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Abstract

Bacterial outer membrane vesicles (OMVs) are nanosized spheroidal particles shed by gram-negative bacteria that contain biomol-
ecules derived from the periplasmic space, the bacterial outer membrane, and possibly other compartments. OMVs can be purified
from bacterial culture supernatants, and by genetically manipulating the bacterial cells that produce them, they can be engineered to
harbor cargoes and/or display molecules of interest on their surfaces including antigens that are immunogenic in mammals. Since
OMV bilayer-embedded components presumably maintain their native structures, OMVs may represent highly useful tools for
generating antibodies to bacterial outer membrane targets. OMVs have historically been utilized as vaccines or vaccine constitu-
ents. Antibodies that target bacterial surfaces are increasingly being explored as antimicrobial agents either in unmodified form
or as targeting moieties for bactericidal compounds. Here, we review the properties of OM Vs, their use as immunogens, and their
ability to elicit antibody responses against bacterial antigens. We highlight antigens from bacterial pathogens that have been suc-
cessfully targeted using antibodies derived from OMV-based immunization and describe opportunities and limitations for OMV's
as a platform for antimicrobial antibody development.

Key points

o Outer membrane vesicles (OMVs) of gram-negative bacteria bear cell-surface molecules
o OMYV immunization allows rapid antibody (Ab) isolation to bacterial membrane targets
® Review and analysis of OMV-based immunogens for antimicrobial Ab development

Keywords Antibody - Antimicrobial resistance - Immunization - Infectious disease - Integral membrane protein - Outer
membrane vesicle

Introduction

The goal of this short review is to synthesize the results of
studies that have used outer membrane vesicles (OMVs) from
gram-negative bacteria as immunogens for the generation of
antibodies (Abs) against bacterial cell-surface targets. We
summarize the properties and natural functions of OMVs,
common OMYV sources, organisms and routes used for immu-
nization, the types of anti-OMV Ab responses elicited (e.g.,
polyclonal, monoclonal, isotypes), the properties of the target
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antigens, and the degree of characterization of the result-
ing Abs. Future perspectives regarding the opportunities and
drawbacks of OMV-based Ab generation are presented. For
comprehensive introductions to OMV biology, production,
purification, characterization, and use in vaccine develop-
ment, we direct readers to several other review articles (Bal-
huizen et al. 2021; Klimentova and Stulik 2015; Micoli and
MacLennan 2020; Sartorio et al. 2021; Schwechheimer and
Kuehn 2015).

Properties of OMVs

OMVs are spheroidal particles 20 to 250 nm in diameter
that are shed from the cell surfaces of nearly all gram-
negative bacteria (Schwechheimer and Kuehn 2015).
Similar particles shed by gram-positive bacteria and other
microorganisms are generally referred to as membrane
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vesicles (MVs) or extracellular vesicles (EVs), hereafter
termed EVs in this review (Fig. 1). OMVs are unilamellar
vesicles bounded by lipids derived from the bacterial outer
membrane (OM) and contain components derived from the
periplasmic space as well as a subset of OM constituents,
including lipoproteins, lipopolysaccharides (LPS), capsu-
lar polysaccharides, integral membrane proteins, and other
OM-associated molecules (Lee et al. 2007; Murphy et al.
2014; Roier et al. 2015). The composition of the mem-
brane-embedded and membrane-associated components of
OMVs is closely related to that of the bacterial surface;
however, the relative abundance of constituents can dif-
fer from the OM (Schwechheimer and Kuehn 2015) via
mechanisms that are still unclear. Certain components can
be enriched or depleted to varying degrees depending on
environmental factors such as growth conditions, leading
to heterogeneity among the OMVs shed from individual
bacterial strains (Nagakubo et al. 2020). OMVs also carry
a variety of cargoes in their luminal space including, with
both periplasmic and cytoplasmic proteins, peptidogly-
can, nucleic acids, and small molecule effectors involved
in nutrient acquisition and signaling (Jan 2017). Like
OM components, periplasmic components are enriched,
depleted, or excluded in OMVs through poorly understood
OMV biogenesis mechanisms (Bonnington and Kuehn
2014). The presence of cytoplasmic proteins in OMVs
suggests the possibility of specific mechanisms of cellu-
lar transport and packaging, although none have yet been
fully characterized. Note that evidence for the presence of
cytoplasmic and inner membrane proteins in OMVs has
been mostly based on proteomic analyses, some of which
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Fig. 1 Schematic overview of antibody generation using outer mem-
brane vesicles (OMVs) and extracellular vesicles (EVs). Purified
OMVs from gram-negative bacteria or EVs from gram-positive bac-
teria are used as immunogens for animal immunizations (e.g., mouse,
rat, chicken, rabbit, llama). Polyclonal antibodies against OMVs or
bacterial antigens can be detected in the serum of responding ani-
mals. Hybridoma generation (myeloma cell fusion) or other selection
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could not exclude the presence of lysed cells in the sam-
ples analyzed, and protein analyses have suggested that
OMVs either lack or are highly depleted in these compo-
nents depending on isolation or purification methodology
(van de Waterbeemd et al. 2013). Similarly, although DNA
has been detected in OMVs (Bitto et al. 2017), it has been
suggested to be either or both surface-associated and lumi-
nally packaged, and in the former case, it remains unclear
whether DNA originating from lysed cells may be present.
The molecular mechanisms responsible for OMV shed-
ding are only partially understood; however, the process
of OMV formation is thought to begin with the detachment
of peptidoglycan-associated OM proteins (Schwechheimer
and Kuehn 2015). The inner leaflet of the OM contains
anchored lipoproteins crosslinked to peptidoglycan; OMV
formation is thought to occur when local crosslink levels
decrease sufficiently (Schwechheimer et al. 2014). Addi-
tional factors such as the formation of lipid microdomains,
accumulation of vesicle-facilitating molecules such as LPS
subtypes, and the actions of quorum sensing molecules
have also been suggested to contribute to the induction
of membrane curvature, OMV formation, and budding
(Schwechheimer and Kuehn 2015).

Gram-positive bacteria have also been shown to shed
vesicles, which are referred to as EVs. The EVs of gram-
positive bacteria are similar in size to OMVs but dis-
play cytoplasmic membrane components on their sur-
faces, have different phospholipid profiles, incorporate
lipoteichoic acid and greater amounts of peptidoglycan,
and harbor luminal components derived from the bac-
terial cytoplasm (Bose et al. 2020). Unlike the OMVs
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approaches (e.g., phage display libraries) are used to isolate monoclo-
nal antibodies (mAbs). The resulting mAbs are purified and charac-
terized for affinity, specificity, and antimicrobial activity in functional
assays. Target identification and validation, using techniques such as
mass spectrometry and binding assays, reveal the antigen targeted by
the mAb
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of gram-negative bacteria, gram-positive EVs are not
anchored to an internal peptidoglycan layer but are
instead anchored and physically blocked by the thick
peptidoglycan-containing cell wall. Gram-positive bacte-
rial cells induce localized disruption of the peptidoglycan
layer, allowing for the passage of EVs through the result-
ing temporary channel (Bose et al. 2020). While less stud-
ied in comparison to gram-negative OMVs, gram-positive
EVs are gaining interest due to their similar properties
and applications as OMVs (Bose et al. 2020; Wang et al.
2018).

Functions of OMVs

OMYV release contributes to a wide array of biological
functions in bacteria, with differences in OMV composi-
tion and function based on bacterial species (Jan 2017)
and environmental conditions (Kulp and Kuehn 2010).
OMVs directly contribute to bacterial survival and are
generally used as long-distance effectors. OMV shedding
allows for the removal of toxic or degraded cellular com-
ponents, contributing to bacterial survival during cell stress
(McBroom and Kuehn 2007). Bacteria can also use OMVs
for nutrient acquisition from the environment, as they can
contain hydrolytic enzymes, metal scavenging proteins,
and lytic machinery (Schwechheimer and Kuehn 2015).
OMVs released from bacterial pathogens can act directly
as virulence factors by degrading host cellular and physical
barriers (Stentz et al. 2018) and delivering toxins, viru-
lence factors, or immune-modulating factors to host cells
(Schwechheimer and Kuehn 2015). The physical presence
of OMVs can also passively contribute to the degradation
of antimicrobials via enzymatic activity (Ciofu et al. 2000)
and/or adsorption of antimicrobials and bacteriophage that
target OM components (Manning and Kuehn 2011). OMVs
can also contain components that divert the complement
system, contributing to the evasion of complement-medi-
ated lysis (Dehinwal et al. 2021). They may also directly
contribute to antimicrobial resistance development as vec-
tors for horizontal gene transfer (Dell'Annunziata et al.
2021), although the mechanisms through which DNA is
shuttled to OMVs remain unclear and the possibility of
non-specific DNA association with OMV surfaces cannot
be ruled out. OMVs also play a role in the development
and restructuring of bacterial biofilms (Wang et al. 2015).
As such, studies of OMVs may deepen our understanding
of infections caused by gram-negative bacterial pathogens
and offer new avenues for therapeutic targeting. Many of
the functions of gram-negative OMVs are likely to extend
to gram-positive EVs as well, although investigations of
the functions of EVs are still in the early stages.

Production and purification of OMVs

OM Vs are an easy-to-produce source of non-replicative, pre-
sumably structurally preserved material derived from gram-
negative bacterial cells and have been used extensively as
antigens for immunization. Production of OM Vs for research
or therapy can be initiated using several different methodolo-
gies. OMVs produced by bacteria during growth without the
addition of exogenous stimuli are referred to as spontane-
ous OMVs (sOMVs). They can be prepared by culturing
bacteria and removing cells from the culture medium by
centrifugation and filtration, followed by ultracentrifugation,
ultrafiltration, or ammonium sulfate precipitation (Balhuizen
et al. 2021; Wang et al. 2019a). These techniques can be
expected to yield acellular material that contains OMVs as
well as potentially other large extracellular materials such
as flagella, fimbria, pili, and large protein complexes and/or
aggregates. Higher OMV purity can be achieved by addi-
tional density gradient centrifugation and/or size exclusion
chromatography steps; however, the presence of low levels
of extracellular contaminants, some of which may be highly
immunogenic, is generally difficult to rule out. Components
derived from lysed cells may also contaminate OMV prepa-
rations. In some cases, the production of adequate amounts
of OMVs may require enhancement of spontaneously occur-
ring vesicle yields. OMV vesiculation can be promoted by
the addition of mild non-ionic detergents to bacterial cul-
tures, such as sodium deoxycholate or polyethylene glycol
oleyl ether, which largely preserve vesicle integrity and
protein folding (Gnopo et al. 2017; van der Pol et al. 2015).
However, detergent-based OMVs (dOMVs) may have lower
LPS content, less diverse phospholipid profiles, and altered
proteomic profiles compared to sSOMVs (van de Waterbeemd
et al. 2010). Compared to sOMVs, dOMVs can also be less
stable and more prone to aggregation (van de Waterbeemd
et al. 2010). OMYV vesiculation can also be induced through
physical processes such as sonication, vortexing, pressure
cell disruption, or by the addition of ethylenediaminetet-
raacetic acid (van der Pol et al. 2015). The resulting native
OMVs (nOMVs) show more closely related proteomic pro-
files to sSOMVs than dOMVs; however, differences in mem-
brane protein composition between nOMVs and sOMVs are
still observed (van de Waterbeemd et al. 2013; van de Water-
beemd et al. 2010). Interestingly, the composition of nOMVs
is thought to more closely mirror that of the bacterial OM
and periplasmic space compared with SOMVs (Gnopo et al.
2017; van der Pol et al. 2015). Both dOMVs and nOMVs
contain higher levels of cytosolic proteins, including some
that are not detected in SOMVs, possibly due to disruption of
the inner membrane during mechanical or chemical induc-
tion of vesiculation (van de Waterbeemd et al. 2013). The
attributes of OMVs produced using different strategies and
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their impacts on immunogenicity and antigen coverage may
be desirable or detrimental depending on the application
(van de Waterbeemd et al. 2013). Selection of a particular
type of OMV depends on the recipient organism’s sensitivity
to LPS, intended antigen coverage, required stability of the
OMV formulation, and yield requirements.

Genetic manipulation of OMVs

While the molecular mechanisms involved in OMV produc-
tion are not fully understood, several pathways have been
identified that allow for the modification of OMYV vesicula-
tion levels and composition. With respect to vesiculation
levels, the deletion of OM proteins that associate with the
peptidoglycan layer can result in disruption of peptidoglycan
integrity, increased membrane stress, and enhanced vesicula-
tion (Ojima et al. 2020). However, the impacts of mutations
related to envelope stress and phospholipid accumulation
on OMV composition are unknown. As the specific genes
and proteins involved in OMYV biogenesis differ between
gram-negative bacteria, hypervesiculation mutation strate-
gies are species specific. In Escherichia coli, mutation of
genes encoding proteins that are involved in the linkages
between the OM and inner membrane with peptidoglycan
(e.g., tolA, tolB, ompC, ompF, and pal) induces hyperve-
siculation (McBroom et al. 2006). Additionally, mutation
of nlpl, a gene encoding a protein that restricts the activity
of the peptidoglycan endopeptidase Spr, leads to reduced
peptidoglycan crosslinking with the OM and hypervesicu-
lation (Schwechheimer et al. 2015). Mutation of the degP
gene encoding a periplasmic chaperone/protease increases
vesiculation, as does mutation of the related stress signal
transmission genes degS and rseA, presumably by increas-
ing the accumulation of misfolded periplasmic proteins
and, therefore, the need for export (McBroom et al. 2006).
Studies of genetically induced hypervesiculation in various
gram-negative pathogens are still in their infancy (Balhuizen
et al. 2021). The available molecular toolbox for the con-
trol of OMV generation is likely to continue to expand as
the molecular mechanisms of OMV biogenesis are further
studied.

In addition to modulation of vesiculation levels, the
composition of OMVs can be directly controlled through
the manipulation of genes involved in OMV protein sort-
ing. This was first shown in E. coli with the protein ClyA,
which is concentrated into the membrane of OMVs (Wai
et al. 2003) and can be used as a carrier for recombinantly
fused antigens to the OMYV surface (Kim et al. 2008). Sub-
sequently, a number of other proteins (e.g., Neisseria men-
ingitidis fHbp (Salverda et al. 2016) and E. coli Hbp (Hays
et al. 2018; Kuipers et al. 2015)) were shown to localize to
OMVs and, via recombinant fusion, to present heterologous
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antigens on the vesicle surface in different gram-negative
bacteria (Wang et al. 2019a). OMVs displaying heterolo-
gous fusions to OMV-associated membrane proteins on their
surfaces have been found to elicit serum Ab responses in
mice (Kuipers et al. 2015; Rappazzo et al. 2016; Salverda
et al. 2016). Interestingly, luminal OMV cargo molecules
can also elicit weaker Ab titers following immunization,
a process that would be expected to require the release of
OMYV contents; however, few rigorous comparisons of the
immunogenicity of surface-displayed versus luminal anti-
gens have been conducted (Fantappie et al. 2014; Muralinath
etal. 2011; Salverda et al. 2016). Alternatively, genes encod-
ing proteins enriched in OMVs can be modified to include
affinity tags such as SpyTag or avidin, and the presence of
these handles on the OMV surface can be used to conjugate
heterologous proteins and other molecules (Kim et al. 2008;
Weyant et al. 2023). However, other factors such as heterolo-
gous protein complexity, fusion orientation, fusion protein
expression levels, and potential impacts on bacterial growth
and vesiculation rates must be considered in this process. It
is expected that there would be size and complexity limita-
tions on the types of heterologous proteins that can be suc-
cessfully fused with OMV-resident proteins and presented
on the OMV surface.

Uses of OMVs as immunogens

OMYVs have been developed as vaccines or vaccine com-
ponents designed to protect against bacterial pathogens for
several decades. The most well-studied bacterium in the con-
text of OMV-based vaccines is N. meningitidis group B, with
several products receiving regulatory approval in various
jurisdictions (one, 4CMenB, by the FDA and EMA) since
the 1980s. These include VA-MENGOC-BC® (1989—pre-
sent, Cuban National Immunization Program and elsewhere
in Latin America and the Caribbean for epidemic control)
and 4CMenB (Bexsero®; 2013—present, various jurisdictions
including Europe and North America), a multicomponent
vaccine containing three recombinant proteins produced in
E. coli as well as the PorA-containing OMV preparation
MeNZB™; the latter was used from 2004 to 2011 in New
Zealand to control the spread of an epidemic strain (Micoli
and MacLennan 2020). Bactericidal antibodies elicited by
4CMenB provide broad coverage (approximately 57-87%)
against meningococcal serogroup B strains worldwide (Cas-
tilla et al. 2023). Another OMV-based vaccine developed in
Norway in the 1980s, MenBVac®, formed the basis for the
development of MeNZB™ and was used to control epidemic
outbreaks in Norway and France. Both VA-MENGOC-BC®
and MeNZB™ are dOMV-based products extracted using
deoxycholate. While these are the only examples of OMV
vaccines that have received regulatory approval at the time
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of writing, several other OMV-based vaccines are under
clinical development for pathogens including Klebsiella
pneumoniae, Salmonella spp., Shigella spp., Mycobacterium
tuberculosis, Haemophilus spp., and Vibrio cholerae (Micoli
and MacLennan 2020). Preclinical investigations of OMV
vaccines have included a wide range of targets derived from
gram-negative and gram-positive bacteria as well as viruses
(Lieberman 2022).

As bacterial resistance to the antibiotics currently used for
human therapy continues to grow, the development of tar-
geted Ab-based therapies may be necessary as an alternative.
In this regard, OMV-based Ab development may provide
a facile and rapid method for obtaining antibacterial Abs
(Fig. 1). Given the success of OMV-based vaccines against
N. meningitidis, researchers have analyzed the Ab responses
elicited following OMV vaccination in a variety of animal
models and in humans. It is assumed that the mechanisms
underlying the generation of Ab responses to OMVs are
similar to those for whole bacterial cells, involving uptake
and processing by antigen-presenting cells followed by anti-
genic peptide presentation on MHC class II molecules to
drive helper T cell responses, as well as surface capture of
unprocessed opsonized OMV antigens for B-cell receptor
engagement (Baker et al. 2021; Prior et al. 2021). Given that
OMYVs presumably present bacterial OM antigens in their
native conformations, OMVs provide an attractive route for
the development of Abs that recognize intact bacterial cells.

OMYVs have been used extensively in generating poly-
clonal Abs (pAbs) against a variety of bacterial pathogens.
Several studies have detected the presence of Abs to defined
targets in the sera of immunized animals using enzyme-
linked immunosorbent assay (ELISA), immunoprecipitation,
western blotting, and mass spectrometry. The pAb responses
observed in several of these studies suggest that monoclonal
antibodies (mAbs) could potentially be developed against
bacterial surface targets through immunization with OMVs.
However, because pAb responses were detected in some
cases to luminal or secreted proteins or to surface targets
that are known to be shed, it remains unclear to what extent
pAbs are generated against OMVs themselves (including
integral OM proteins) versus copurified antigens and/or
OMV degradation products. Note also that while some pAbs
derived from OMYV immunization have been assessed using
in vitro functional assays (e.g., bactericidal assays), it was
not possible to ascribe functional activity to Abs directed
against any specific antigen(s). A list of antigenic targets
determined to be immunogenic following OMV or gram-
positive EV-based immunizations is shown in Table 1 and
Supplementary Table S1.

The use of OMVs derived from Neisseria species as
immunogens has been studied extensively through efforts
toward developing efficacious vaccines for meningi-
tis. Ab responses following OMV immunization to the

serotype-defining OM proteins (PorA, PorB, RmpM, Opa,
and Opc), membrane polysaccharides, as well as many other
surface-exposed virulence factors, have been detected and
characterized (Awanye et al. 2019). While some serum pAb
responses have been validated by ELISA using recombinant
or purified antigens, many pAb responses have only been
documented by western blot or immunoprecipitation; these
techniques may be more susceptible to erroneous target
attribution due to factors such as antigen abundance bias
and low throughput, limiting the number of experimental
controls that can be included. However, reproducible detec-
tion of the major OM protein classes, membrane-associated
polysaccharides, and other associated antigens across inde-
pendent experiments and in different organisms suggests
that OMVs induce Ab responses to these antigens (Dalseg
et al. 1999; Leduc et al. 2020; Viviani et al. 2023; Wedege
et al. 2007). Shigella OMVs have also been well studied,
and pAb responses to major OM antigens such as LPS, por-
ins, and secretion system components have been observed
(Mancini et al. 2021; Necchi et al. 2023). OMVs from
several other gram-negative bacteria have been shown to
induce pAb responses against membrane antigens (Table 1,
Supplementary Table S1). Generation of pAbs to cell mem-
brane targets of gram-positive pathogens such as Bacillus
anthracis, Staphylococcus aureus, and Streptococcus species
has also been demonstrated (Nakamura et al. 2020; Rivera
et al. 2010; Wang et al. 2018). In some cases, pAbs to gram-
positive antigens were obtained through direct immunization
with EVs derived from the target bacteria; however, most
pAbs were generated by heterologous expression of gram-
positive bacterial antigens in OMVs derived from gram-
negative bacteria, predominantly E. coli strains genetically
modified for hypervesiculation.

MADb generation using OMVs

OMV-based immunization has resulted in numerous target-
validated mAbs primarily derived from mouse hybridomas
(Table 2). Previous studies of Neisseria OMV-based vac-
cines have identified several OM proteins including PorB
and RmpM as immunodominant antigens in mice and
humans (Awanye et al. 2019). It is, therefore, unsurpris-
ing that OMV immunization enabled the isolation of mAbs
directed to these two antigens. In two independent studies,
mice were immunized with N. meningitidis strain 44/76
OMVs, and hybridoma-derived mAbs were analyzed by
immunoblotting against OMVs as well as by epitope map-
ping using overlapping peptides from PorB (Delvig et al.
1995) and RmpM (Rosengqvist et al. 1999). This strategy
allowed for the isolation of class 3 outer membrane protein
(OMP; PorB) mAbs 188,C-1 (IgG3) and 152,D-8 (IgG1)
(Delvig et al. 1995) as well as the class 4 OMP (Rmp)
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mAbs 155,B-4 (IgM), 173,G-1 (IgG1), and 185,H-8 (IgG2a)
(Rosengvist et al. 1999). Note that evidence for PorA bind-
ing by mAbs 188,C-1 and 152,D-8 was limited to equivocal
ELISA binding to synthetic peptides, as well as potentially
western blotting (although these results were not shown).
Similarly, evidence for RmpM binding by mAbs 155,B-4,
173,G-1, and 185,H-8 was limited to ELISA binding to syn-
thetic peptides whose locations in the protein’s three-dimen-
sional structure were unclear, as well as potentially western
blotting (although these results were not shown); none of
the mAbs bound to live or killed bacterial cells by immu-
nogold electron microscopy or flow cytometry. In addition
to PorA and Rmp, mAbs to NspA were isolated using two
separate methodologies. In one study, mice were sequen-
tially immunized with OMVs derived from three strains
of N. meningitidis with diverse serological classifications
(M1090, BZ198, and Z1092) (Moe et al. 2002). Hybridoma
supernatants were screened for bacterial cell binding and
bactericidal activity, resulting in the discovery of mAb 14C7
(IgG3). In the same study, the mAb was validated in whole
cell ELISA experiments using E. coli cells expressing N.
meningitidis NspA. This effort built on earlier work from
the same group in which mice were immunized with E. coli
BL21(DE3) OMVs expressing N. meningitidis NspA, and
the resulting mAbs (AL4, ALS, AL11, and AL1; all IgG2a)
were validated by assessing ELISA binding to isogenic wild-
type and NspA-knockout Neisseria cells (Moe et al. 2001).
Two mAbs to Neisseria NadA (1079B6 and 4895F9, not
isotyped) were also isolated by mouse OMV immunization,
hybridoma generation, and immunoblotting. Subsequent
antigen identification was conducted using mass spectrom-
etry of tryptic digests (Fukasawa et al. 2003). In addition
to protein targets, mAbs to Neisseria a2,8-linked polysialic
acid have also been generated (Devi et al. 1996). To do so,
OMVs from N. meningitidis M986-NCV]1, a non-capsular
mutant, were first purified and then chemically conjugated
using adipic acid dihydrazide to N-deacetylated capsular
polysaccharides (CPS) purified from N. meningitidis as well
as E. coli K1 cells (Devi et al. 1996). Immunization and
hybridoma generation yielded 11 mAbs of IgM and IgG iso-
types, each of which bound to a subset of different Neisseria
and E. coli CPS preparations. Interestingly, the binding of
individual mAbs to polysialic acid preparations derived from
the source bacterium by ELISA was affected by the immo-
bilization method and/or protein conjugation status. Only
three mAbs (A,, A, and Bg) showed significant bactericidal
activity against N. meningitidis.

In addition to Neisseria, OMVs have been effective anti-
genic sources in producing mAbs for several other bacte-
rial pathogens. OMVs from Haemophilus influenzae type
b were used to produce mAbs in mice via hybridoma gen-
eration (Robertson et al. 1982). The resulting mAbs were
used to immunoprecipitate three OM protein antigens of

@ Springer

different molecular weights. Only one mAb, 6A2 (not iso-
typed), was able to bind its cognate antigen on the surface
of intact bacteria (Robertson et al. 1982). However, further
experiments using denaturing western blots revealed that
mADb 6A2 bound to H. influenzae LPS and that the erroneous
immunoprecipitation result was due to the formation of a
complex between LPS and an undefined OM protein, result-
ing in co-immunoprecipitation (Gulig and Hansen 1985). A
similar strategy was used by the same group to identify sev-
eral mAbs using Moraxella catarrhalis 035E OMVs, includ-
ing mAb 10F3 (IgG2a) that was shown to bind CopB, an
80 kDa OM protein, by western blotting and colony blotting
using whole M. catarrhalis cells and E. coli cells expressing
M. catarrhalis CopB by western blotting (Helminen et al.
1993). The same approach was used to discover an anti-
M. catarrhalis O35E mAb, 17C7 (IgG2a), that reacted with
a single high molecular weight band in western blots and
bound to whole bacterial cells. Antigen identification was
conducted by plaque screening of a genomic M. catarrhalis
O35E library constructed in a recombinant bacteriophage
vector. Screening of bacteriophage plaques formed in E.
coli cell lawns identified UspA as reactive with 17C7 by
radiolabeling. MAb 17C7 was then found to bind UspA by
western blot in both phage-infected E. coli cells expressing
M. catarrhalis UspA and in M. catarrhalis O35E lysates
(Helminen et al. 1994).

Porphyromonas gingivalis TDC60 OMVs purified via
ammonium sulfate precipitation were used to immunize
mice, and the resulting mAb TDC4-33H (not isotyped)
potentially recognized P. gingivalis LPS based on ladder-like
banding pattern in western blots and an ability to prevent
IL-8 production by fibroblasts (Hijiya et al. 2010). P. gingi-
valis OMVs were also used to generate a mAb, Pg-Vc (not
isotyped), against hemagglutinin (Shibata et al. 1998). The
antigen was identified by western blotting against OM Vs,
followed by functional testing of inhibition of erythrocyte
agglutination induced by OMVs. MAb Pg-Vc showed a
similar banding pattern in western blots as an anti-hemag-
glutinating adhesion (HA-Ag2).

OMVs were prepared from Treponema palladium cells
via disruption in a French pressure cell press, followed by
purification through a continuous sugar gradient (Blanco
et al. 2005). Mice were immunized with the OMV prepa-
ration, and sera were assessed for bactericidal activity.
Hybridoma generation resulted in mAb M131 (IgM), which
exhibited bactericidal activity through binding to a phos-
phorylcholine epitope specific to T. pallidum. Binding to
whole cells was validated by dot-blot analysis and fluores-
cence microscopy.

Finally, Acinetobacter baumannii nOMVs were used as
immunogens with the goal of generating OM protein-tar-
geting single-domain Abs (VHHs) (Lei et al. 2023). Llama
immunization with A. baumannii OMVs resulted in strong
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IgG1 and IgG2b pAb responses. Panning of a phage display
library yielded a VHH, OMV81, whose target was identi-
fied as the OM pilin protein CsuA/B by western blotting
and mass spectrometry. The VHH was demonstrated to
bind intact A. baumannii cells by microscopy and whole
cell ELISA.

In summary, OMV-based immunogens have been used
to raise mAbs against targets that were subsequently identi-
fied through various techniques (Table 2). For some of these
mAbs, robust binding data to native proteins and/or whole
cells was not attempted or reported, and indirect valida-
tion techniques (e.g., complement-dependent bactericidal
assays, whole cell dot blot) were used to infer target antigen
binding, while in other cases, the functional activity of the
mAbs beyond antigen binding was not directly tested. In
most of the cases highlighted here, passive immunization
with mAbs was not attempted but is expected to be critical
in demonstrating their utility as alternatives to conventional
antimicrobials. Similar to pAbs (Table 1, Supplementary
Table S1), several of the targets recognized by the mAbs
could have been shed from degraded OMVs or copurified
with OMVs, limiting confidence that the OMVs themselves
acted as the primary immunogen. In addition, many of the
mADb targets are amenable to recombinant overexpression or
purification/extraction from bacteria and could thus likely
have been generated using conventional immunization
strategies.

Perspectives on OMVs as immunogens

There are several opportunities and challenges in the use of
gram-negative OMVs for the development of antimicrobial
Abs. OMVs allow for the presentation of naturally OM-
associated antigens to the immune system in a biologically
relevant context without the need for complex purification and
formulation processes. In this regard, they share similarities
with live bacterial cells. OMVs are more convenient immu-
nogens than bacterial cells due to their non-replicative nature,
and because they lack the ability to cause infection in immu-
nized animals, there are no concerns regarding gain of func-
tion gene transfer as in live cell immunizations. Interestingly,
markers of immunogenicity such as dendritic cell activation
and IgG titer have been found to be similar for OMVs and,
in some cases, enhanced when compared to attenuated whole
bacteria (Baker et al. 2021; Prior et al. 2021). For OMV's pro-
duced naturally by bacterial cells, factors such as endogenous
protein folding, post-translational modification, oligomeric
state, and binding interactions are expected to be largely pre-
served, whereas they may be compromised in a recombinant
or purified antigen, an enriched OM protein preparation, or a
killed bacterial cell preparation. It is less certain that chimeric
exogenous antigens displayed on OMVs would maintain the

same advantages as naturally OMV-associated antigens ver-
sus other types of immunogens. While using recombinant
antigens for immunization and Ab screening makes target
identification unnecessary, it introduces the potential for iso-
lating Abs that fail to recognize native targets on live bacteria.
Multiple-pass transmembrane proteins are important target
antigens but are difficult to isolate and purify in their native
conformations due to instability and aggregation propensity
introduced by their transmembrane domains (Schlegel et al.
2014). Additionally, bacterial OMs are densely packed super-
structures with a high degree of interaction between compo-
nents. Isolation of antigens from the membrane architecture
risks exposure of, and Ab generation to, inaccessible antigenic
epitopes that would fail to be recognized by Abs on live whole
cells. While the surfaces of OMVs may be imperfectly rep-
resentative of the bacterial OM (van de Waterbeemd et al.
2013), they maintain some portion of the bacterial membrane
architecture. This is especially important when considering
antigens that have immunodominant epitopes that are steri-
cally unavailable in a biological context, which would hinder
the selection of Abs to subdominant but functional epitopes of
non-native recombinant antigens. Additionally, OMV-based
immunization may result in the discovery of unknown anti-
gens or proteins which were not previously considered targets
for Ab development. This ability may be important for rare
and emerging bacterial pathogens for which extensive OM
composition data are lacking.

In addition to reducing immune responses toward unde-
sirable epitopes, OMV-based immunization can stimulate
immune responses to weakly immunogenic epitopes through
the presence of immunostimulatory molecules such as LPS
(Piccioli et al. 2022b). As such, OMVs can be considered
to naturally combine the functions of a lipid carrier and
adjuvant. Studies comparing the immunogenicity of OMVs
versus recombinant proteins combined with adjuvants have
found similar or enhanced antibody titers using OMVs
(Rosenthal et al. 2014; Rappazzo et al. 2016); however, addi-
tional studies are required to determine if the benefits of
OMYV immunizations are restricted to particular antigens and
immunization strategies. For some applications (e.g., human
therapy), immunization with sOMVs may induce undesira-
bly strong immune responses; however, immunogenicity can
be decreased through formulation modifications or genetic
manipulation of LPS content (Rossi et al. 2021). Immuniza-
tion with OMVs through the intramuscular, intraperitoneal,
and subcutaneous routes typically elicits high serum IgG,
IgM, and IgA titers in a variety of animal models. Addition-
ally, intranasal immunization may elicit stronger secretory
IgA responses (e.g., in saliva and the nasopharynx) with
comparable serum titers (Gnopo et al. 2017).

While OMV-based immunization can be advantageous
for rapid Ab discovery against OM targets, it also introduces
challenges not present when using purified antigens. OMV
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membrane surfaces can retain soluble components originating
from bacteria (e.g., shed components such as flagella, fimbrae,
and pilins, as well as potentially components derived from cell
lysis) or other sources (Bitar et al. 2019), which could result
in the generation of immune responses to components that are
not naturally associated with OMVs or the OM (Klimentova
and Stulik 2015). Because of this, additional purification steps
after initial OMYV isolation may be necessary, such as density
gradient centrifugation and/or size exclusion chromatography.
Even these steps may be insufficient to remove components
that do not significantly differ in size or density from OMVs
and/or strongly associate with OMVs in a non-specific manner.
OMYVs may also have stability considerations that complicate
their use as immunogens compared to a purified antigen. Due
to the presence of enzymatic components in OMVs, as well
as the possibility of membrane fusion, aggregation, and/or
precipitation, preparation of fresh OMVs may be necessary
throughout the immunization and Ab generation process. For
example, dOMVs are less stable and more prone to aggre-
gation compared to other OMV classes (van de Waterbeemd
et al. 2010). The generation of pAb responses following OMV
immunization to luminal cargo proteins suggests that degra-
dation and cargo release can occur; degradation may also be
associated with the loss of native structure of OM proteins.
Another challenge for OMV-based immunization is that the
immune sera may contain Abs to a variety of OM antigens, as
well as potentially to membrane-associated and/or shed anti-
gens, requiring mAbs to a particular antigen of interest to be
isolated. Target validation using OMV immunization-derived
mAbs is challenging but necessary. While it may be possible
to select mAbs to a particular target without a purified antigen
using genetic knockout or overexpressing cell lines, in many
cases, it is more practical to generate a recombinant antigen
for Ab screening. However, for difficult to purify antigens,
Ab selection can be performed using the immunized OMV,
with obtained mAb sequences analyzed for binding using
western blot and mass spectrometry. Alternatively, a heterolo-
gous OMV or lipid carrier expressing the antigen of interest
can be used to attempt to enrich for a defined antigen. While
OMYV immunization may be expected to result in the genera-
tion of Abs that bind OM targets on live cells, validation of
cell binding using knockout and/or antigen-overexpressing
strains, immunoprecipitation, or other complementary meth-
ods should be performed following antigen identification.

Conclusions

OMVs and other types of bacterial EVs represent useful tools
for the generation of Abs that targets the bacterial OM. In
particular, they offer important theoretical advantages when
attempting to generate Abs against challenging targets such as

@ Springer

integral OM proteins; however, very few mAbs raised by OMV-
based immunization to date have been conclusively shown to
target these complex proteins in their native contexts. Chal-
lenges of OMV-based immunogens include potential copu-
rification of immunogenic large extracellular material, non-
specific association of soluble molecules with OMYV surfaces,
OMV degradation leading to loss of native OM architecture,
and requirement for post-hoc antigen identification. The devel-
opment of specific, high-affinity mAbs to bacterial membrane
targets will be key to future efforts in antimicrobial drug devel-
opment, diagnostic testing, and basic microbiology. As the
development of antimicrobial resistance and epidemiological
pressures increase the need for novel bacterial monitoring and
treatment methods, Abs capable of targeting live bacteria are
likely to be of increasing importance. OMV-based immuniza-
tion, while in its relative infancy, fulfills a niche as it allows for
rapid Ab generation against immunogenic OM targets, even for
emerging or relatively unstudied pathogens.
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