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Abstract 
Transaminase (TA) is a crucial biocatalyst for enantioselective production of the herbicide L-phosphinothricin (L-PPT). 
The use of enzymatic cascades has been shown to effectively overcome the unfavorable thermodynamic equilibrium of TA-
catalyzed transamination reaction, also increasing demand for TA stability. In this work, a novel thermostable transaminase 
(PtTA) from Pseudomonas thermotolerans was mined and characterized. The PtTA showed a high specific activity (28.63 
U/mg) towards 2‐oxo‐4‐[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), with excellent thermostability and substrate 
tolerance. Two cascade systems driven by PtTA were developed for L-PPT biosynthesis, including asymmetric synthesis 
of L-PPT from PPO and deracemization of D, L-PPT. For the asymmetric synthesis of L-PPT from PPO, a three-enzyme 
cascade was constructed as a recombinant Escherichia coli (E. coli G), by co-expressing PtTA, glutamate dehydrogenase 
(GluDH) and D-glucose dehydrogenase (GDH). Complete conversion of 400 mM PPO was achieved using only 40 mM 
amino donor L-glutamate. Furthermore, by coupling D-amino acid aminotransferase (Ym DAAT) from Bacillus sp. YM‐1 and 
PtTA, a two-transaminase cascade was developed for the one-pot deracemization of D, L-PPT. Under the highest reported 
substrate concentration (800 mM D, L-PPT), a 90.43% L-PPT yield was realized. The superior catalytic performance of the 
PtTA-driven cascade demonstrated that the thermodynamic limitation was overcome, highlighting its application prospect 
for L-PPT biosynthesis.

Key points
• A novel thermostable transaminase was mined for L-phosphinothricin biosynthesis.
• The asymmetric synthesis of L-phosphinothricin was achieved via a three-enzyme cascade.
• Development of a two-transaminase cascade for D, L-phosphinothricin deracemization.
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Introduction

Phosphinothricin (2-amino-4-(hydroxy(methyl)phosphoryl)
butyric acid, PPT) is a commercial broad-spectrum herbi-
cide, and only L-enantiomer (L-PPT) has the herbicidal 
activity (Kang et al. 2019; Zhang et al. 2017; Zhao et al. 
2023b). Therefore, it is necessary to synthesize optically 
pure L-PPT or increase the L-PPT content in racemic D, 
L-PPT (Takano and Dayan 2020). Biosynthetic methods 
have recently been developed and focused on, providing 
simple methods to produce optically pure L-isomer by asym-
metric synthesis or deracemization (Cao et al. 2021; Cheng 
et al. 2022; Zhou et al. 2020). For efficient biosynthesis of 
L-PPT, the biocatalyst employed should be highly selective, 
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tolerant in substrate loading, and operationally and thermally 
stable.

As a significant class of enzymes that take part in the bio-
synthesis of L-PPT, transaminases (EC 2.6.1.X, TAs) rep-
resent enzymes with pyridoxal-5′-phosphate (PLP) depend-
ence, catalyzing reversible amino groups transfer between 
amino donor and acceptor (Guo and Berglund 2017; Mathew 
et al. 2023; Slabu et al. 2017). The TAs are divided into PLP 
fold types I and IV (Meng et al. 2021), and TAs that belong 
to fold type I only appear as (S)-enantioselective (Börner 
et al. 2017; Konia et al. 2021). The asymmetric synthesis 
of L-PPT from 4-(hydroxy(methyl)phosphoryl)-2-oxobuta-
noic acid (PPO) catalyzed by fold-type I TAs with 100% 
theoretical yield and strict (S)-enantioselectivity has con-
tinuously attracted the interest of researchers (Cheng et al. 
2021; Horsman and Zechel 2017). However, several TAs 
developed for the asymmetric synthesis of L-PPT suffered 
low equilibrium constant, resulting in an unfavorable ther-
modynamic equilibrium, which further led to the inability 
to achieve the theoretical yield (Liu et al. 2023; Zhu and 
Hua 2009), for example, the TA from Citrobacter koseri 
(CkTA), which showed a maximum conversion of 93.3% at 
100 mM substrate concentration (Jia et al. 2019), and the TA 
from Pseudomonas fluorescens (PfTA), which we previously 
reported to yield 79% L-PPT after 24 h reaction at 500 mM 
substrate (Jin et al. 2019). Removal of by-product can effec-
tively shift the equilibrium in the transamination reaction, 
one of the most attractive strategies was to construct an 
enzymatic cascade by coupling amino acid dehydrogenases 
(AADHs, EC 1.4.1.X) (Hepworth et al. 2017; Mathew et al. 
2023), such as alanine dehydrogenase (AlaDH, EC 1.4.1.1) 
or glutamate dehydrogenase (GluDH, EC 1.4.1.2) (Wu et al. 
2023). The cascade system can regenerate amino donor with 
cofactor NAD(P)H, supplying amino groups through using 
cheap inorganic ammonia (Dave and Kadeppagari 2019). 
In addition, regeneration of the cofactor NAD(P)H could be 
achieved by glucose dehydrogenase (GDH, EC 1.1.1.47), 
alcohol dehydrogenase (ADH, EC 1.1.1.1), or formate 
dehydrogenase (FDH, EC 1.2.1.2) (Guo et al. 2020; Qian 
et al. 2020; Zan et al. 2023). On the other hand, the high 
stability of biocatalyst was needed, since each enzyme in a 
multi-enzyme system has its own enzymatic properties and 
the operating conditions of multi-enzyme systems typically 
adopted compromise parameters (Wang et al. 2021).

There are two main strategies, gene mining and protein 
engineering, to obtain novel biocatalysts (Guo and Berglund 
2017). Mining and characterizing microorganisms isolated 
from extreme environments are an effective strategy for 
discovering novel enzymes that can withstand strict indus-
trial standards, such as high temperatures and the presence 
of organic solvents (Cerioli et al. 2015; Kelly et al. 2020; 
Mathew et al. 2016). For example, this strategy was used 
to identify a thermostable TPTAgth from Geobacillus 

thermodenitrificans, which exhibited excellent thermal sta-
bility at a maximum temperature of 65 °C (Chen et al. 2016).

At present, most of the TAs obtained for producing 
L-PPT are based on their catalytic activity towards PPO. 
Since substrate loading and enzyme stability directly affect 
production yields, these factors should be considered for the 
discovery of industrial biocatalysts (Xie et al. 2022). In this 
work, sequence mining and structure–function analysis were 
performed to obtain a thermostable TA from Pseudomonas 
thermotolerans (PtTA) with high activity and stability. To 
evaluate its potential in practical applications, two cascade 
systems were developed using PPO and D, L-PPT as starting 
substrate, respectively (Fig. 1). By employing PtTA-driven 
cascade systems, L-PPT biosynthesis was realized at high 
substrate concentrations, which demonstrated its potential 
effectiveness as an industrial biocatalyst.

Materials and methods

Strains and chemicals

The enzymes, plasmids, and primers are summarized in 
Table S1. D, L-PPT, and PPO were obtained from Shandong 
Lvba Chemical Co., Ltd. (Jinan, China).  NAD+ and NADH 
were obtained from Roche Diagnostics GmbH (Mannheim, 
Germany). PLP and different L-amino acids were obtained 
from J&K Scientific Ltd. (Beijing, China). Other chemicals 
were analytical reagent and could be obtained commercially.

Gene mining of PtTA

The amino acid sequence of transaminase (SeTA, GenBank: 
WP_001095559.1) from Salmonella enterica was used as 
a probe for homology searching in the NCBI protein data-
base (https:// blast. ncbi. nlm. nih. gov/ Blast. cgi). The amino 
acid sequences from different genera with 30–80% identity 
were selected from a pool of 1000 max target sequences. The 
neighbor-joining phylogenetic tree was generated using the 
MEGA 7.0 program, and bootstrap values were calculated 
from 1000 replicates.

Substrate docking simulation

The protein model of PtTA containing coenzyme pyridox-
amine 5′-phosphate (PMP) was used as a receptor, and the 
PPO was used as a ligand. The ligand (PPO) was obtained 
by Chemdraw and Chem3D program, and energy minimi-
zation was performed using the Chem3D MM2 minimize 
tool. Molecule docking simulation was performed using 
AutoDock 4.2 (search parameters: Genetic Algorithm 
Parameters; Output: Lamarckian GA (4.2)). “The residues 
I50, Y138, R141, Y155, E211 and R398 were selected as 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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docking sites, and the grid box for docking was set based on 
their spatial coordinate. Based on its substrate recognition 
mechanism and lowest binding energy, the docking model 
was selected.” Visualization of the homology model with 
docking simulation was performed by Pymol software.

Cloning and expression

The PtTA gene (GenBank: WP_017938159.1) was ampli-
fied by PCR using primers A-PtTA-F and A-PtTA-R 
with genomic DNA of Pseudomonas thermotolerans J53 
(taxid:935,867) as template under conditions: 95 °C for 
5 min, 1 cycle; 95 °C for 30 s; 55 °C for 30 s; 72 °C for 90 s, 
35 cycles; 72 °C for 10 min. After extraction and purifica-
tion of PCR products, the plasmid pET-28a-PtTA was con-
structed by in-fusion cloning. Then, it was transformed into 
Escherichia coli (E. coli) BL21(DE3) (Novagen, Germany) 
for expression. The recombinant E. coli was cultivated at 
37 °C in 100-mL TB medium including 50 µg kanamycin 
for the  OD600 reached 0.6–0.8. The 0.1 mM isopropyl-β-D-
thiogalactoside (IPTG) was added to induce the expression 
at 28 °C for 12 h. The cells were harvested by centrifugation 
(8000 rpm, 4 °C for 10 min) and resuspended in 20 mM 
potassium phosphate buffer (PB buffer, pH 8.0). Sonication 
was performed to prepare crude cell extract in intermittent 

pulse mode (100 W, 1 s duration, 2-s interval for 15 min). 
The protein was purified by Nickel column affinity chroma-
tography (Jin et al. 2019). SDS‐polyacrylamide gel electro-
phoresis (SDS‐PAGE) was used to analyze the expression 
of PtTA.

Enzyme activity assay of PtTA

One unit (U) of PtTA activity was defined as the quantity 
of protein needed for generating 1 µmol L-PPT per minute 
under the standard conditions. The standard conditions were 
performed in 1 mL PB buffer (50 mM, pH 8.0) at 55 °C 
for 10 min, including 0.1 mM PLP, 20 mM PPO, 100 mM 
L-amino acid, and purified enzyme.

Characterization of PtTA and kinetic parameters

Temperature effect on PtTA activity was measured at 
30–70 °C. For temperature stability, the residual activ-
ity was measured after purified PtTA were incubated at 
40–65 °C for 6 h in 50 mM PB buffer (pH 8.0) that contained 
0.1 mM PLP. Using phosphate buffer (PB buffer, 50 mM, 
pH 6.0–8.0), Tris–HCl buffer (50 mM, pH 7.5–9.0), and 
 Na2B4O7-NaOH buffer (50 mM, pH 9.0–10.0), pH effect 
on PtTA activity was measured. The pH stability of PtTA 

Fig. 1  Enzyme cascade systems for biosynthesis of L-phosphinothri-
cin. a Three-enzyme cascade coupling PtTA, GluDH, and GDH for 
the asymmetric synthesis of L-PPT. b Two-transaminase cascade for 
deracemization of D, L-PPT. PtTA, transaminase from Pseudomonas 

thermotolerans; GluDH, glutamate dehydrogenase; GDH, D-glucose 
dehydrogenase; Ym DAAT, D-amino acid aminotransferase from 
Bacillus sp. YM-1
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were measured through incubating purified protein in 4 °C 
buffers for 24 h.

To measure the kinetic parameters of PtTA, the nonlinear 
fit of Michaelis–Menten model was employed. For the meas-
urement of initial reaction rates, the reaction was performed 
under standard conditions, with the exception of using vary-
ing concentrations of PPO (1–100 mM). Additionally, the 
conversion of PPO was limited to 10%.

Asymmetric synthesis of L‑PPT from PPO via cascade 
system

Co-expressed recombinant E. coli (A-F) containing 
LsGluDH and EsGDH and co-expressed recombinant E. 
coli G containing LsGluDH, EsGDH, and SeTA were sum-
marized in Table S2. Using a ribosome binding site (RBS) 
calculator to design the synthetic RBS sequence of EsGDH 
(https:// www. denov odna. com/ softw are/ design_ rbs_ calcu 
lator) (Salis et al. 2009).

Asymmetric synthesis of L-PPT via E. coli G was con-
ducted at 35–55 °C. Thirty-milliliter reaction system (pH 
7.0–9.0) containing 300–500 mM PPO, 30–50 mM L-Glu, 
360–600 mM  (NH4)2SO4, 390–650 mM D-glucose, 0.1 mM 
PLP, 0.1 mM  NAD+, and 4 g/L dry cell weight (DCW) E. 
coli G. The pH of 30 mL reaction system was controlled by 
an automatic pH titrator (Metrohm 902 Titrando) via the 
addition of ammonia.

Deracemization of D, L‑PPT

The deracemization of racemic PPT at high substrate con-
centration was detected in PB buffer (50 mM, pH 8.0) at 
45 °C. Thirty-milliliter system including 3 g/L DCW E. coli/
pET28a-PtTA, 1.5 g/L DCW E. coli/pET28a-Ym DAAT, 
200–800 mM D, L-PPT, 0.5–2 M L-Glu, 2–8 mM α-KG, 
and 0.2 mM PLP.

Analytical methods

The Ultimate 3000 HPLC system (ThermoFisher, Dionex, 
USA) with a fluorescence detector (UltiMate FLD-3100) and 
a C18 column (Welchrom® C18, 4.6 mm × 250 mm, 5 µm; 
China) was used to measure the L-PPT and D-PPT concen-
trations. After derivatization of samples at 30 °C for 5 min, 
the quantitative chiral analyses were detected at fluorescence 
wavelengths of λex = 340 nm and λem = 450 nm. The chiral 
derivatization reagent was prepared by O-phthalaldehyde 
and N-acetyl-L-cysteine (Jin et al. 2019).

The detection of PPO concentration was carried out in the 
above HPLC system with a diode array detector (UltiMate 
DAD-3000) (Cao et al. 2021). Detection was performed at 
232 nm with a mobile phase flow rate of 1.0 mL/min, and a 
ratio of 12:88 (v/v) of acetonitrile and 50 mM ammonium 

dihydrogen phosphate buffer was used as the mobile phase. 
The HPLC chromatograms of chemicals are shown in 
Fig. S1.

Results

Gene mining of thermostable transaminase

In order to obtain novel TAs with the desired function, 
transaminase SeTA, which possessed the ability to syn-
thesize L-PPT from PPO (Jin et  al. 2022), was chosen 
as a template for homologous sequence searching. Gene 
sequence screening and alignment were performed in the 
NCBI protein database, and the TA sequences with 30–80% 
identity were selected from different species for constructing 
a phylogenetic tree (Fig. S2). It was found that most of the 
selected TA sequences were from Pseudomonas, followed 
by Klebsiella, Escherichia, Citrobacter, Shigella, Leclercia, 
Atopomonas, etc. Among them, a transaminase (PtTA) from 
Pseudomonas thermotolerans shared sequence identity of 
71.7% to SeTA was identified, and the Pseudomonas ther-
motolerans was described as a thermotolerant species with 
a maximal growth temperature of 55 °C (Manaia and Moore 
2002). The PtTA was defined as 4-aminobutyrate-2-oxog-
lutarate transaminase (gamma-aminobutyrate transaminase, 
GABA-TA, EC 2.6.1.19) in the NCBI protein database with 
unreported enzymatic properties and application.

According to the understanding of the structure and 
function relationship, identifying active site residues has 
been applied in function prediction (Jiang et al. 2023; 
Petermeier et al. 2023). Using a GABA-TA (PDB ID: 
1SZK; amino acid sequence identity: 76.42%) as a tem-
plate, the homology modeling was prepared by SWISS-
MODEL (https:// swiss model. expasy. org/). The 3D model 
of the protein showed that PtTA could have a homo-
tetrameric structure, with the PMP docked to the center 
of the active site of each subunit, and three completely 
conserved residues (K268, Q242 and R398) were identi-
fied (Fig. 2). The model suggests that K268 is involved in 
forming a Schiff base with the cofactor PLP, while Q242 
and R398 may be involved in coordinating the 3′-phenolic 
oxygen of PLP and substrate recognition, respectively 
(Liu et al. 2005). Compared with template SeTA, the I50 
and R141 residues were found in PtTA as well. The I50 
residue has been reported to act as a hydrophobic lid that 
restricted substrate binding pocket size (Liu et al. 2004, 
2005). Through substrate docking simulation using PPO 
as a ligand, the R141 residue formed a hydrogen bond 
with γ-phosphinoyl group of ligand PPO (Fig. S3), indi-
cating that residue R141 residue plays an important role 
in stabilizing substrate PPO binding. The above results 

https://www.denovodna.com/software/design_rbs_calculator
https://www.denovodna.com/software/design_rbs_calculator
https://swissmodel.expasy.org/
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suggested that the PtTA has a similar substrate binding 
pocket to SeTA (Fig. S4), and it is further postulated that 
PtTA could accept PPO as a substrate.

Therefore, the gene of PtTA was cloned into plasmid 
pET28a and expressed in E. coli BL21(DE3). The overex-
pression and purification of PtTA were analyzed by SDS-
PAGE (Fig. 3), and the observed protein masses of around 
45 kDa correspond well with the calculated masses of 
the His6-tagged PtTA, which is 45.96 kDa. Using L-Ala 
as an amino donor, PtTA exhibited a 1.62 U/mg specific 
activity towards PPO.

Amino donor specificity of PtTA

The specific activity of PtTA towards PPO needs to be 
optimized to meet the application requirements, and we 
assumed that L-Ala might not be a suitable amino donor. 
Using various L-amino acids and isopropylamine (IPA) 
as the amino donors, the amino donor specificity of PtTA 
was investigated by detecting the generation of L-PPT. 
As expected, PtTA preferred L-Glu as an amino donor 
(28.63 U/mg), followed by L-Ala (Table 1). Among the 
remaining amino donors, the by-product oxaloacetic acid 
and acetone of L-aspartate (L-Asp) and IPA, respectively, 
can be easily removed via decarboxylation or evaporation, 
which can promote thermodynamic equilibrium towards 
product synthesis (Fang et al. 2020; Kelefiotis-Stratidakis 
et al. 2019). However, PtTA was inactive towards IPA and 
L-Asp. Interestingly, the by-product of L-Glu deamina-
tion, α-KG, can be easily regenerated to L-Glu by GluDH, 
suggesting that the by-product inhibition can be overcome 
by employing a cascade system coupled with GluDH. 
Thus, amino donor L-Glu was chosen in this study.

Characterization of PtTA

To characterize the enzymatic properties of PtTA, the 
effects of temperature and pH on activity and stability were 
detected using L-Glu and PPO as substrates. As shown in 
Fig. 4a, PtTA exhibited the highest activity at a temperature 
of 55 °C. Of particular interest was that PtTA showed a 
relative activity of more than 80% in the 40 to 65 °C range, 
indicating a preference for higher reaction temperatures and 
the capability to adapt to the temperature required in differ-
ent enzyme cascades. Therefore, the evaluation of PtTA for 
temperature stability was carried out by incubating purified 
PtTA in PB buffer at 40–65 °C. PtTA could retain 83.21% 
residual activity after incubation at 55 °C for 6 h (Fig. 4b), 
suggesting excellent thermostability.

The optimal pH of PtTA was pH 8.0 using PB buffer, 
and more than 80% relative activity was observed between 
pH 7.5 and pH 9.0 (Fig. 4c). The PtTA was stable between 
pH 7.0 and 9.0, it retained over 85% residual activity after 
incubated for 24 h (Fig. 4d). The substrate tolerance of PtTA 
was investigated at PPO concentrations ranging from 20 to 
600 mM (3.96–118.8 g  L−1). The L-PPT yield still reached 
53.48% at a concentration of 600 mM PPO (Fig. S5), which 
was similar to that of low concentrations (20–200 mM), indi-
cating that PtTA exhibited good substrate tolerance.

Kinetic parameters of PtTA

The kinetic parameters of PtTA were investigated (Fig. S6), 
and the Km value was 35.85 mM, which was similar to that of 
the reported transaminase (Table S3). In addition, the kcat/Km 
value of PtTA (0.73  S−1  mM−1) was 2.21-fold and 2.43-fold 
higher than our previously reported PfTA (0.33  S−1  mM−1) 
and SeTA (0.30  S−1  mM−1), respectively (Table S3). The 

Fig. 2  Homology model of PtTA and key active site residues
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results suggested that PtTA had an obvious advantage in 
catalytic efficiency towards PPO.

Asymmetric synthesis of L‑PPT from PPO 
via three‑enzyme cascade

For overcoming unfavorable thermodynamic equilibrium, a 
biocatalytic cascade system was designed by coupling PtTA, 
GluDH, and GDH (Fig. 1a). An  NAD+-dependent GluDH 

from Lysinibacillus sphaericus (LsGluDH) was employed 
to regenerate the amino donor L-Glu. Considering the high 
cost of NADH, a GDH from Exiguobacterium sibiricum 
(EsGDH) was employed for cofactor NADH regeneration.

Whole-cell catalysts were more suitable for cofactor-
dependent reactions than isolated enzymes (de Carvalho 
2011; Wu and Li 2018). To construct an in vivo cascade, 
the LsGluDH and EsGDH were cloned into the plasmid 
pCDF-Duet1 and transferred into E. coli BL21(DE3) for 
co-expression. The generated recombinant E. coli A was 
analyzed by SDS-PAGE (Fig. 5a), LsGluDH showed an 
excellent expression level, whereas EsGDH expression was 
low, which might affect the efficiency of cofactor regenera-
tion, further resulting in poor catalytic efficiency of cascade 
reaction. To strengthen the expression of EsGDH, five RBS 
sequences with different translation initial rates (TIR) were 
equipped into the plasmid pCDF-Duet1-LsGluDH-EsGDH 
(Fig. 5c), resulting in recombinant E. coli (B-F) (Table S2). 
Analyzed by SDS-PAGE (Fig. 5a), the results indicated that 
EsGDH expression was enhanced. Meanwhile, the LsGluDH 
expression was affected by the enhanced expression of 
EsGDH. To determine the effects of changes in expression, 
the efficiency of L-Glu regeneration catalyzed by recom-
binant E. coli (A-F) was measured. As shown in Fig. 5b, 
the recombinant E. coli D containing plasmid pCDF-Duet1-
LsGluDH-r34EsGDH showed the highest initial reaction 
rate (3.79  mM−1  min−1  g−1 DCW), which was 2.26-fold 
higher than that of recombinant E. coli A without expres-
sion optimization. Therefore, recombinant E. coli G that co-
expressed LsGluDH, EsGDH, and PtTA was generated by 
co-transferring plasmid pCDF-Duet1-LsGluDH-r34EsGDH 
and plasmid pET28a-PtTA (Table S2).

To demonstrate the availability of in vivo cascade recom-
binant E. coli G for L-PPT production, the reaction was per-
formed using different concentrations of L-Glu (4–40 mM). 

Fig. 3  SDS-PAGE analysis of PtTA. Lane M, protein marker; Lane 1, 
crude extract; Lane 2, purified PtTA. The protein molecular mass of 
PtTA was 45.96 kDa

Table 1  Amino donor specificity of PtTA

a The specific activity was performed at standard assay conditions
b Enantiomeric excess (e.e.) was determined by chiral HPLC analysis. 
e.e. =

[L−PPT]−[D−PPT]

[L−PPT]+[D−PPT]
× 100% ; [L‐PPT] and [D‐PPT] represent the 

concentrations of L-PPT and D-PPT, respectively

Amino donor Specific activity (U/mg)a e.e. (%)b

L-glutamate 28.63 ± 0.31  > 99.9
L-alanine 1.62 ± 0.07  > 99.9
L-threonine 0.02 ± 0.08  > 99.9
L-phenylalanine 0.04 ± 0.02  > 99.9
L-valine 0.07 ± 0.09  > 99.9
L-isoleucine 0.14 ± 0.03  > 99.9
L-proline 0.08 ± 0.18  > 99.9
L-aspartate 0.05 ± 0.03  > 99.9
isopropylamine 0 -
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As shown in Fig. 6a, when 20 mM L-Glu (1:10 molar ratio 
to PPO) was used, it completely converted 200 mM PPO 
into L-PPT within 4 h. When the L-Glu concentration was 
decreased to 10 mM (1:20 molar ratio to PPO) and 4 mM 
(1:50 molar ratio to PPO), 99.08% and 85.66% conversion 
were obtained in 6 h, respectively. To ensure a complete PPO 
conversion at higher concentrations, the molar ratio of L-Glu 
to PPO was determined as 1:10. Then, the catalytic reaction 
conditions were further optimized to explore the potential 
of recombinant E. coli G. The effect of pH and tempera-
ture on cascade reaction showed that PPO conversion was 
highest at pH 8.0 and that 40 °C was the optimal reaction 
temperature (Fig. S7). As is well known, the amino transfer 
reactions catalyzed by transaminases required the participa-
tion of PLP; thus, the concentration of PLP was optimized. 
As shown in Fig. S8a, 0.1 mM PLP was sufficient to reach 
maximum conversion. The optimal concentration of the 
cofactor  NAD+ for the cascade reaction was 0.1 mM (Fig. 
S8b).  (NH4)2SO4 was used as the amine donor for L-Glu 

regeneration, and 240 mM (1.2:1 molar ratio to PPO) was 
determined as the optimal addition concentration (Fig. S8c). 
Furthermore, 260 mM D-glucose (1.3:1 molar ratio to PPO) 
was required (Fig. S8d), which was the substrate for EsGDH 
regenerating NADH.

Following the optimal reaction conditions, the cascade 
reaction was carried out using different PPO concentrations 
(300–500 mM). As shown in Fig. 6b, PPO could be com-
pletely converted to L-PPT within 12 h at concentrations 
below 400 mM, and a 98.36% conversion was achieved at 
500 mM PPO in 14 h.

One‑pot deracemization of D, L‑PPT 
via two‑transaminase cascade

One-pot deracemization is probably the most efficient strat-
egy in the biosynthesis of pure enantiomer from the racemic 
mixture (Han et al. 2019; Parmeggiani et al. 2019). In view 
of the above considerations, a two-transaminase cascade was 
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designed for L-PPT production from D, L-PPT via one-pot 
synthesis (Fig. 1b). Based on our previous report (Liu et al. 
2023), the Ym DAAT exhibited high activity (48.95 U/mg) 
and affinity (Km = 27.49 mM) towards D-PPT. Thus, Ym 
DAAT was employed to catalyze the amino transformation 
between D-PPT and PPO, followed by L-PPT synthesis 
catalyzed by PtTA. Through the clever combination of the 
amino donor (here L-Glu) and PtTA, the resulting by-prod-
uct (here: α-KG) can serve as the amino acceptor for Ym 
D-AAT. The “two-transaminase cascade,” which combined a 
linear cascade with a cyclic cascade to reduce simultaneous 
by-product inhibition of two transaminases, aimed to reduce 
the thermodynamic limitation.

The deracemization of D, L-PPT was attempted employ-
ing 40 mM D, L-PPT as substrate. The biggest effect factor 
on L-PPT yield was the concentration of L-Glu added. The 
highest L-PPT yield (90.47%) was observed with 100 mM 

L-Glu, which had a molar ratio of 2.5:1 to D, L-PPT. In 
contrast, only 0.4 mM α-KG was needed to initiate the cas-
cade reaction, and higher α-KG concentrations (2–4 mM) 
resulted in a decrease in L-PPT yield (Fig. 7a). Based on 
the characterization of PtTA and Ym DAAT, pH 8.0 was 
selected as the optimal pH. As shown in Fig. S9, the optimal 
PLP concentration and reaction temperature were 0.2 mM 
and 45 °C, respectively. Considering the activity of PtTA 
and Ym DAAT, the catalyst loading ratio was optimized and 
selected as 2:1 (Fig. S9c).

Following the optimal reaction conditions, the two-
transaminase cascade was evaluated at higher substrate con-
centrations (200–800 mM). The L-PPT yield above 90% was 
detected at all measured substrate concentrations (Fig. S10), 
and the L-PPT yields reached 90.43% at 800 mM D, L-PPT 
concentration (Fig. 7b), demonstrating superior catalytic 
efficiency at the highest reported substrate concentration.
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Discussion

Asymmetric synthesis of L-PPT is a highly desirable 
method, and several transaminases have been utilized for 
this purpose, including PfTA, CkTA, SeTA, and GABA-TA 
from Enterobacteriaceae, (Jia et al. 2019; Jin et al. 2019, 
2022; Meng et al. 2018). Nevertheless, there are still some 
issues that need to be improved before industrial production 
of L-PPT, such as low activity, poor thermal stability, and 
thermodynamic limitations. The strategy of mining for ther-
mostable transaminase from the genomes of thermophilic 
organisms through sequence searching has proven to be an 
effective and targeted approach (Kelly et al. 2020). Thus, a 
novel PtTA was identified by this method. As anticipated, 

PtTA demonstrated an obvious advantage in terms of ther-
mal stability (Table S3) with a half-life of 22.65 h at 55 ℃, 
as well as high enzymatic activity (28.63 U/mg).

In addition to PtTA, GABA-TA from Enterobacteriaceae 
also exhibited a desirable specific activity towards PPO (> 25 
U/mg protein), but its stability was poor with a half-life of 
2.8 h at 35 ℃. Interestingly, PtTA was identified as GABA-
TA as well, which belongs to the transaminase subgroup II. 
In contrast to the subgroup III ω-transaminases that have 
a dual-substrate recognition mechanism (Park et al. 2014; 
Steffen-Munsberg et al. 2016), the GABA-TA could only 
recognize the substrates containing carboxyl groups, includ-
ing dicarboxylic substrates (Liu et al. 2005). As a result, 
PtTA could not accept IPA as an amino donor (Table 1). The 
dual-substrate recognition mechanism could be interpreted 
through the two-binding site model that consisted of a large 
(L) and a small (S) pocket (Park et al. 2012; Shin and Kim 
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2002), for which active arginine residue in the (L) pocket 
forms outward and inward conformations depending on 
whether the substrate contains carboxyl groups (Han et al. 
2015). The active site arginine in GABA-TA is completely 
conserved and only has an inward conformation; it played 
the role of recognizing substrate by forming a salt bridge 
with the α-carboxyl group of incoming substrates (Liu et al. 
2005). In addition to the active site arginine (R398), another 
arginine residue (R141) was present in PtTA. When α-KG 
was used as an amino acceptor, the R141 residue in GABA-
TA was related to stabilizing the γ-carboxyl group away 
from the α-carbon (Liu et al. 2004). The docking simulation 
result indicated that PPO was also stabilized in an appro-
priate position by R141 residue (Fig. S3). Moreover, the 
mutant PtTA-R141A was created to verify the role of R141 
residue, and it lost most of its enzymatic activity towards 
PPO. Therefore, it was speculated that R141 residue was 
also conserved in PtTA, which provided the contribution to 
the substrate PPO binding.

L-Glu was considered an advantageous amino donor for 
L-PPT synthesis, since the unfavorable thermodynamic 
equilibrium can be easily circumvented by coupling with 
GluDH. The reduction amination catalyzed by GluDH was 
thermodynamically favorable with a high equilibrium con-
stant (Keq =  1014–1018) (Cheng et al. 2020), which ensured 
the complete conversion of α-KG to L-Glu. The cascade 
that coupled GluDH and transaminase had great potential 
for unnatural amino acid biosynthesis, and several success-
ful applications were developed, such as 1,2-amino alco-
hols and (R)- and (S)-phenylglycines (Jung et al. 2023; Liu 
et al. 2019). By employing this cascade system, 400 mM 
PPO was completely converted to L-PPT using only 40 mM 
amino donor L-Glu. The excellent catalytic performance 
indicated that the challenge of unfavorable thermodynamic 
equilibrium was efficiently overcome by the cascade sys-
tem. In addition, a three-enzyme cascade coupling PtTA, 
GluDH, and ADH from Rhodococcus ruber was attempted 
(Fig. S11a), whose optimal reaction temperature was 50 ℃ 
(Fig. S11b). The cascade system achieved 99.9% PPO con-
version at 300 mM PPO concentration in 12 h (Fig. S11c), 
further demonstrating the high thermal stability and organic 
solvent resistance of PtTA. Besides asymmetric synthesis 
of L-PPT, deracemization of racemic mixtures was another 
competitive approach for L-PPT biosynthesis (Cao et al. 
2020, 2021; Xu et al. 2019; Zhao et al. 2023a). Among 
these applications, deracemization of D, L-PPT with high 
atom economy could be a competitive choice, which con-
verted D-PPT to aimed L-PPT by two-step reaction (Cao 
et al. 2021). For this purpose, the two-transaminase cas-
cade was designed in a one-pot reaction by coupling Ym 
DAAT and PtTA. Compared to the approach that employed 
DAAO-leucine dehydrogenase cascade system (100 mM 
D, L-PPT, 80.3% L-PPT yield) (Zhao et al. 2023a), the 

two-transaminase cascade further simplified technological 
processes and increased L-PPT yield at an eightfold sub-
strate concentration (800 mM D, L-PPT, 90.43% L-PPT 
yield). However, the overuse of L-Glu increases the cost and 
difficulty of product isolation, which may limit its applica-
tion on an industrial scale. Therefore, further efforts should 
be focused on the deracemization of D, L-PPT driven by 
transaminase, and a “one pot, two-step” strategy should be 
considered.

In conclusion, a novel thermostable transaminase PtTA 
with excellent activity, stability, and substrate tolerance was 
mined. The key active site residues of PtTA (R398, R141, 
I50, K268, and Q242) were identified, among which R141 
residue was identified as a conserved residue for the sta-
bilization of substrate PPO. Then, two enzymatic cascade 
systems driven by PtTA were developed to explore its appli-
cation in L-PPT production. For asymmetric synthesis of 
L-PPT from PPO, an in vivo three-enzyme cascade recom-
binant E. coli G was developed by coupling PtTA, LsGluDH, 
and EsGDH, and a complete conversion of 400 mM PPO 
was achieved. Moreover, a two-transaminase cascade was 
constructed for deracemization of D, L-PPT in one pot, and 
a 90.43% L-PPT yield was obtained at the highest reported 
substrate concentration. These superior catalytic perfor-
mances demonstrated that the transaminase-driven cas-
cade system has shown great effectiveness in overcoming 
the thermodynamic limitations for efficient biosynthesis of 
L-PPT.
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