset comprising 88 million sequences. 
C–I Downsampling datasets including 80, 50, 40, 30, 20, 10, and 5 
million sequences, respectively
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of four human plaque samples. Overall, we identified a 
mean number of 160 species (range, 133–191), 53 genera 
(range, 48–62), 35 families (range, 33–37), 26 orders (range, 
25–27), 17 classes (range, 16–18), and 8 phyla (range,7–8) 
(Supplementary Table S4). The results (Fig. 4, left column) 
show that a decreasing number of sequences has a small 
impact on the number of identified classes at each taxonomic 
level in the M1 dataset, whereas it has a great impact on 
real samples (S1–4). Indeed, when comparing the original 
sequencing dataset of each sample with the corresponding 
5-million sequence dataset, we observe a loss of informa-
tion: a median value of 1 (range, 0–1) phylum, 1 (range, 
0–6) class, 3 (range, 2–9) orders, 6 (range, 5–13) families, 
14 (range, 12–22) genera, and 62 (range, 45–69) species 
are lost. In particular, to achieve a 90% detection rate at the 
species level in three out of four samples, at least 40 mil-
lion sequences are required, whereas to achieve the same 
in all samples, 50 million sequences are needed (Fig. 4K). 
Moreover, to achieve a 95% detection rate in all samples 
at least 80 million sequences are necessary. Noticeably, S1 
shows a more extreme loss in detection rate at less than 40 
million reads when compared to other samples. This is due 
to the fact that S1 is taxonomically less diverse than the 
other samples; consequently, the loss of a single taxon has a 
marked impact on the detection rate as calculated.

Additionally, we investigated how a decreasing num-
ber of sequences affects abundance estimation at different 
taxonomic ranks, i.e., whether the abundance estimation 
of microorganisms changed within datasets (Fig. 4, right 
column). Overall, a small information loss (< 1% of total 
abundance) was observed at every taxonomic level, and 
variable abundance values were detected at phylum, class, 
order, and family levels in datasets having less than 35 mil-
lion sequences (Supplementary Figures S1-S5). Moreo-
ver, results show variable abundance values at genus and 
species levels for low-abundance microorganisms (abun-
dance < 0.1%) in datasets having less than 50 million 
sequences.

ARGs identification

The presence of ARGs was assessed in each dataset: a total 
of 133 ARGs were identified (Supplementary Figure S6). 
Notably, 23% (n = 30) of them inconsistently resulted as 
present or absent across different downsampling datasets of 
the same sample (Fig. 5). In particular, we observed that 
the information loss increased with a diminishing number 
of sequences: at 80 million sequences, 1 ARG was lost; at 
50 million 8 ARGs; at 40 million, 12 ARGs; at 35 million, 
11 ARGs; at 20 million, 19 ARGs; at 10 million, 29 ARGs; 
and at 5 million sequences, 42 ARGs were lost. Overall, we 
observed that more than half of ARGs were lost in datasets 
having less than 20 million sequences.

Discussion

In the present work, we evaluated the performance of 
microbial identification and ARG detection through a 
downsampling procedure in order to optimize sequence 
counts for designing shotgun metagenomics experiments 
that are cost-efficient and suitable for the intended pur-
poses in the oral microbiome context. Raw reads of human 
plaque samples and of the microbial community standard 
were downsampled obtaining a total of eight datasets of 
five samples each characterized by a decreasing number of 
sequences. Overall, the downsampling datasets conserved 
the characteristics of the original dataset in terms of GC 
content, average read length, and proportion of reads pass-
ing each step of the quality control and decontamination 
procedure. Thus, the generated datasets were deemed suit-
able to perform a comparison and investigate the impact 
of decreasing the number of sequences on microbial iden-
tification and ARG detection.

Since the real composition of the microbial commu-
nity standard—both in terms of microorganisms and 
abundances—is known, we first focused on quantitative 
taxonomic profiling of these datasets. When comparing the 
theoretical composition with the profiling results, we found 
some discrepancies regarding both the identified species 
and their estimated abundance. Of note, such differences 
are consistent across the different downsampling datasets, 
suggesting that they are linked to current taxonomic pro-
filing methods rather than the number of sequences. This 
finding is in contrast with the widespread notion that shot-
gun metagenomics typically yields a detailed taxonomic 
resolution, even at species and strain levels (Truong et al. 
2017), and underlines the need for improved taxonomic 
profiling tools and more comprehensive databases for 
microbial species and strains classification.

Microbial community standards, moreover, are sim-
ple communities composed of few abundant species and 
do not reflect the complexities of microorganisms’ com-
munities found in real samples. A suggestive example 
was recently given by Kennedy and Chang (2020), who 
reported a great variability in microorganism communi-
ties’ richness and taxonomic profile, even “just” focusing 
on changes across different human body sites. Given the 
increasing scientific interest in the study of the human 
oral microbiota, we expanded our analysis by including 
human plaque samples collected from four individuals. 
Overall, a mean number of 160 species (range, 133–191), 
53 genera (range, 48–62), 35 families (range, 33–37), 26 
orders (range, 25–27), 17 classes (range, 16–18), and 8 
phyla (range,7–8) have been identified, which is concord-
ant with the expected number of microorganisms found in 
oral microbiota (Caselli et al. 2020; Dewhirst et al. 2010). 
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Fig. 4  Taxonomic profiling of human 
plaque samples datasets. The detec-
tion rate was calculated as the ratio 
of identified classes in subsampling 
datasets at each taxonomic rank to 
the number of identified classes in the 
highest sequence number datasets. The 
abundance explained was also calcu-
lated keeping as reference the highest 
sequence number datasets. Black and 
grey lines indicate 90% and 95% thresh-
olds, respectively
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In contrast to the microbial community standard, in which 
sequence downsampling has a small impact on qualitative 
taxonomic profiling, the more complex plaque samples 
require a higher number of sequences for a reliable taxo-
nomic picture. Hence, the expected richness and diversity 
of microbial communities in the samples under analysis 
are to be taken into consideration when designing shotgun 
metagenomics experiments. Additionally, for plaque sam-
ples, 40 million sequences appear to be a good sequence 
count to obtain useful information for oral microbiota pro-
filing. Indeed, with 40 million sequences, 10% of the iden-
tified species are lost, but they account for only < 1% of 
overall abundance. Of note, to increase the species detec-
tion rate from 90 to 95%, the number of sequencing reads 
needs to double from 40 to 80 million sequences.

In plaque sample datasets with more than 50 million 
sequences, low-abundance species (abundance < 0.1%) 
have a good chance of being still detected at genus and spe-
cies levels. These findings enforce results reported in previ-
ous literature highlighting sensitivity problems in shotgun 
metagenomics experiments when dealing with low (< 2%) 
and very low (< 1%) abundant species (Pereira-Marques 
et al. 2019). Overall, 50 million sequences for plaque sam-
ples appear to be a good number of sequences to obtain a 
reliable abundance overview. Nonetheless, a much higher 
number of sequences is needed if one of the aims of the 
experiment is to detect and characterize low-abundance 
species.

Finally, we explored the impact of sequence downsam-
pling on ARG identification, which is one of the most rel-
evant and impactful applications of shotgun metagenom-
ics. Overall, 23% of identified ARGs were not consistently 
present across different downsampling datasets of the same 
sample, with more than half of them being undetected below 
20 million sequences. Thus, for plaque samples, a threshold 
of 20 million sequences seems reasonable to design a cost-
effective experiment. These results indicate that shotgun 
metagenomics is a very promising approach to investigat-
ing antimicrobial resistance development and dissemination, 
as some examples in the literature corroborate (Noyes et al. 
2016).

Even though we gained precious insights into oral micro-
biota shotgun metagenomics experimental designs, the 
current study presents some limitations. Among them, we 
analyzed a limited number of samples. Nevertheless, their 
composition fit with the expected number of microorganisms 
found in oral microbiota indicating that our results could 
suggest generalizable guidelines. Moreover, we did not take 
into consideration varying degrees of host DNA; indeed, 
plaque samples present a host DNA contamination of around 
35–45%. However, the impact of varying degrees of host 
DNA contamination has been recently deeply explored by 
Pereira-Marques and colleagues (2019).

In conclusion, this study highlights the importance of 
carefully considering sequencing aspects and suggests some 
guidelines for designing shotgun metagenomics experiments 

Fig. 5  Antimicrobial resistance genes (ARGs) presence/absence heat-
map. Only ARGs that did not consistently result as present or absent 
across different downsampling datasets of the same sample are shown 

for readability purposes. Only ARGs with > 50% of nucleotides cov-
ered by at least one read were defined as present in the sample. MLS 
macrolides, lincosamides, streptogramines
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with the final goal of maximizing oral microbiome analyses. 
Our findings suggest varying optimized sequence numbers 
according to different study aims: 40 million for microbiota 
profiling, 50 million for low-abundance species detection, 
and 20 million for ARG identification.
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