
Vol.:(0123456789)

Applied Microbiology and Biotechnology         (2024) 108:300  
https://doi.org/10.1007/s00253-024-13140-3

GENOMICS, TRANSCRIPTOMICS, PROTEOMICS

Structural characteristics of gut microbiota in longevity 
from Changshou town, Hubei, China

Xu Ai1 · Yu Liu1 · Jinrong Shi1 · Xiongwei Xie1 · Linzi Li1 · Rui Duan1 · Yongling Lv2 · Kai Xiong2 · Yuanxin Miao3 · 
Yonglian Zhang1 

Received: 26 October 2023 / Revised: 26 March 2024 / Accepted: 3 April 2024 
© The Author(s) 2024

Abstract 
The gut microbiota (GM) and its potential functions play a crucial role in maintaining host health and longevity. The aim 
of this study was to investigate the potential relationship between GM and longevity. We collected fecal samples from 92 
healthy volunteers (middle-aged and elderly: 43–79 years old; longevity: ≥ 90 years old) from Changshou Town, Zhongxiang 
City, Hubei, China. In addition, we collected samples from 30 healthy middle-aged and elderly controls (aged 51–70 years) 
from Wuhan, Hubei. The 16S rDNA V3 + V4 region of the fecal samples was sequenced using high-throughput sequencing 
technology. Diversity analysis results showed that the elderly group with longevity and the elderly group with low body 
mass index (BMI) exhibited higher α diversity. However, no significant difference was observed in β diversity. The results 
of the microbiome composition indicate that Firmicutes, Proteobacteria, and Bacteroidota are the core phyla in all groups. 
Compared to younger elderly individuals, Akkermansia and Lactobacillus are significantly enriched in the long-lived elderly 
group, while Megamonas is significantly reduced. In addition, a high abundance of Akkermansia is a significant characteristic 
of elderly populations with low BMI values. Furthermore, the functional prediction results showed that the elderly longevity 
group had higher abilities in short-chain fatty acid metabolism, amino acid metabolism, and xenobiotic biodegradation. Taken 
together, our study provides characteristic information on GM in the long-lived elderly population in Changshou Town. This 
study can serve as a valuable addition to the current research on age-related GM.

Key points
• The gut microbiota of elderly individuals with longevity and low BMI exhibit higher alpha diversity
• Gut microbiota diversity did not differ significantly between genders in the elderly population
• Several potentially beneficial bacteria (e.g., Akkermansia and Lactobacillus) are enriched in long-lived individuals
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Introduction

The social problems brought about by population aging are 
increasingly evident. How to delay aging, alleviate, and 
maintain the health of the elderly has become the focus of 
the times (Chedraui and Pérez-López 2013; Bao et al. 2022; 
Wang et al. 2022). Although thanks to today’s medical tech-
nology, human life expectancy has increased, the maximum 
human lifespan seems to be limited by natural conditions 
(Dong et al. 2016; Caruso et al. 2022). It is well known that 
aging is closely related to various factors such as genetics 
and the environment. The Human Genome Project (HMP) 
has confirmed the existence of numerous genes associated 
with lifespan extension. However, it appears that genetic 
factors only account for 20–40% of the overall influence on 
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lifespan, with the majority being attributed to environmen-
tal factors (Finlay et al. 2019; van den Berg et al. 2019; 
Wu et al. 2021a). With the implementation of the HMP, 
scientists studying longevity and aging have begun to link 
longevity genes with the microbiome. The gut microbiota 
(GM), which is related to the development of various dis-
eases, has become a hot topic in this field. Recent review 
summarizes the important role played by GM in the aging 
process (Shi et al. 2022; Li and Roy 2023). However, the 
biological mechanisms of aging are complex and unclear. 
Therefore, further research on the GM is still needed.

Research on the longevity of various model organisms 
has shown that the GM is involved in regulating the host’s 
lifespan. In the pursuit of understanding the mechanisms 
of longevity, organisms that are easy to breed and have a 
shorter lifespan have emerged as the most suitable choice. 
Drosophila, as a classic model organism, is frequently 
utilized in genetic research. The research results indicate 
that metabolites derived from GM may activate the host’s 
immune system, thereby influencing the proliferation of 
intestinal stem cells and lifespan (Fan et al. 2018; Onuma 
et al. 2023). Caenorhabditis elegans is a simple organism 
that feeds on bacteria and reproduces rapidly. It is widely 
used in various disease models and studies on microbiota-
related mechanisms. Gomez et al.’s (2012) research shows 
that specific probiotic strains can influence the lifespan of 
C. elegans by preventing intestinal infections. The finding 
has also been validated in mouse models (Matsumoto et al. 
2011). Blind subterranean mole-rats and naked mole rats, 
both long-lived rodents, have shown unique compositions of 
GM that are associated with longevity (Debebe et al. 2017; 
Sibai et al. 2020). Interestingly, GM transplantation experi-
ments in fish have also confirmed the key role of GM in 
regulating host lifespan (Smith et al. 2017).

Life is the greatest creation of nature. During the process of 
childbirth, babies acquire microbiota from their mothers, but 
throughout the course of life from growth and development to 
aging and death, this microbiota acquired at birth can rarely 
persist (Ku et al. 2020; Santaella-Pascual et al. 2023; Walker 
and Hoyles 2023). The GM is a complex functional ecosystem 
that plays a crucial role in non-genetic factors that affect indi-
vidual health and lifespan, accompanying the host from birth 
to death. There have been numerous studies on the association 
of GM with various age-related diseases, and disruptions in the 
GM may lead to cardiovascular and cerebrovascular diseases, 
cancer, and other metabolic system-related diseases, thereby 
affecting the health and lifespan of the host (Hirata et al. 2020; 
Son and Kim 2022; Son and Cho 2023). Long-lived individu-
als have a lower incidence of inflammatory-related diseases 
and other potential infection-related diseases. This is asso-
ciated with the presence of certain microorganisms in their 
intestines that can produce anti-inflammatory and antioxidant 
activities (Park et al. 2015a; Sato et al. 2021). A study on the 

GM of long-lived individuals in Italy showed differences in the 
core gut bacteria among different age groups of elderly indi-
viduals (Biagi et al. 2016). Furthermore, a functional analysis 
of the GM of centenarians from Sardinia, Italy, indicated that 
they have a higher metabolic capacity for short-chain fatty 
acids (SCFA) (Wu et al. 2019). A large Mendelian randomi-
zation analysis by Gagnon et al. (2023) showed that Prevotella 
and Paraprevotella are enriched in long-lived individuals, but 
this result has not been confirmed in European populations. 
In addition, the enrichment of Akkermansia, Bifidobacterium, 
and Christensenellaceae in long-lived individuals may support 
healthy aging (Biagi et al. 2016; Badal et al. 2020).

Longevity, as one of the most complex phenotypes, has 
intricate and unclear biological mechanisms and is closely 
associated with GM (Li and Roy 2023; Miller et al. 2023; 
Coradduzza et al. 2023; Rahman et al. 2023). Although omics 
technologies have advanced the research on GM and longev-
ity, there is still a lack of substantial data support in this field 
to further validate the microbiota biomarkers associated with 
longevity (Coradduzza et al. 2023; Lee et al. 2023; Miller et al. 
2023; Qiao et al. 2023). Additionally, there are regional dif-
ferences in GM among long-lived populations. Therefore, it 
is particularly important to study the GM of long-lived elderly 
populations in different regions, which can not only improve 
the existing GM databases of long-lived populations but 
also help us decipher the unique microbiota composition of 
regional long-lived populations and further explore potential 
microbial factors related to longevity. Zhongxiang, Hubei, is 
a famous longevity town in China, but the GM characteristics 
related to longevity in this region have not been fully studied. 
In order to clarify the unique GM features of long-lived elderly 
individuals in this region, this study selected the elderly popu-
lation in Changshou Town as the research subjects, including 
long-lived individuals, their descendants living with them, and 
neighbors of the same age range from non-long-lived fami-
lies, with the control group being local healthy aborigines in 
Wuhan City. We obtained the GM composition and predicted 
potential functions of the elderly population living in Chang-
shou Town and compared them with healthy elderly individu-
als in nearby Wuhan City. In addition, we also conducted cor-
relation analysis between GM features and BMI (body mass 
index). This study comprehensively analyzes the character-
istics of GM among the elderly in the town of longevity and 
contributes to further research on GM in healthy aging.

Material and methods

Volunteer recruitment and experimental design

The volunteers recruited for this study are from Changshou 
Town, Zhongxiang, Hubei, China. Information such as age, 
gender, height, weight, medical history, and dietary habits 
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were obtained through questionnaires. Volunteers with a his-
tory of major diseases, chronic illnesses, excessive smok-
ing and drinking, dietary preferences, and recent medical 
care or antibiotic treatment within the past 3 months were 
excluded. Ultimately, 33 healthy elderly individuals (above 
90 years old) and their cohabiting offspring (34 individu-
als), as well as 25 non-long-lived neighbors of similar age 
to the offspring group (parents as non-long-lived elderly), 
were recruited. Additionally, fecal samples from 30 healthy 
volunteers from non-long-lived families in a nearby city 
(Wuhan) were selected as the control group. This study has 
been approved by the Ethics Committee of Jingmen Central 
Hospital (Approval No: [202302229]), and all participants 
have signed informed consent forms. The 122 recruited 
healthy volunteers were divided into four groups: Longevity 
Group (LG) — 33 long-lived participants; Offspring Group 
(OG) — 34 offspring of long-lived participants; Neighbor 
Group (NG) — 25 elderly individuals from non-long-lived 
families in Changshou Town; Control Group (CG) — 30 
elderly individuals from non-long-lived families in Wuhan 
City. In order to investigate the potential impact of gender 
differences on age-related GM, the four groups were fur-
ther divided into eight subgroups based on gender (Table 1). 
In addition, we found that the long-lived elderly group 
seemed to have lower BMI values, so we grouped all vol-
unteers according to their BMI values as follows: low BMI 
group (LB group): (n = 18, BMI ≤ 19), medium BMI group 
(MB group): (n = 79, 19 < BMI ≤ 25), and high BMI group 
(HB group): (n = 25, BMI > 25) (Table 2).

Sample collection and DNA extraction

Stool samples were collected by the participants themselves 
or their family members using a stool collection kit. 1–2 g 
of stool was then placed in a stool sample collection tube 
and immediately stored in a − 20 °C freezer. The samples 
were collected by the researchers within a week and stored 
at − 80 °C. Stool sample DNA extraction was performed using 
the HiPure Stool DNA Mini Kit (Magen, Guangzhou, China).

PCR amplification and 16S rRNA gene sequencing

The universal primers (341F: 5′-CCT ACG GGNGGC WGC 
AG-3′ and 805R: 5′-GAC TAC HVGGG TAT CTA ATC C-3′) 
targeting the V3-V4 hypervariable region of the 16S rRNA 
gene were used for PCR amplification. The PCR condi-
tions were as follows: 95 °C for 3 min, followed by 25 
cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 15 s, 
with a final extension at 72 °C for 5 min and storage at 
4 °C. The concentration of the PCR product purified with 
AMPure XT beads (Beckman Coulter Genomics, Danvers, 
MA, USA) was measured using Qubit Fluorometer (Inv-
itrogen, Carlsbad, CA, USA), and the product was finally 
checked by 1.5% agarose gel electrophoresis. The mixed 
PCR products were used for library construction, with 
sequencing adapters added and library index information 
recorded. The reaction conditions were as follows: pre-
denaturation at 98 °C for 45 s, followed by 8 cycles of 
98 °C for 15 s, 60 °C for 30 s, and 72 °C for 30 s, with a 
final extension at 72 °C for 10 min and storage at 4 °C. 
After PCR amplification, AMPure XP beads (Beckman, 
Brea, CA, USA) were used to remove primer dimers and 
small fragments. Prior to sequencing, the library concen-
tration was quantified and calculated using Qubit. The 
validated library was sequenced on the Illumina Miseq 
platform, generating 2 × 250 bp paired-end reads.

Table 1  Demographic characteristics of volunteers

LGM, longevity group male; LGF, longevity group female; OGM, offspring group male; OGF, offspring group female; NGM, neighbor group 
male; NGF, neighbor group female; CGM, control group male; CGF, control group female

Parameters Research group Control group

LG (n = 33) OG (n = 34) NG (n = 25) CG (n = 30)

Male/Female LGM (n = 18) LGF (n = 15) OGM (n = 23) OGF (n = 11) NGM (n = 11) NGF (n = 14) CGM (n = 15) CGF (n = 15)
Age 92.61 ± 2.59 93.13 ± 3.2 63.09 ± 8.11 61.27 ± 7.18 59.09 ± 5.72 56.14 ± 8.65 59.07 ± 5.52 60.47 ± 5.79
Height (m) 1.62 ± 0.07 1.53 ± 0.09 1.69 ± 0.05 1.63 ± 0.07 1.65 ± 0.07 1.62 ± 0.08 1.72 ± 0.11 1.6 ± 0.04
Weight (kg) 53.11 ± 7.93 46.22 ± 9.96 65.44 ± 0.24 59.44 ± 6.89 60.89 ± 7.26 61.22 ± 8.86 72.08 ± 1.06 56.41 ± 7.21
BMI (kg/m2) 20.28 ± 2.54 19.61 ± 2.88 22.96 ± 2.97 22.46 ± 2.19 22.43 ± 2.33 23.97 ± 2.8 24.31 ± 1.7 22.65 ± 3.09

Table 2  BMI grouping information

All values are presented as mean ± SD

LB (n = 18, 
BMI ≤ 19)

MB (n = 79, 
19 < BMI ≤ 25)

HB (25, 
BMI > 25)

BMI (kg/m2) 17.43 ± 1.61 22.12 ± 1.75 26.28 ± 0.8
Age 86.44 ± 13.25 70.06 ± 17.21 59.22 ± 6.98
Male/Female 8/10 45/34 14/11
Height (m) 1.56 ± 0.07 1.62 ± 0.08 1.64 ± 0.08
Weight (kg) 42.61 ± 6.11 52.19 ± 4.99 69.7 ± 7.43
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Bioinformatics analysis and statistical analysis

Trimming of the primers from the raw paired-end sequences 
was performed using the QIIME2 platform (Bolyen et al. 
2019). The default parameters of DADA2 (version 1.29.0) 
were used for subsequent quality filtering, merging, derep-
lication, denoising, and chimera removal (Callahan et al. 
2016). This process resulted in generating an output file 
that contains amplicon sequence variants (ASVs). The ASVs 
were then mapped to the Silva reference database (version 
138) for taxonomic classification annotation (Quast et al. 
2013). The evaluation of α-diversity indices, which include 
community richness, community diversity, and community 
evenness, was performed using QIIME2. The evaluation of 
β-diversity, which demonstrates differences in microbial 
community composition between different groups, was 
conducted using principal coordinate analysis (PCoA) with 
the Bray–Curtis, Abund-Jaccard, Unweighted Unifrac, and 
Weighted Unifrac algorithms. The default parameters of 
the PICRUSt2 software (Douglas et al. 2020) were used to 
generate predicted genomes based on the ASV file and to 
explore potential gene functions in the GM using the KEGG 
database (Kanehisa et al. 2023) for comparison. The com-
parison of potential gene functions among groups was per-
formed using the Kruskal–Wallis test. Linear discriminant 
analysis effect size (LEfSe) was used to identify bacterial 
taxa that were significantly different (log LDA score > 2 
and p < 0.05). R version 4.2.1 (R Foundation for Statistical 
Computing, Vienna, Austria) was used for visual analysis. 
All values are presented as mean ± standard deviation (SD). 
p < 0.05 indicates statistical significance.

Results

Gut microbiota diversity

We obtained 10,423,099 raw reads and 6,417,699 high-qual-
ity 16S rRNA gene sequences from 122 fecal samples, with 
an average of 52,604 sequences per sample. A total of 4317 
bacterial ASVs were identified, with each sample containing 
157–406 ASVs (Supplementary Table S1). These ASVs are 
taxonomically annotated into 15 phyla, 19 classes, 54 orders, 
92 families, and 284 genera. Venn diagram-based analysis 
showed that 497 core ASVs were shared between the LG and 
the other three groups. Among them, the LG had 896 unique 
ASVs and shared the highest number of ASVs (972) with the 
OG. Further grouping by gender revealed that there were 208 
core ASVs shared among the eight groups. The commonly 
observed ASVs among the three groups based on BMI 
accounted for 19.2%. It is worth noting that as the BMI value 
increases, the number of unique ASVs exhibited a decreas-
ing trend (Fig. 1A). The relative abundance bar charts at the 

phylum and genus levels were plotted based on ASV species 
annotation information (Fig. 1B). The dominant phyla with 
an average relative abundance > 10% in all samples were 
Firmicutes (61.8 ± 23.5%), Proteobacteria (19.2 ± 23.4%), 
and Bacteroidota (12.9 ± 17.9%). The dominant genera with 
an average relative abundance > 5% were Escherichia-Shi-
gella (8.8 ± 17.4%), Prevotella (6.3 ± 14.6%), Bacteroides 
(6.0 ± 11.3%), Faecalibacterium (5.8 ± 7.5%), and Subdol-
igranulum (5.5 ± 8.3%).

Alpha and beta diversity of gut microbiota

The richness and evenness of the GM community are evalu-
ated using α diversity indices, including the Chao1, Shan-
non, and Simpson indices. Taking the Chao1 index as an 
example, in the age group pattern, LG and OG show signifi-
cantly higher values compared to NG (Fig. 2A). However, 
there is no significant difference in the Chao1 index between 
LG and OG, as well as between LG and CG. Nevertheless, 
we can still see that the Chao1 index of LG is relatively 
higher compared to the other three groups, indicating a 
higher alpha diversity. In the gender group analysis, the 
alpha diversity results based on the Chao1 index indicate 
no significant differences between any two groups. Interest-
ingly, in the BMI-based group analysis, we observed that 
the α diversity of the elderly group with low BMI values is 
significantly higher than that of the other two groups. Beta 
diversity is assessed using four algorithms: Bray–Curtis, 
Abund-Jaccard, Unweighted-UniFrac, and Weighted-Uni-
Frac. Results using the Bray–Curtis method, for example, 
show no significant differences among the three grouping 
patterns (p > 0.05). Nevertheless, we can still observe a 
high consistency in the community composition structure 
between the OG and NG groups, while there is a trend of 
separation between the LG and CG groups (Fig. 2B, Sup-
plementary Fig. S1).

Gut microbiota composition and differential 
classification

The composition of GM in subjects, based on different 
grouping patterns, is shown in Fig. 3. The data displays the 
microbial populations at the phylum level, with average spe-
cies relative abundance above 1%. In all groups, the GM 
is dominated by Firmicutes, Proteobacteria, and Bacteroi-
dota, which constitute the core of the phylogenetic tree at 
the phylum level, accounting for 90.26% (LGF) to 98.19% 
(NGF) (Fig. 3A). Verrucomicrobiota is relatively more 
abundant in the long-lived elderly population, particularly 
in long-lived females. The grouping based on BMI also con-
firmed the enrichment of Verrucomicrobiota in the elderly 
population with low BMI values. On the other hand, the 
LG shows a significant reduction in the relative abundance 
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of Fusobacteria. At the genus level, 28 genera with aver-
age relative abundance above 1% are displayed (Fig. 3B). 
Among them, Escherichia-Shigella, Prevotella, Bacteroides, 
Faecalibacterium, and Subdoligranulum have an average 
relative abundance above 5% and are the dominant genera. 
The LG has the highest abundance of Escherichia-Shigella 
(15.94%), while the relative abundance in the OG and NG is 
significantly reduced to 4.53% and 2.94%, respectively. The 
Subdoligranulum is more abundant in the OG representing 
7.11%, whereas the NG is enriched in Prevotella making up 
10.69%. In addition, the CG shows an enrichment of Bacte-
roides comprising 11.19%. The grouping based on gender 
suggests that this genus appears to be more readily enriched 
in LGF. The gender-based grouping pattern has refined the 
inter-group differences. For instance, there is an increase in 
Escherichia-Shigella and Akkermansia in LGF compared to 
LGM, while Lactobacillus decreased.

Based on the LEfSe results and the differential analy-
sis of relative abundance at the genus level, it is evident 
that the LG shows significant enrichment in Pseudomonas, 
Akkermansia, Lactobacillus, and Oscillospiraceae UCG-002 
compared to the CG. Conversely, Bacteroides, Megamonas, 
and Lachnoclostridium are relatively enriched in the CG. 
When comparing the LG to the OG, Escherichia-Shigella, 

Klebsiella, Akkermansia, and Lactobacillus are signifi-
cantly enriched in the LG, while Megamonas is relatively 
enriched in the OG. Among the genera that exhibited sig-
nificant differences between LG and CG, Akkermansia, 
Lactobacillus, and Megamonas also displayed significant 
variances between LG and OG. Akkermansia and Lacto-
bacillus were notably enriched in LG, whereas Megamonas 
experienced a significant decrease in LG. Additionally, we 
found that the relative abundance of Bacteroides was sig-
nificantly reduced in the three groups in Changshou Town 
compared to the control group, while Pseudomonas exhib-
ited the opposite trend. In terms of BMI grouping, the HB 
group is notably enriched in Megamonas and Lachnospira 
compared to the LB group. Conversely, Akkermansia, Col-
linsella, Christensenellaceae_R-7_group, UCG-005, Fam-
ily_XIII_AD3011_group, and Oscillospiraceae UCG-002 
are relatively enriched in the LB group. Gender grouping 
analysis reveals consistent differences with previous find-
ings, where trends in Megamonas, Pseudomonas, and Oscil-
lospiraceae UCG-002 between LGF-CGF and LGM-CGM 
are observed across both males and females. Akkermansia, 
Agathobacter, Clostridium_sensu_stricto_1, Escherichia-
Shigella, and Lactobacillus exhibit significant differences 
in only one gender. However, it is important to note that this 
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Fig. 1  Venn diagrams illustrate the shared and unique ASVs among 
four age groups (A), eight gender groups (B), and three BMI groups 
(C). Histograms display phyla with a mean relative abundance 

exceeding 0.01% across all samples (D) and genera with a mean rela-
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seemingly sex-related microbial distribution pattern did not 
show significant differences among the four pairs of sub-
groups. (FDR-adjusted p < 0.05) (Supplementary Table S2, 
Fig. 4).

Functional pathway prediction of gut microbiota

PICRUSt2 was used to predict the potential function of the 
GM by comparing 16S rDNA sequences from fecal sam-
ples with known functional gene sequences from the KEGG 
database. A total of 52 secondary metabolic pathways (397 
tertiary metabolic pathways) were obtained for all samples, 
with 150 pathways having an average abundance > 0.1% and 
25 pathways having an average abundance > 1% (Fig. 5). 
Among them, 14 pathways were related to protein family’s 

metabolism, and 3 pathways were related to carbohydrate 
metabolism. Significant differences were found in certain 
tertiary metabolic pathways among various age groups (Sup-
plementary Fig. S2). In the metabolic pathways with an aver-
age relative abundance > 0.1%, the abundance of the pentose 
phosphate pathway (PPP) and C5-branched dibasic acid 
metabolism in the GM of the LG was significantly lower than 
that in the OG and CG. The metabolic pathways related to 
longevity, such as the longevity regulating pathway-worm, 
pyruvate metabolism, and benzoate degradation in xenobiotics 
biodegradation, are significantly higher in the LG compared 
to the CG. On the other hand, the metabolic pathways related 
to galactose metabolism, O-antigen nucleotide sugar biosyn-
thesis, and other glycan degradation are significantly lower in 
the CG. In the metabolic pathways with an average relative 

Fig. 2  (A) Alpha diversity results based on the Chao1 index. Box 
plots show the Chao1 index for four age groups (a), eight gen-
der groups (b), and three BMI groups (c). (B) Beta diversity results 
based on the Bray–Curtis distance algorithm. (d–f) Showed the dif-

ferences in the overall structure of inter-group microbial communities 
under three different grouping patterns. *, p < 0.05; **, p < 0.01; ***, 
p < 0.001
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abundance greater than 0.01% but less than 0.1%, the abun-
dance of the digestive system-related pancreatic secretion and 
salivary secretion metabolic pathways is significantly enriched 
in the LG. On the other hand, there is a significant difference 
in the relative abundance of the bile secretion pathway among 
the four groups, particularly in the CG, where it is significantly 
lower than in the other three groups. Additionally, we found 
that the enrichment level of the toluene degradation-related 
metabolic pathway is significantly higher in the LG compared 
to the other three groups. Interestingly, we also found that, 
compared to the HB group, the LB group shows a significant 
enrichment in the predicted metabolic pathways related to neu-
rodegenerative diseases such as amyotrophic lateral sclerosis, 
Huntington’s disease, and pathways of neurodegeneration — 
multiple diseases.

Redundancy analysis

As shown in Fig. 6, the redundancy analysis (RDA) results 
indicate that the genera positively correlated with age include 
Akkermansia, Christensenellaceae R-7 group, Rombout-
sia, Dorea, Pseudomonas, Lactobacillus, Fusobacterium, 
Clostridium sensu stricto 1, UCG-002. The genera positively 
correlated with BMI include Bacteroides, Faecalibacterium, 
Megamonas, Lachnoclostridium, and Lachnospira. Addition-
ally, Subdoligranulum and Ruminococcus are positively cor-
related with both age and BMI.

Discussion

Consistent with the research findings on GM in other long-
lived elderly individuals, our results also indicate that 
long-lived elderly people have relatively high α diversity 

(Biagi et al. 2016; Kong et al. 2016, 2019; Ren et al. 2021). 
The rich diversity of GM may help maintain and restore 
stability (Lozupone et al. 2012). Conversely, a decrease in 
diversity due to aging and disease can make the microbiota 
less resilient to external threats, leading to chronic health 
issues (DeJong et al. 2020; Leite et al. 2021). This theory 
suggests a potential connection between increased gut 
microbiota diversity and longevity in long-lived elderly 
individuals. The results of the diversity analysis based on 
gender grouping patterns support the conclusions of Biagi 
et al. (2010), indicating that gender plays a minimal to 
negligible role in influencing aging-related gut microbiota. 
It is worth noting that the LB group exhibits significantly 
higher α-diversity compared to the other two groups. This 
group mainly comprises long-lived elderly individuals, 
suggesting that a lower BMI may be associated with health 
and longevity. This is consistent with Bhaskaran et al.’s 
(2018) theory of a J-shaped association between BMI and 
overall mortality. It is crucial to maintain a rich diversity 
in the gut microbiota as it is closely related to the stabil-
ity and resilience of the gut microbiota ecosystem. In the 
elderly population, increased diversity may be beneficial 
for individuals to maintain healthy aging as a characteris-
tic (Lozupone et al. 2012).

The microbial composition results showed that the domi-
nant phyla in the gut microbiota are Firmicutes, Proteobac-
teria, and Bacteroidetes, which is consistent with previous 
reports (Kim et al. 2019; Tuikhar et al. 2019; Ren et al. 2021; 
Wu et al. 2022). Among them, Firmicutes and Bacteroidetes 
are the main components of the human gut microbiota, while 
Proteobacteria have been reported to increase in the elderly 
population over 70 years old but decrease in long-lived 
elderly individuals (Qin et al. 2010; Odamaki et al. 2016; 
Pang et al. 2023). Analysis of differential genera showed 

Fig. 3  Species composition histograms for intergroup compari-
sons display phylum (A) and genus (B) with a mean relative abun-
dance > 1%. (a–c) Represent the average relative abundance at the 

phylum level between groups in the three different grouping patterns, 
and (d–f) represent the average relative abundance at the genus level 
between groups in the three different grouping patterns, respectively
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that Akkermansia, Lactobacillus, and Megamonas may be 
important gut microbiota markers distinguishing long-lived 
elderly individuals from younger elderly individuals. Similar 
to our results, several other studies on long-lived individuals 
have also found a significant enrichment of Akkermansia 
(Biagi et al. 2016; Kong et al. 2016; Tuikhar et al. 2019). 
Akkermansia is a well-studied genus in longevity research 
and is associated with potential negative correlations with 
various diseases such as obesity, diabetes, and cardiovascu-
lar diseases (Pellegrino et al. 2023). Recent fecal microbiota 
transplantation experiments by Bárcena et al. (2019) have 
confirmed the important role of Akkermansia muciniphila 

in improving the health and lifespan of prematurely aging 
mice. These findings suggest that individuals with a long 
lifespan may benefit from a high abundance of Akkerman-
sia in their gut microbiota. The ability of A. muciniphila to 
degrade mucin not only helps maintain gut barrier function 
but also plays a crucial role in disease prevention mecha-
nisms, such as inhibiting inflammation, regulating the 
immune system, and improving metabolism through the 
production of short-chain fatty acids (SCFAs) (Hasani et al. 
2021; Lakshmanan et al. 2022; Wosińska et al. 2023). This 
also explains the significant enrichment of Akkermansia in 
elderly individuals with low BMI values. Additionally, no 

Fig. 4  LEfSe analysis results of gut microbiota. (A–C) Histogram 
of LDA scores calculated for microbial community features show-
ing inter-group differences in three different grouping patterns. The 
bar chart depicting the distribution of LDA values shows species with 
significant differences in abundance among different groups. The 
colors of the bars represent different groups, while the length of the 
bars indicates the magnitude of the impact of the various species. (D–

F) Bar chart illustrating inter-group differences of the top 10 genera 
ranked by LDA scores in three grouping patterns. (E) only displays 
comparison results of the same gender. (F) only 8 different genera 
based on BMI grouping pattern. Red asterisks indicate significant 
differences between LG and CG, purple asterisks indicate signifi-
cant differences between LG and OG. *, p < 0.05; **, p < 0.01; ***, 
p < 0.001
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significant differences in Akkermansia were found between 
males and females, which is consistent with a study by Guo 
et al. (2016) in a population from southern China. This sug-
gests that Akkermansia may be influenced by factors such 
as age and geographical environment rather than gender, 
or it may only have a weak association with gender (Col-
lado et al. 2007). Lactobacillus is a common probiotic in 
the human gut, but its quantity gradually decreases with 
age (Zhang et al. 2018; Samtiya et al. 2022). In this study, 
there was a significant enrichment in the long-lived elderly 
group, similar to previous research findings (Kim et al. 2019; 
Wu et al. 2022). In fact, the potential association between 
Lactobacillus and longevity and health was proposed over 
a century ago (Mackowiak 2013). Recent studies have not 
only reported the important roles of Lactobacillus in gut 
homeostasis, immune regulation, inflammation, oxidative 

stress, and nervous system regulation, but also confirmed its 
significant potential in extending lifespan (Grompone et al. 
2012; Kumaree et al. 2023; Zhao et al. 2023). However, the 
specific mechanisms of Lactobacillus in delaying aging and 
maintaining healthy aging are still unclear. Interestingly, 
the increase in Lactobacillus seems to be associated with 
Akkermansia. The increase in Akkermansia not only pro-
motes Lactobacillus but also suppresses Bacteroides (Wang 
et al. 2020). This explanation clarifies the enrichment of 
Akkermansia and Lactobacillus in long-lived elderly indi-
viduals, while Bacteroides significantly decreases. However, 
this contradicts previous reports of Bacteroides enrichment 
in long-lived elderly individuals. (Park et al. 2015b; Li et al. 
2023; Pang et al. 2023). Bacteroides are crucial microor-
ganisms in the human intestine. Despite the potential to be 
pathogenic, this bacterium often plays a beneficial role. It 

Fig. 5  The bar chart displays the 25 KEGG Level 3 functional pathways with an average relative abundance predicted by PICRUSt2 in all sam-
ples exceeding 1%

Fig. 6  Redundancy analysis of 
the correlation between age, 
BMI value, and certain bacterial 
genera
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not only helps in the digestion and absorption of nutrients, 
but the deficiency of Bacteroides is closely related to many 
diseases (Wexler 2007; Wang et al. 2021; Zafar and Saier 
2021). This evidence of the health benefits of Bacteroides 
seems to support the possibility that they are enriched in 
the intestines of long-lived individuals. However, it should 
be noted that factors such as geographical location and 
dietary differences are also important considerations influ-
encing its distribution (De Filippis et al. 2016; Gorvitovs-
kaia et al. 2016; Mobeen et al. 2018). In addition to Bacte-
roides, Megamonas were also significantly reduced in the 
gut microbiota of long-lived seniors. Megamonas has been 
reported as a core genus in the intestines of Asian popula-
tions (Yachida et al. 2019). It is not only more prevalent in 
males but also decreases with age and frailty (Takagi et al. 
2019; Xu et al. 2021; Wu et al. 2022; Yan et al. 2022). The 
significant increase in Megamonas in patients with obesity 
and fatty liver disease seems to support its significant enrich-
ment in the HB group, whereas it was significantly reduced 
in the high animal fat dietary pattern (Wan et al. 2019). 
These results indicate the potential role of Megamonas in 
metabolism. However, conflicting findings in different dis-
ease-related reports render the role of Megamonas in human 
health inconclusive (Yang et al. 2023).

The functional prediction results based on PICRUSt2 
did not find any significant differences in metabolic path-
ways directly related to longevity between the long-lived 
elderly group and the offspring group. The significant dif-
ferences were concentrated in xenobiotic biodegradation and 
metabolism, digestive system, and carbohydrate metabolism. 
Compared to the younger elderly group, the long-lived 
elderly group exhibited a greater enrichment of metabolic 
pathways related to xenobiotics biodegradation in the gut. 
This was primarily observed in the significant enrichment 
of toluene-related degradation pathways, as well as higher 
levels of benzoate, nitrotoluene, and aminobenzoate degra-
dation related pathways compared to the other groups. This 
is consistent with the current theory that regional restrictions 
on the activity trajectory of the long-lived elderly popula-
tion, along with their longer history of exogenous exposure, 
gradually accumulate in the body with age (Rampelli et al. 
2020). It is well known that aging leads to a gradual decline 
in organism function, including changes in the metabolic 
capacity and secretions of the salivary glands, pancreas, and 
gallbladder in the digestive system (Khalil et al. 1985; Krøll 
2012; Toan and Ahn 2021). These changes, in turn, affect 
the composition of the GM. We found that the metabolic 
pathways related to pancreatic and salivary secretion were 
more enriched in the long-lived elderly group compared 
to the offspring group and the control group. This seem-
ingly contradictory result may be one of the characteristics 

of the long-lived elderly population who maintain healthy 
longevity. Certain antioxidants, proteins, and immune fac-
tors in secretions may have protective and health-promoting 
effects. However, the LG appeared to be unable to reverse 
the decline in bile acid synthesis and bile flow caused by 
aging, and their associated metabolic pathways were sig-
nificantly lower than those of CG and OG. Interestingly, we 
found that the metabolic pathways related to bile secretion 
were significantly enriched in all three groups in Changshou 
Town compared to the CG. This may be associated with 
geographical location or genetic factors, but the specific 
mechanism is still unclear, and further research is needed. 
Compared to CG and OG, the pentose phosphate pathway 
(PPP) and C5-branched dibasic acid metabolism in carbohy-
drate metabolism pathway are significantly reduced in LG. 
The nicotinamide adenine dinucleotide phosphate (NADPH) 
generated in the oxidative phase of the PPP can enhance oxi-
dative stress tolerance and extend the host's lifespan (Brad-
shaw 2019; Shen et al. 2023). Moreover, the PPP, which is a 
crucial pathway in central carbon metabolism, can be associ-
ated with the extension of lifespan by influencing mitochon-
drial function (Bennett et al. 2017). The C5-branched dibasic 
acid metabolism pathway is positively correlated with the 
production of SCFA (Wu et al. 2021b; Fang et al. 2022). 
SCFA plays an important role in maintaining intestinal bar-
rier function and host health. Pyruvic acid, as the main pre-
cursor of the three major short-chain fatty acids (acetate, 
propionate, and butyrate), plays a key role in glycolysis and 
the carbon cycle (Koh et al. 2016). Interestingly, both the LG 
and OG showed significantly enriched pyruvate metabolism 
compared to the CG, which is consistent with the findings of 
Wu et al. (2019) in centenarians in Sardinia. This indicates 
that the GM of the long-lived elderly population may have a 
higher ability to produce SCFA to maintain health. In addi-
tion, we found that the ability of galactose metabolism in the 
three elderly groups in Changshou Town was significantly 
lower than that of the control group. Although this study 
bears similarities to the previous study conducted by Wu 
et al. (2019), the findings in this research may be attributed 
more to geographical location and dietary variations. There-
fore, further research focusing on diet interventions may be 
necessary in the future to substantiate these results. In addi-
tion, no significant differences were observed in neurodegen-
erative diseases closely related to aging among age groups, 
but the analysis of grouping results based on BMI showed 
that samples with low BMI values were more enriched in 
the metabolic pathways of amyotrophic lateral sclerosis, 
Huntington disease, and pathways of neurodegeneration — 
multiple diseases, indicating a higher possibility of develop-
ing neurodegenerative diseases. Although the “lean type” 
elderly population mentioned earlier has unique advantages 
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in maintaining health, this result suggests to some extent that 
they may not be able to reverse neurodegenerative diseases 
caused by aging. It is important to note that there are more 
individuals with longer lifespans in the LB group, which 
needs to be taken into consideration. Although PICRUSt 
has been widely used in microbial research, it is important 
to clarify that it can only predict the functions of known 
microbial genes. It is also worth noting that horizontal gene 
transfer is common among bacteria, which means that its 
predictive function may not accurately reflect the actual situ-
ation (Sun et al. 2020).

In conclusion, our research shows that long-lived popu-
lations and elderly populations with low BMI have unique 
characteristics in their GM. However, longevity is not only 
related to GM but is also influenced by genetic and envi-
ronmental factors. Additionally, GM is closely associated 
with dietary behavior. Although we attempted to exclude 
influences such as disease from the study population, it is 
unrealistic to completely eliminate all confounding vari-
ables in practice. Additionally, there is currently no clear 
definition of age groups in longevity research. Therefore, 
standardization is necessary in the future to facilitate com-
parative studies between long-lived populations in differ-
ent regions and to further investigate specific microbial 
populations associated with longevity. Furthermore, func-
tional predictions of GM based on PICRUSt can only par-
tially reflect the true information of the samples and can-
not fully substitute for metagenomic research. Therefore, 
in the future, it will be necessary to further utilize multi-
omics technologies, such as metagenomics and metabo-
lomics, to comprehensively investigate the mechanisms 
underlying the interaction between GM and healthy aging.
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