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Abstract 
Cell culture media play a critical role in cell growth and propagation by providing a substrate; media components can also 
modulate the critical quality attributes (CQAs). However, the inherent complexity of the cell culture media makes unrave-
ling the impact of the various media components on cell growth and CQAs non-trivial. In this study, we demonstrate an 
end-to-end machine learning framework for media component selection and prediction of CQAs. The preliminary dataset 
for feature selection was generated by performing CHO-GS (-/-) cell culture in media formulations with varying metal ion 
concentrations. Acidic and basic charge variant composition of the innovator product (24.97 ± 0.54% acidic and 11.41 ± 1.44% 
basic) was chosen as the target variable to evaluate the media formulations. Pearson’s correlation coefficient and random 
forest-based techniques were used for feature ranking and feature selection for the prediction of acidic and basic charge 
variants. Furthermore, a global interpretation analysis using SHapley Additive exPlanations was utilized to select optimal 
features by evaluating the contributions of each feature in the extracted vectors. Finally, the medium combinations were 
predicted by employing fifteen different regression models and utilizing a grid search and random search cross-validation for 
hyperparameter optimization. Experimental results demonstrate that Fe and Zn significantly impact the charge variant pro-
file. This study aims to offer insights that are pertinent to both innovators seeking to establish a complete pipeline for media 
development and optimization and biosimilar-based manufacturers who strive to demonstrate the analytical and functional 
biosimilarity of their products to the innovator.

Key points
• Developed a framework for optimizing media components and prediction of CQA.
• SHAP enhances global interpretability, aiding informed decision-making.
• Fifteen regression models were employed to predict medium combinations.
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Introduction

Cell culture media development and optimization is one of 
the critical and resource and time-intensive activities that 
are performed by all biopharmaceutical manufacturers. The 

primary challenge that is faced comes from the fact that 
both the media and the mammalian cells are highly complex 
systems. Cell culture media consist of hundreds of compo-
nents, such as amino acids, fatty acids, vitamins, trace ele-
ments, and salts, and all of these could potentially impact 
cell growth, protein production, as well as the critical quality 
attributes (CQA) of the therapeutic product (Ritacco et al. 
2018; Combe and Sokolenko 2021). These impacts, not sur-
prisingly, have been a topic of investigation by numerous 
researchers (Zhou et al. 2010; Kaschak et al. 2011; Xu et al. 
2018; Gangwar et al. 2021; Graham et al. 2021).

Various approaches have been used to optimize cell 
culture media components. These include model-based 
(Kotidis et al. 2019), feeding-based (Sun et al. 2013), and 
metabolic flux-based (Xing et  al. 2011). Investigating 
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media components via conventional one-factor-at-time 
(OFAT) (Hong et al. 2014) or two-factor (Sun et al. 2013; 
Radhakrishnan et al. 2018; Polanco et al. 2023) meth-
ods is time- and resource-consuming. Lately, statistical 
approaches such as the design of experiments (DOE) and 
multivariate data analysis (MVDA) (Salim et al. 2022) 
have gained popularity but do suffer from shortcomings 
such as the limitation on the maximum number of compo-
nents that can be experimentally examined via a DOE and 
use of quadratic polynomial approximation, which may 
be too simple to represent the comprehensive interactions 
between the medium and the cell.

The last few years have witnessed an increasing appli-
cation of machine learning (ML) approaches to deal with 
the amount and intrinsic complexity of biological data 
(Puranik et al. 2022; Yang et al. 2023; Rathore et al. 2023). 
The typical process involves handling input data, training 
the fundamental model, and making predictions. The cell 
culture medium serves as an excellent example of a well-
ordered dataset, frequently including several components 
functioning as variable features. Feature selection, predic-
tion, and optimization all play significant roles in medium 
development (Zhou et al. 2023). ML-based approaches 
have been demonstrated to have been successfully applied 
for medium development (Hashizume and Ying 2023) for 
T-cells (Grzesik and Warth 2021), cyanobacteria cul-
ture (Havel et al. 2006), as well as for HeLa-S3 cell lines 
(Hashizume et al. 2023).

In this study, we demonstrate how ML can be effectively 
used for feature selection, CQA prediction, and medium 
optimization. Metal ions were largely shown to modulate 
charge variants, particularly Fe (Chung et al. 2019), Cu 
(Kaschak et al. 2011), and Zn (Luo et al. 2012; Graham et al. 
2020). Charge variants are believed to impact the efficacy of 
the biotherapeutic product and hence biosimilar manufac-
turers strive to match the charge variant composition of the 
innovator product (Khawli et al. 2010). ML was applied to 
the preliminary dataset to first identify the metal ions that 
exhibit significant impact by feature ranking method (Chicco 
and Rovelli 2019; Chicco and Jurman 2020). The primary 
emphasis of this study was on the utilization of transpar-
ent ML algorithms (white box), including linear regres-
sion, lasso regression, ridge regression, lasso least angle 
regression, Bayesian ridge, decision tree regressor, Huber 
regressor, and support vector machine. Additionally, some 
complex (black box) and less interpretable models, such as 
random forest regressor, CatBoost regressor, extreme gradi-
ent boosting, gradient boosting regressor, elastic net, extra 
tree regressor, and K neighbors regressor, were also exam-
ined. Both types have their advantages with respect to pre-
diction and interpretability. Black box algorithms are good 
in prediction while others are good in interpretation.

Material and methods

In this study, a hybrid machine learning framework is 
proposed to optimize CHO cell culture media and pre-
dict the critical quality attribute. The model is composed 
of machine learning techniques including random forest 
regression, linear regression, lasso regression, decision 
tree regression, extra tree regression, ridge regression, 
lasso least regression, Bayesian ridge, catboost regression, 
Huber regression, extreme gradient boosting, gradient 
boosting regression, elastic net, support vector regression, 
and k-nearest regression. A graphical representation of the 
proposed framework is provided in Fig. 1. The pipeline 
consists of five distinct operational stages: (1) preparation 
and preprocessing, (2) feature selection and analysis, (3) 
optimization, (4) model development, and (5) model eval-
uation. Media formulations were prepared by supplement-
ing the various combinations of metal salts such as copper 
(Cu), iron (Fe), zinc (Zn), manganese (Mn), magnesium 
(Mg), cobalt (Co), and nickel (Ni) into the basal medium. 
To enhance the accuracy of the proposed algorithm, it is 
necessary to perform preprocessing steps on the dataset, 
including data sampling, missing value imputation, and 
normalization. Following the preprocessing stage, two 
distinct approaches, namely, mean decrease accuracy 
(MDA) and Gini Index, were used, and SHapley Additive 
exPlanations were utilized to visualize the significance of 
the features. For training the model, the dataset is divided 
into K equal parts (K =  6), and the model that is trained is 
verified by utilizing the remaining dataset. Following the 
data pre-processing, various models for machine learning 
are established utilizing the hyperparameter optimization 
approach with cross-validation. Hyperparameter tun-
ing methods for finding the optimal values for a model’s 
parameters include grid search and random search. Finally, 
a total of fifteen ML methods were used to screen metal 
ion concentrations, analyze their impact on the charge 
variant profile, and estimate the optimal concentrations.

Cell line and reagents

IgG1 protein (Trastuzumab) producing CHO-GS(-/-) cell 
line was used and was provided by an industrial collabo-
rator (Imgenex®, Bhubaneswar, India). The cell line is 
suitable for growth in glutamine-free media, once trans-
fected with the vector containing glutamine synthetase 
gene (GS). A commercially available proprietary cell 
culture medium CD CHO® (Gibco™—12,490–001) was 
used as a basal medium, and Efficient Feed B medium 
(Gibco™—A1245605) as a medium feed supplement 
for fed-batch culture. Metal salts, copper (II) chloride 
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dihydrate, magnesium sulfate heptahydrate, manganese 
chloride, iron sulfate heptahydrate, cobalt sulfate heptahy-
drate, zinc chloride, and nickel (II) chloride hexahydrate 
were purchased from Merck (Kenilworth, NJ, USA).

Cell culture

Working cell bank (WCB) vial was revived from liquid 
nitrogen (− 196 °C) for 2 min at 37 °C in the water bath. As 
cells were thawed, immediately transferred into a freshly 
prepared CD CHO basal medium. Cells were passaged and 
maintained at least 2–3 times in basal media in a shaker flask 
(SF) after being well acclimated before the main experi-
ment. Cell culture propagated in 125-mL shaker flasks (SF-
125) having a working volume of 30 mL was incubated in 

a humidified incubator shaker (New Brunswick™ S41i—
Eppendorf), at 5%  CO2 concentration at 37 °C and 110 rpm 
agitation. Culture flasks were seeded with the initial cell 
density of 0.5 ×  106 cells/mL and were in both batch and 
fed-batch mode.

Batch mode was operated for 6 days, and these data were 
utilized for feature selection and regression model develop-
ment while fed-batch data were used for validation of opti-
mized media with respect to the control (basal medium). 
Fed-batch mode operated for 10 days with 10% of efficient 
feed B supplemented every alternate day starting from day 
3rd to day 9th. Samples were collected every alternate day 
before the addition of feed and analyzed for various culture 
metabolites, cell count, and viability. Flasks were harvested 
on day 6 of culture for batch and day 10 for fed-batch, after 

Fig. 1  Proposed machine learning framework for prediction of critical quality attributes
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centrifugation (Eppendorf – 5810R) at 5000 rpm and 25 
°C. Harvest (spent medium) was further analyzed for titer, 
charge variants, and low and high molecular variants.

Trypan Blue exclusion method was used with a hemocy-
tometer to determine cell viability and count. This device is 
based on the cell membrane’s structural integrity. In contrast 
to dead cells, which stain and appear dark, living cells have 
a well-integrated membrane that prevents dye from entering 
and prevents staining (Strober 2001).

Medium formulations

Media formulations were prepared by supplementing the 
various combinations of metal salts into the basal medium. 
Previous studies have also demonstrated the significance of 
metal ions in determining the CQAs. Concentrations of the 
metal ions (Cu, Fe, Zn, Mn, Mg, Co, and Ni) were based on 
previous literature (Gangwar et al. 2021), shown in parts per 
million (ppm) and summarized in Table 1.

Analytical methods

Culture harvest was purified by preparative Protein A chro-
matography using an Akta Avant (GE Healthcare, Sweden) 
system. Mobile phases consisted of equilibration buffer 
(50 mM phosphate and 150 mM NaCl, pH 7.5) and elution 
buffer (100 mM glycine, pH 3.0). The purification protocol 
was followed as per the established procedure (Rathore and 
Narnaware 2022).

Protein A eluted fractions were further analyzed for 
charge heterogeneity using cation-exchange high-perfor-
mance liquid chromatography (CE‐HPLC). The analysis 
was performed on a Thermo Fisher RSLC system (Thermo 
Fisher Scientific, Waltham, 8 USA), having a DAD detector. 
The CEX method used to evaluate charge variants consisted 
of a linear gradient of mobile phase A (15 mM sodium phos-
phate, pH 6.2) and mobile phase B (150 mm sodium phos-
phate, pH 6.2) with 0.05% sodium azide. The separation was 
performed on a MAbPaC SCX‐10RS column (4.6 × 250 mm, 
Thermo Fisher Scientific, Waltham, USA) at a flow rate of 

0.8 mL/min and 28 °C, and elution was monitored using 
UV absorbance at 280 nm. The reference CEX profile is 
provided in Fig. S1.

For estimating metal ions, inductively coupled plasma 
mass spectrometry (ICP-MS, Agilent Technologies, USA) 
was used. It combines a high-temperature ICP source with 
a mass spectrometer. The ICP ionizes the atoms of the ele-
ments in the sample. These ions are then separated and 
detected by the mass spectrometer.

Dataset

The screening dataset was generated by culturing cells in 
batch mode using various media formulations and prepared 
as suggested in the previous section. Charge variants, i.e., 
acidic (Y1) and basic (Y2) variant amounts in purified mAb 
were taken as target variables. Media formulations having 
different concentrations of metal ions were used as predictor 
variables. A total of seven metal ions were taken as features 
or predictors, while a total of 34 formulations used in the 
experiment were used as observations. Finally, the features 
with the corresponding targets were fed as an input to the 
feature selection framework. The dataset (Table S1) and 
variables are explained in Table 1.

Machine learning methods

Feature selection based on various biostatistics tools and ML 
approaches were discussed in order to identify the features 
that have significant effects on the target variables. Then, 
medium optimization was performed to get the optimum 
concentration of Fe and Zn to achieve the desired charge 
variant profile. Finally, different ML regressor models on 
featured variables were used to evaluate the performance of 
various models for the prediction of charge variants.

Feature ranking

The possibility of a feature being connected to the target 
variable was effectively quantified by statistical methods, 

Table 1  Summary of the dataset 
used in this study

Features Abbreviations Variable type Measurements Range

Copper Cu Continuous [X1] ppm [0, 1, 2]
Iron Fe Continuous [X2] ppm [1, 13, 25]
Zinc Zn Continuous [X3] ppm [0.39, 5.2, 10.0]
Manganese Mn Continuous [X4] ppm [0.05, 0.78, 1.5]
Magnesium Mg Continuous [X5] ppm [19.5, 39.75, 60.00]
Cobalt Co Continuous [X6] ppm [0.06, 1.03, 2.00]
Nickel Ni Continuous [X7] ppm [0, 1, 2]
Acidic charge variant (target) Acidic Continuous [Y1] Percentage (%) [16.3–28.66]
Basic charge variants (target) Basic Continuous [Y2] Percentage (%) [10.06–14.5]
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with the coefficients produced by the Pearson correlation 
coefficient (PCC). Using these scores, we were able to 
construct a ranking of the features, which is based on their 
degree of association with the target variable. Features with 
higher scores indicate a stronger relationship with the target, 
while those with lower scores exhibit a weaker connection 
(Sedgwick 2012; Obilor and Amadi 2018). This approach 
allows us to effectively identify and prioritize features based 
on their relevance to the target variable. Pearson correlation 
matrix was generated using the “seaborn (version: 0.12.2),” 
a Python library.

For ML feature ranking, we focused on embedded meth-
ods such as random forests and gradient-boosting regres-
sors. The “RandomForestRegressor” and “GradientBoost-
ingRegressor” functions from the “ensemble” module of the 
“scikit-learn (version:1.3.0)” library were used respectively 
for ML-based feature selection. Random forests provides 
two feature ranking techniques: permutation-based feature 
importance or mean decrease in accuracy (Altmann et al. 
2010) (“permutation_importance” function in the “inspec-
tion” module of the “scikit-learn” library) and Gini impor-
tance or mean impurity reduction (Menze et al. 2009; Nem-
brini et al. 2018) (inbuilt attribute “feature_importances” in 
“RandomForestRegressor” function of “ensemble” module 
in “scikit-learn” library). SHAP (SHapley Additive exPla-
nations) is a game theoretic approach to explain the output 
of any machine learning model (Lundberg and Lee 2017). 
We have used SHAP to explain the contribution of features.

Model development

Supervised learning models were developed for the predic-
tion of charge variant composition of mAbs produced in 
various media formulations after the culturing of cells. Sev-
eral ML techniques such as linear regression (LR), lasso 
regression, ridge regression, lasso least angle regression 
(LLA), Bayesian ridge (BR), decision tree regressor (DT), 
Huber regressor, support vector machine (SVR), random 
forest regressor (RF), CatBoost regressor, extreme gradient 
boosting (XGBoost), gradient boosting regressor (GBR), 
elastic net, extra tree regressor (ET), and K neighbors regres-
sor (KNN) were employed.

Medium optimization

One of the ML-based boosting techniques, the gradient-
boosting regressor (GBR), was used to optimize media 
components. The “GradientBoostingRegressor” from the 
“ensemble” module of the “scikit-learn” library was used 
to construct the ML model, where the medium components 
and charge variants were employed as the explanator and 
the objective variables, respectively. Fivefold cross-vali-
dation was performed to search for hyperparameters using 

both grid and randomized search. “GridSearchCV” in the 
“model_selection” module of the “scikit-learn” library was 
used for grid search of hyperparameter tunning while “Rand-
omizedSearchCV” of the same module and library was used 
for randomized search. The hyperparameters were searched 
for “learning_rate” from 0.001 to 0.5 in increments of 0.005, 
“max_depth” from 2 to 5 in increments of 1, and n_estima-
tors at 300 and 400, respectively. The other hyperparameters 
were used by default.

Performance measure

To evaluate prediction accuracy, various metrics were used, 
including mean absolute error (MAE), mean squared error 
(MSE), root mean square error (RMSE), coefficient of 
determination (R-sqr), and adjusted R-squared (Adj R-sqr). 
The “mean_absolute_error,” “mean_squared_error,” and 
“r2_score” functions from the “metrics” module within the 
“scikit-learn” library were employed to calculate mean abso-
lute error (MAE), mean squared error (MSE), and coefficient 
of determination (R2), respectively. Root mean squared error 
(RMSE) was computed by calculating the square root of 
MSE using the “sqrt” function from the “numpy” library. 
Adjusted R2 (Adj_R2) was calculated by using R2, number 
of features (k), and number of observations (n) using the 
following formula:

A prediction accuracy assessment of the machine learn-
ing models was conducted through a sixfold cross-validation 
approach.

Results

Datasets were analyzed, and models were developed using 
Python (version: 3.9.10). Excel (version 2309, Microsoft 
Office 365) and Origin® were used for primary data storage 
and plotting some graphs, respectively.

Culture profile and CQAs of mAb in basal medium

The CHO cell line was grown in suspension culture in a 
shaker flask in fed-batch mode to evaluate the charge vari-
ant profile of the basal (control) medium. The initial cell 
concentration was determined at (0.5 ± 0.05) ×  106 cells/mL. 
Shaker flask (SF-125) cultures were run in duplicates in the 
fed-batch mode for 10 days, with 10% of efficient feed sup-
plementation on alternate days from 3rd day to 9th day. The 
charge variant profile of mAb was evaluated after harvest 
collection at the end of culture, i.e., harvest at day 10 and 

Adj_R2 = 1 −
(1 − r

2)(n − 1)

(n − k − 1)
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acidic (17.64 ± 1.07)% and basic variants (12.86 ± 0.43)% 
were estimated. The charge variant profile was compared 
to that of the innovator molecule, acidic (24.97 ± 0.54)% 
(Fig. 2A) and basic (11.41 ± 1.44)% variants (Fig. 2B). 
Acidic variant composition were found to be significantly 
lower (p < 0.02, unpaired t-test assuming equal variance) in 
the basal medium when compared to the innovator (Her-
ceptin®). The basic variant differences were relatively non-
significant when compared to the innovator product (p > 0.3, 
unpaired t-test assuming equal variance).

Next, the impact of metal ions (Cu, Fe, Zn, Mn, Mg, Co, and 
Ni) on charge variant profile of the resulting product was exam-
ined. Various media formulations were generated as described 
in Section dataset of material and methods and were subjected 
to culture in batch mode to evaluate the effect of supplements 
on charge variants. Formulation composition and the corre-
sponding charge variant profile have been provided (Table S1).

Feature ranking

Cell culture was performed in 34 medium formulations, and 
the temporal changes in cell culture were measured at 24-h 
or 48-h intervals in duplicates (N = 2). For feature ranking, 
both traditional univariate biostatistics analyses followed by 
a ML analysis were employed. Figures 3 and 4 illustrate the 
outcomes for feature ranking of the acidic and basic charge 
variations, respectively.

Filter-based technique, i.e., Pearson’s correlation coef-
ficient (or Pearson product-moment correlation coefficient, 
PCC), indicates a linear correlation between elements of two 
lists. The absolute value of PCC produces a high value (close 
to 1) if linear correlation is present, and a low value (close to 
0) if not (Sedgwick 2012). Based on the correlation matrix, 
Fe (PCC =  + 0.55) exhibited maximum positive correlation 
with acidic variants followed by Cu and Mn. While copper is 
associated negatively with acidic variants, Mn is positively 
correlated but to a lesser extent (Fig. 3a). In the case of basic 

variants, Zn (PCC =  − 0.72) exhibited maximum and nega-
tive correlation (Fig. 4a), followed by Ni (Fig. 4a).

For ML feature ranking, we focused on embedded-
based methods for feature selection. Random forests (RF) 
and boosting techniques like gradient boost decision trees 
(GBDT) were used (Fig. S3). The “Gini method” was also 
evaluated with the addition of a random variable, feature 
scores above the score of random features were considered 
significant and taken into further consideration. In the case 
of acidic variants, Fe, Mn, and Cu were the best perform-
ers with scores of 0.3, 0.19, and 0.16, respectively, which 
are above the score of random/dummy features, i.e., 0.12 
(Fig. 3b). In the case of basic variants, Zn and Ni exhibit a 
prominent role (Fig. 4).

SHapley Additive exPlanations (SHAP) is a game theo-
retic approach to explain the output of any ML model. The 
basic Shapley values from game theory and their related 
extension are used to correlate optimal credit allocation with 
local feature explanations (Lundberg and Lee 2017; Lund-
berg et al. 2018, 2020; Mitchell et al. 2022). Waterfall plots 
(Figs. 3c, d and 4c, d) are designed to display explanations 
for individual predictions, so they expect a single row of an 
explanation object (single observation) as input. The bottom 
of a waterfall plot starts at the expected value of the model 
output, and then, each row shows how the positive (red) 
or negative (blue) contribution of each feature moves the 
value from the expected model output over the background 
dataset to the model output for this prediction. Waterfall plot 
(Fig. 3c) SHAP explains the random forest, regressor model 
in terms of expected model outcome, i.e., E[f(x)] = 22.087 is 
the average predicted outcome for the model across all the 
observations. The Y-axis represents the actual feature value 
for this observation. f(x) = 18.94 represents the outcome for 
this specific observation. SHAP values (blue and red arrows) 
represent the contribution of each component to the out-
come of the respective observation, i.e., f(x) with respect 
to the average. In this observation, Fe at the concentration 

Fig. 2  Comparison of charge 
variant profile of (A) acidic 
and (B) basic variants with 
respect to innovator molecule 
(N = 2) (*p = 0.05, **p = 0.01, 
***p = 0.001)
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25 ppm contributes positively (+ 0.97 units) to increasing 
acidic variants while Cu at conc 2 ppm decreases acidic vari-
ants (− 0.97 units). In another observation (Fig. 3d) where 
Fe supplementation is at lower end (1 ppm) acidic variants 
reduces (− 1.74 units) with respect to expected value, i.e., 
E[f(x)] = 22.087.

The absolute mean SHAP value (Figs. 3e and 4e) is the 
sum of all SHAP values for a particular feature across all the 

observations. Hence, features having max value contribute 
most significantly to the model. In this study, Fe exhibits 
the most significant impact on acidic variants (Fig. 3e) and 
Zn on basic variants (Fig. 4e). The bees warm plot (Fig. 3f) 
represents the plot of all individual SHAP values, illustrat-
ing not only the extent of contribution of each feature but 
also the positive or negative impact on the model outcome. 
For acidic variants, positive correlation with Fe and Mn 

Fig. 3  Feature ranking for acidic variants (N = 2). a Pearson’s correlation coefficient (PCC), b Gini feature ranking, c waterfall plot (random 
observation 1), d waterfall plot (random observation 2), e absolute mean SHAP value, and f bee swarm plot
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concentrations and negative correlation with Cu concentra-
tion are observed (Fig. 3f). For basic variants, negative cor-
relation with Zn concentration is observed (Fig. 4f).

When the p-value is less than 0.05, it indicates that the 
null hypothesis is not significant, which leads to the rejec-
tion of the null hypothesis. On the other hand, when the 
p-value is more than 0.05, the null hypothesis is maintained, 
and a p-value of 0.01 provides more compelling evidence 

for the rejection of the null hypothesis. From Fig. 5, it is 
evident that Fe (corr_coef = 0.546 and p-value = 0.001) 
demonstrates substantial correlation and is statistically 
significant, indicating a robust relationship for acidic 
charge variant. Conversely, Zn (corr_coef =  − 0.217 and 
p-value = 0.217), Ni (corr_coef = 0.222 and p-value = 0.207), 
Co (corr_coef =  − 0.204 and p-value = 0.247), Mg (corr_
coef =  − 0.073 and p-value = 0.68), Mn (corr_coef = 0.246 

Fig. 4  Feature selection basic variants (N = 2). a Pearson’s correlation coefficient (PCC), b Gini feature ranking, c waterfall plot (random obser-
vation 1), d Waterfall plot (random observation 2), e absolute mean SHAP value, and f bee swarm plot
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Fig. 5  Spearman correlation scatter plots with linear regression (blue line) with its confidence interval (blue area) for both acidic and basic 
charge variants with correlation coefficient (corr_coef) and p-value
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and p-value = 0.161) exhibits correlation with varying 
strengths, but none of these relationships reach statis-
tical significance for acidic charge variant. Cu (corr_
coef =  − 0.331 and p-value = 0.056) is suggesting a moderate 
negative correlation, while its p-value of 0.056 approaches 
significance but does not meet the conventional threshold 
and purpose of the objective. Similarly, for the basic charge 
variant, Zn (corr_coef =  − 0.721 and p-value = 0.000) and 
Fe (corr_coef = 0.385 and p-value = 0.024) exhibit statisti-
cal significant.

Prediction of charge variants using featured 
variables

Fe with Pearson’s correlation coefficient (PCC =  + 0.55) and 
Zn (PCC =  − 0.72) were further used as the potent modu-
lators for acidic and basic variants, respectively. Several 
culture flasks were run with varying concentrations of Fe 
and Zn to make an ML predictive model for the charge vari-
ant profile. A total of 42 experimental runs having differ-
ent combinations of Fe and Zn were generated. To evaluate 
the robustness and generalizability of the proposed frame-
work, we utilized these 42 data for testing purposes. Fig. S4 
depicts the acidic and basic variants with respect to Fe and 
Zn, respectively.

Starting with the whole dataset D (Table S2), we gen-
erated a collection D = {

{

D
tr

i
,Dts

i

}

}
N

i=1
 of N randomly 

generated training/test partitions D = Dtr

i

⋃

D
ts

i
 with test 

fraction of 0.2 wrt to whole dataset. On the N training por-
tions, 

{

D
tr

i

}N

i=1
 , we employed several supervised learning 

algorithms to predict the charge variants, and their per-
formances are summarized in Table 2. Tree-based regres-
sion models, i.e., random forest (Breiman 2001), decision 
tree (Podgorelec et al. 2002; Kotsiantis 2013), extra tree 

regressor (Martiello Mastelini et al. 2023; Basu 2020), and 
boosting-based algorithms such as CatBoost regressor (Han-
cock and Khoshgoftaar 2020), Xgboost, i.e., extreme gradi-
ent boosting (Babajide Mustapha and Saeed 2016), gradient 
boosting regressor (Li et al. 2018) outperformed the other 
regressors. While linear models with regularization (lasso, 
ridge) (Ranstam and Cook 2016; Zou and Hastie 2005), elas-
tic net (Zou and Hastie 2005), and support vector regressors 
(Smola et al. 2004) exhibited moderate performance. A sum-
mary of performance metrics (R2, Adj-R2) for all evaluated 
models is provided in Table 2. All model scores were cross 
validated with validation set splitting (cv = 6), and random 
shuffle, the mean R2, and its standard deviation were evalu-
ated to get the spread of the coefficient of determination.

Figure 6 illustrates the box plots of fifteen different 
machine learning techniques in terms of mean absolute error. 
For each machine learning approach, these values indicate 
the average absolute difference between the values that were 
predicted and the actually obtained. Lower MAE values are 
indicative of greater performance as they suggest that the 
model’s predictions are more consistent with the actual val-
ues. Based on the MAE values that have been provided, it is 
observed that XGBoost, GBR, and DT have the lowest MAE 
value, which indicates that their performance is considerably 
superior to that of other strategies. Huber regression has 
the highest MAE scores, which indicates that the perfor-
mance is comparatively low. Most of the models used the 
“scikit-learn” library with their respective modules except 
the boosting techniques (Xgboost, catboot, etc.) which have 
their specific libraries. We evaluated models with both fea-
ture scaling and without feature scaling, depending on the 
requirements of the models. Observed vs. predicted (error 
analysis) plot and residual plot are shown in Fig. 7A, B using 
the random forest as a regressor (R2 test = 0.955).

Table 2  Summary of evaluation 
matrices of regression model: 
mean absolute error (MAE), 
mean squared error (MSE), root 
mean squared error (RMSE), 
coefficient of determination 
(R2), Adj-R2, mean R2 after 
cross-validation, and standard 
deviation of R2

Model MSE RMSE R2
Adj_R2 Mean R2 Stdv R2

XGBoost 0.88 0.94 0.93 0.92 0.9199 0.0410
GBR 0.87 0.93 0.93 0.92 0.9288 0.0441
DT 0.88 0.94 0.93 0.92 0.9252 0.0450
CatBoost regressor 0.88 0.94 0.93 0.92 0.8861 0.0594
SVR 0.86 0.93 0.93 0.92 0.7664 0.1643
ET 1.0 1.0 0.92 0.91 0.9057 0.0842
Elastic net 0.97 0.99 0.92 0.91 0.8343 0.0854
RF 0.91 0.95 0.92 0.91 0.9151 0.0455
BRR 1.08 1.04 0.91 0.9 0.8239 0.1045
LLAR 1.12 1.06 0.91 0.9 0.8204 0.1092
Lasso 1.08 1.04 0.91 0.9 0.8231 0.1041
Ridge regression 1.12 1.06 0.91 0.9 0.8205 0.1091
LR 1.12 1.06 0.91 0.9 0.8204 0.1092
KNN 1.24 1.11 0.89 0.88 0.8036 0.3132
Huber 1.43 1.19 0.88 0.87 0.8441 0.0768
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In Fig. 7A–D, a comparison of the prediction error and 
residuals for two different models (XGBoost and random 
forest regressor) fitted on our dataset. XGBoost model shows 

slightly higher values of R2 scores compared to the random 
forest model. It can be inferred that the XGBoost regression 
has less residual errors than random forest model. Random 
forest (R2: 0.9151 ± 0.0455) and gradient boost regressor 
(R2: 0.9288 ± 0.0441) were among the top performers based 
on the mean coefficient of determination (R2) scores.

Optimization of cell culture medium

From the ML model constructed with the initial training data-
set, approximately 625 simulated medium candidate formu-
lations were obtained by altering the concentrations of the 
medium components across numerous variations. By inputting 
the 625 media candidates into the ML model, the relative cell 
culture, represented by charge variants, was predicted. The gra-
dient boosting decision tree (GBDT) model was used to predict 
the medium combinations leading to a required charge vari-
ant, i.e., equivalence to the innovator molecule. Hyperparam-
eter tuning was performed as per the parameters described in 
machine learning methods subsection media optimization using 
both grid and randomized search. Both approaches delivered 
comparable results, but grid search is computationally intensive 
and takes a longer time in comparison to randomized search.

Fig. 6  Box plots comparing the performance of different machine 
learning techniques in terms of mean absolute error

Fig. 7  Prediction with extreme gradient boost regressor: (A) observed (y) vs. predicted (ŷ) (error) plot; (B) residual plot, prediction with random 
forest; (C) observed (y) vs predicted (ŷ) (error) plot; (D) residual plot
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The medium combinations that correspond to the 
required target of the innovator charge variant profile, i.e., 
(24.97 ± 0.54)% acidic and (11.41 ± 1.44)% basic variants, 
were screened. Simulated media candidates predicting 
charge variant composition outside these ranges were fil-
tered out. Based on the model prediction, Fe concentration 
between 10 and 25 ppm and Zn concentration between 5.5 
and 12.5 ppm was estimated. Experimental validation was 
performed with 20 ppm of Fe and 5.5 ppm of Zn as existing 
data suggest that higher concentrations do not significantly 
impact charge variant composition. The control flask and 
optimized medium cell culture flask were cultured in fed-
batch mode as described in the cell culture subsection of the 
material and methods section.

Effects of supplements on culture profile and antibody 
production were evaluated by comparing the charge variant 
profiles for the control and treated shaker flasks with innovator 
(Fig. 8 and Table S3). Overall viability in both cases was simi-
lar but the viable cell concentration (VCC) was higher in con-
trol compared to treated with peak VCC for control (~ 10 ×  106 
cell/mL) and treated (~ 8.9 ×  106 cell/mL) (Fig. 8C). The same 
was reflected in IvCC (Fig. 8E), and hence, decreased titer 
(~ 7%) (Fig. 8D) was also observed in the treated culture, 
which may be attributed to an increase in the oxidative envi-
ronment (Handlogten et al. 2018). The slight decrease in titer 
is mainly attributed to decrease in VCC as specific productiv-
ity (qP) (Fig. 8F) was similar in both the cases.

Discussion

Developing and optimizing cell culture media is a tedious 
and time-consuming process, compared to normal biochemi-
cal reactions due to the complex interaction of cells with 
media components. Media components are known to mod-
ulate critical quality attributes (CQAs) like glycosylation 
and charge variants (Xie et al. 2016; Rathore et al. 2017; 
Miao et al. 2017; Gangwar et al. 2021, 2022; Romanova 
et al. 2022; Zhang et al. 2023). In this study, we have dem-
onstrated the application of an ML-based approach involving 
feature selection, prediction, and optimization to identify 
metal ions and their concentrations for achieving charge 
variant composition of the innovator product. Compared to 
our previous studies (Gangwar et al. 2021, 2022) regarding 
the optimization of metal ions using design of experiments 
(DOE), machine learning-based optimization serves some 
additional advantages. These include better prediction capa-
bilities of ML models (R2 = 0.95) compared to conventional 
statistical analysis (R2 = 0.85). DOE analysis often restricts 
the concentration range of evaluating components as per the 
design matrix, while in ML model training, there are no such 
restrictions. This is quite helpful in the case of cell culture 
media component evaluation where freedom of manipulation 
of the component’s concentration is often restricted because 
of many limitations. DOE has another constraint related to 
the number of subjects that can be screened, evaluated, 

Fig. 8  Optimized medium cell culture and charge variant profile. A Acidic variants (%). B Basic variants (%). C Viability (upper) and VCC 
(lower). D Titer (mg/L). E Integral of viable cell density (IVCC). F Specific productivity (qP) (N = 2) (*p = 0.05, **p = 0.01, ***p = 0.001)
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and optimized while ML can handle hundreds of variables 
smoothly.

The charge variant profile of in-house produced mAb 
was quite different from the innovator molecule with the 
acidic and basic variant compositions in the innovator prod-
uct (Herceptin®) of 24.97 ± 0.54% and 11.41 ± 1.44% and 
for the in-house product 17.64 ± 1.07% and 12.86 ± 0.43%, 
respectively. Seven metal ions (Cu, Fe, Zn, Mn, Mg, Co, and 
Ni) used in the screening study were analyzed and short-
listed based on ML-based feature selection approaches. In 
the case of acidic variants, Fe, Mn, and Cu exhibited the 
most significant impact with Fe and Mn promoting the for-
mation of acidic variants and Cu inhibiting the formation 
of the acidic variants. For basic variants, Zn and Ni have 
the most significant impact with Ni exhibiting a positive 
and Zn negative correlation with % basic variants. The opti-
mized concentration of Fe and Zn as per the gradient boost 
decision tree (GBDT) algorithm was estimated as 20 ppm 
and 5.5 ppm, respectively. With the optimized concentra-
tion of Fe and Zn, we were able to get charge variant pro-
files with acidic variants (25.1 ± 0.31)% and basic variants 
(13.5 ± 0.30)%. The charge variant profile was quite close to 
the innovator molecule with no significant difference, acidic 
(p = 0.815, two-sided t-test assuming equal variance) and 
basic variants (p = 0.185, two-sided t-test assuming equal 
variance) concerning the innovator molecule.

Fe is one of the crucial media components required for 
the growth and proper functioning of cells. Various hemo-
proteins and nonheme proteins depend on Fe for their proper 
functioning, which are involved in oxygen metabolism (oxi-
dase, peroxidase, catalase, etc.), key reactions of energy 
metabolism mitochondrial aconitase, and [Fe-S] proteins of 
electron transport system (Ponka 1999). Its optimum con-
centration is important not only to get a favorable viable 
cell count (peak VCC) but also for protein production (Xu 
et al. 2018). Excess Fe has been linked to deleterious effects 
because of the formation of reactive oxygen species (ROS) 
which can cause damage to cells (Ponka 1999). Indeed, 
higher Fe concentrations beyond a point result in reduced 
titer (Fig. 8D), primarily due to a decrease in the overall 
integral of viable cell count (IVCC) but without significant 
change in specific productivity of cell (qp) (Fig. 8F). Other 
quality attributes like aggregation did not seem to be sig-
nificantly impacted in the experiments performed (Fig. S2).

Zn is also an important element in cytoprotectant pro-
cesses and regulates energy metabolism (Yang et al. 2017). 
It is an important regulator of caspase-dependent apoptosis 
of cells and its optimum amount in the medium is suggested 
to suppress apoptosis. Again, more than the optimum con-
centration of Zn can induce cell death either by apoptosis or 
necrosis (Truong-Tran et al. 2001). Zn deficiency in media 
may also depress G1/S cell cycle progression in certain cell 
types (Wong et al. 2007).

Screening and optimization of media components have a 
significant impact on process economics and for a biosimi-
lar manufacturer, on biosimilarity of the resulting product. 
While conventional methods are used regularly, the ML 
approach offers a significantly more efficient screening of 
media components. In this study, we explore the applicabil-
ity of ML for screening of metal ions for their effect on the 
charge variant profile, identification of the metal ions that 
impact the most and estimating their optimal concentrations. 
Feature ranking using random forest shortlisted iron as a 
candidate for modulating acidic variant composition and 
Zn for basic variant composition. While small variations 
in the cell culture profile were observed in terms of viable 
cell density and titer, there were hardly any variations in 
terms of specific productivity (qP), and no aggregation was 
observed in any culture control or supplemented. The pro-
posed approach would be of interest to those working on the 
production of biosimilar products or innovators looking for 
an end-to-end ML approach from media component screen-
ing and predicting CQAs to optimization.

However, the proposed study exhibits strengths in 
machine learning applications but also encounters limita-
tions such as dataset specificity, implementation challenges, 
and decision-making processes. To overcome these chal-
lenges, our study focused on conducting a thorough exami-
nation and strategic feature selection, then assessing the 
models using various classification approaches. Acknowl-
edging the current limitation of evaluating a relatively small 
dataset, it is essential that validation efforts be expanded to 
significantly larger. To improve scalability and robustness, 
especially on bigger datasets, we prioritize hyperparameter 
tuning and optimization algorithm exploration, fine-tuning 
learning rate, tree depth, and regularization. In the future, 
we aim to explore the integration of active learning to 
improve the flexibility of our models, offering the potential 
to enhanced adaptability and efficiency in training.
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