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Abstract 
l-Arabinofuranosides with β-linkages are present in several plant molecules, such as arabinogalactan proteins (AGPs), 
extensin, arabinan, and rhamnogalacturonan-II. We previously characterized a β-l-arabinofuranosidase from Bifidobacte-
rium longum subsp. longum JCM 1217, Bll1HypBA1, which was found to belong to the glycoside hydrolase (GH) fam-
ily 127. This strain encodes two GH127 genes and two GH146 genes. In the present study, we characterized a GH146 
β-l-arabinofuranosidase, Bll3HypBA1 (BLLJ_1848), which was found to constitute a gene cluster with AGP-degrading 
enzymes. This recombinant enzyme degraded AGPs and arabinan, which contain Araf-β1,3-Araf structures. In addition, the 
recombinant enzyme hydrolyzed oligosaccharides containing Araf-β1,3-Araf structures but not those containing Araf-β1,2-
Araf and Araf-β1,5-Araf structures. The crystal structures of Bll3HypBA1 were determined at resolutions up to 1.7 Å. The 
monomeric structure of Bll3HypBA1 comprised a catalytic (α/α)6 barrel and two β-sandwich domains. A hairpin structure 
with two β-strands was observed in Bll3HypBA1, to extend from a β-sandwich domain and partially cover the active site. 
The active site contains a  Zn2+ ion coordinated by  Cys3-Glu and exhibits structural conservation of the GH127 cysteine 
glycosidase Bll1HypBA1. This is the first study to report on a β1,3-specific β-l-arabinofuranosidase.

Key points
• β1,3-l-Arabinofuranose residues are present in arabinogalactan proteins and arabinans as a terminal sugar.
• β-l-Arabinofuranosidases are widely present in intestinal bacteria.
• Bll3HypBA1 is the first enzyme characterized as a β1,3-linkage-specific β-l-arabinofuranosidase.
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Introduction

l-Arabinose occurs in four distinct forms in plant polysac-
charides: α- and β-l-arabinofuranose (Araf) and l-arabino-
pyranose (Arap). Although β-Araf occurs in significantly 
less amount than α-Araf in plant carbohydrate polymers, 
it is present as β-l-arabinooligosaccharide (β-AOS) 
chains in extensin (e.g., Araf-β1,2-Araf-β1,2-Araf-β1-
hydroxyproline (Hyp);  Ara3-Hyp). β-Araf is also present 
as a terminal sugar in plant polysaccharides, e.g., terminal 
β1,2- and β1,5-Araf are present in the complicated sugar 
chain of rhamnogalacturonan-II (RG-II) in pectin (Pellerin 
et al. 1996). Moreover, terminal Araf-β1,3-Araf-α1 struc-
tures are found in several plant polysaccharides, including 
arabinan from sugar beet (Wefers et al. 2017) and quinoa 
seeds (Wefers et al. 2014), arabinoxylan from green leaves 
of Lauraceae (Das et al. 2013), arabinoxyloglucan from 
tomato cultured cells (York et al. 1996), and arabinoga-
lactan proteins (AGPs) from rice anthers (Kawaguchi et al. 
1996). β-Arap is also present as a terminal sugar in plant 
polysaccharides, including type-II arabinogalactan (AG) 
from larch (Ponder and Richards 1997), AGPs from wheat 
(Tryfona et al. 2010), and gum arabic (Tischer et al. 2002). 
α-Arap is found only as a constituent sugar of RG-II in 
plant polysaccharides (Pellerin et al. 1996).

Pfam DUF1680 (PF07944), which was renamed to 
Glyco_hydro_127, contains 24,000 proteins that are dis-
tributed among 7482 bacterial, fungal, and plant species. 
HypBA1 (Bll1HypBA1; encoded by BLLJ_0211) is the 
first characterized GH127 β-l-arabinofuranosidase (EC 
3.2.1.185) (Fujita et al. 2014b). Bll1HypBA1 from Bifi-
dobacterium longum subsp. longum JCM 1217 degrades 
Araf-β1,2-Ara released from  Ara3-Hyp by GH121 β-l-
arabinobiosidase (HypBA2: BLLJ_0212) (Fujita et  al. 
2011). Crystallographic studies of Bll1HypBA1 have 
revealed that a cysteine residue serves as the catalytic 
nucleophile (Ishiwata et al. 2022b; Ito et al. 2014; Maruy-
ama et al. 2022; McGregor et al. 2021). In addition to 
GH137 and GH142 β-l-arabinofuranosidases for RG-II 
degradation in Bacteroides thetaiotaomicron (Ndeh et al. 
2017), GH146 was established after characterization 
of BT0349 as an β-l-arabinofuranosidase for arabinan-
derived arabinotetraose and β1,2-l-arabinobiose (Luis 
et al. 2018). We also characterized a GH146 member, 
XCV2724, from Xanthomonas euvesicatoria (XeHypBA1) 
(Nakamura et al. 2018). This enzyme hydrolyzed Araf-
β1-Hyp predominately and partially for Araf-β1,2-Ara 
(Ishiwata et al. 2023). In addition to two GH127 members 
(Bll1HypBA1 and BLLJ_1826), B. longum subsp. longum 
JCM 1217 encodes two GH146 members (BLLJ_1848 and 
BLLJ_0089). BLLJ_0089 was recently characterized as a 
β-l-arabinofuranosidase (Bll4HypBA1) for Araf-β1-linked 

Hyp on the backbone of Hyp-rich glycoprotein (HRGP) 
(Ishiwata et al. 2023). At present, the three-dimensional 
structure of only one enzyme (BT0349) in the GH146 
family has been reported (Luis et  al. 2018; McGregor 
et al. 2021). In the present study, we characterized the 
recombinant BLLJ_1848 as a β-1,3-specific GH146 β-l-
arabinofuranosidase (Bll3HypBA1) using natural and syn-
thetic substrates. In addition, we performed X-ray crystal-
lography of Bll3HypBA1.

Materials and methods

Substrates

Larch wood AG was purchased from Tokyo Chemical 
Industry Co., Ltd. (Tokyo, Japan). Gum arabic from 
Acacia senegal was purchased from Sigma-Aldrich 
(St. Louis, MO, USA). p-Nitrophenyl (pNP) β-l-
arabinofuranoside was synthesized as described in a pre-
vious study (Kaeothip et al. 2013a). Young rice panicles, 
cultivar Nikomaru, were harvested from experimental 
farms at the Faculty of Agriculture, Kagoshima Univer-
sity (Kagoshima, Japan). According to a previous study 
(Kawaguchi et al. 1996), l-Araf-β1,3-l-Araf-α1,3-Gal-
β1,6-Gal (Araf-β1,3-ArafGal2) and AGP from rice anthers 
were prepared from young rice panicles. l-Araf-α1,5-[l-
Araf-β1,3-l-Araf-α1,3-]-l-Araf-α1,5-l-Ara (Araf-β1,3-
Araf4) from quinoa seed arabinan was prepared through 
endo-1,5-α-l-arabinanase treatment as described by 
Wefers et al. (Wefers et al. 2014). These oligosaccharides 
were further purified using HPLC on a Cosmosil PBr 
column (Nacalai Tesque Inc., Kyoto, Japan) as described 
previously (Sasaki et al. 2021). The fractions contain-
ing oligosaccharides were collected and analyzed using 
MALDI-TOF MS (Bruker Daltonics, Leipzig, Germany).

l-Araf-β1,2-l-Araf-α1-OMe (Araf-β1,2-Araf-α-OMe), 
l-Araf-β1,3-l-Araf-α1-OMe (Araf-β1,3-Araf-α-OMe), 
and l-Araf-β1,5-l-Araf-α1-OMe (Araf-β1,5-Araf-α-OMe) 
were previously prepared stereospecifically (Ishiwata et al. 
2022a) via 1,2-cis selective β-arabinofuranosylation using 
2-naphthylmethyl ether-mediated intramolecular aglycon 
delivery (Ishiwata and Ito 2011; Ishiwata et  al. 2014, 
2008; Kaeothip et al. 2013b). β-l-Arabinooligosaccharides 
were prepared according to previous reports (Fujita et al. 
2014b). Other chemicals were purchased from Fujifilm 
Wako Pure Chemical Industries Ltd. (Osaka, Japan). 
Araf-β1,3-ArafGal2 was labeled with p-aminobenzoic 
ethyl ester (ABEE) as described by Wang (Wang et al. 
1984). The ABEE derivative was purified on a Cosmosil 
PBr column with a linear gradient of  CH3CN/water from 
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0:100 to 70:30 (v/v) for 30 min at a constant flow rate of 
4.7 mL/min at 30 °C. Elution was monitored using a fluo-
rescence detector (FP-2020, JASCO, Japan) with Ex/Em 
of 305/360 nm. Figure 1 depicts the chemical structures 
of the substrates used in this study.

Enzymes

β-l-Arabinofuranosidases Bll1HypBA1 (Fujita et  al. 
2014b), Bll2HypBA1, and Bll4HypBA1 (Ishiwata et al. 
2023) enzymes were prepared according to previous 
reports. GH43_24 exo-β-1,3-galactanase Bl1,3Gal (Fujita 
et  al. 2014a) and GH43_22 α-l-arabinofuranosidase 

BlArafA (Fujita et al. 2019a) were prepared as described 
previously. Endo-1,5-α-l-arabinanase (AnEARAB) and 
α-l-arabinofuranosidase (AnAFASE) from Aspergillus 
niger were purchased from Megazyme (Bray, Ireland). 
Table 1 shows the enzyme list used in this study.

Expression and purification of recombinant 
Bll3HypBA1

The genomic DNA of B. longum subsp. longum JCM 1217 
was subjected to PCR amplification of the Bll3HypBA1 
gene. The forward (5′-AGG AGA TAT ACC ATG GCA GAA 
GTG GAC TCC AGC A-3′) and reverse (5′-TGC TCG AGT 
GCG GCC GCG TTC TGC ATG CGCAC -3′) primers were 
designed using nucleotides 106–124 and 3655–3671 from 
the Bll3HypBA1 gene. The underlined texts indicate com-
plementary nucleotides to the template. The PCR amplifica-
tion of Bll3HypBA1-NΔ35CΔ761, which encodes amino 
acids (aa) 36–1223, was designed to eliminate the N-termi-
nal signal peptide and C-terminal domains (Fig. 2A). The 
amplicon was cloned into the pET-23d vector (Novagen, 
Madison, WI, USA) using the In-Fusion HD Cloning Kit 
(Clontech Laboratories Inc., Palo Alto, CA, USA). The 
KOD-plus mutagenesis kit (Toyobo Co., Ltd., Osaka, Japan) 
and the primers listed in Table S1 were used to generate 
the Bll3HypBA1 deletion mutants. The primers NΔ reverse 

Fig. 1  Chemical and schematic 
structures of the substrates used 
in this study. β-l-Araf-structure 
is highlighted in red. Symbols: 
d-galactose, yellow circle; 
l-arabinose, green star

Table 1  Enzymes used in this study

Enzyme name (locus tag) Family Activity

Bll1HypBA1 (BLLJ_0211) GH127 β-l-Arabinofuranosidase
Bll2HypBA1 (BLLJ_1826) GH127 β-l-Arabinofuranosidase
Bll3HypBA1 (BLLJ_1848) GH146 β-l-Arabinofuranosidase
Bll4HypBA1 (BLLJ_0089) GH146 β-l-Arabinofuranosidase
BlArafA (BLLJ_1854) GH43_22 α-l-Arabinofuranosidase
Bl1,3Gal (BLLJ_1840) GH43_24 Exo-β-1,3-galactanase
AnAFASE GH51 α-l-Arabinofuranosidase
AnEARAB GH43 Endo-1,5-α-l-arabinanase
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and NΔ379 forward were used to construct Bll3HypBA1-
NΔ379CΔ761 (aa: 380–1223), whereas the primers 
CΔ forward and CΔ933 reverse were used to construct 
Bll3HypBA1-NΔ379CΔ933 (aa: 380–1051) (Fig.  2A). 
The constructed plasmids were sequenced and transformed 
into E. coli BL21 (λDE3) cells, which were then grown at 
20 °C using the Overnight Express Autoinduction System 
(Novagen). The His-tagged proteins were extracted using 
BugBuster protein extraction reagent (Novagen), purified on 
a TALON metal affinity resin (Clontech Laboratories Inc.), 
and then desalted and concentrated using an ultrafiltration 
membrane (10-kDa cut-off; Millipore Co., Billerica, MA, 
USA). The sequence of the Bll3HypBA1-NΔ35CΔ761 gene 
was deposited in the DDBJ database under the accession 
number LC765464.

Thin‑layer chromatography (TLC), high‑performance 
anion‑exchange chromatography with pulsed 
amperometric detection (HPAEC‑PAD), and HPLC

For TLC, silica gel 60 aluminum plates (Merck KGaA, 
Darmstadt, Germany) were used with a 7:1:2 (v/v/v) of 
1-propanol/EtOH/water solvent mixture and then visual-
ized by spraying orcinol-sulfate on the plates (Holmes and 
O'Brien 1979). For HPAEC-PAD, oligosaccharides were 
analyzed using a CarboPac PA-1 column (Dionex Corp., 
Sunnyvale, CA, USA) as described previously (Sasaki et al. 
2021). For HPLC, ABEE-labeled Araf-β1,3-ArafGal2 and 
reaction products were analyzed by a Cosmosil Sugar-D 
(Nacalai Tesque Inc.) as described previously (Ishiwata 
et al. 2022b).

Fig. 2  Sequence features of Bll3HypBA1 and GH127/146 β-l-
arabinofuranosidases. A Domain structure of Bll3HypBA1. Domain 
structures were predicted using SignalP5.0 (https:// servi ces. healt 
htech. dtu. dk/ servi ces/ Signa lP-5. 0/) and InterPro (https:// www. ebi. 
ac. uk/ inter pro/) servers. The domains were indicated as follows: 
signal peptide (SP), laminin_G_3 (LamG), bacterial Ig-like domain 
(Ig), and transmembrane region (TM). Here, the lines indicate the 
expression regions of the Bll3HypBA1 recombinant proteins. B The 
phylogenetic tree of GH146 and GH127 β-l-arabinofuranosidase 
members in Bacteroides thetaiotaomicron VPI-5482, X. euvesica-
toria, and B. longum subsp. longum JCM  1217. The phylogenetic 
tree was constructed with the MEGAX software. Enzymes char-

acterized previously or in this study are enclosed in the box. Here, 
the asterisk (*) indicates enzymes for which crystallographic stud-
ies have been performed. Almost all enzymes were characterized as 
β-l-arabinofuranosidase, except for BT1003 (aceric acid hydrolase). 
GenBank accession numbers are shown alongside the characterized 
enzymatic names and/or protein locus tags as follows: Bll1HypBA1/
BLLJ_0211 (BAJ65881), Bll2HypBA1/BLLJ_1826 (BAJ67491), 
Bll4HypBA1/BLLJ_0089 (BAJ65759), XeHypBA1/XCV2724 
(CAJ24403), BT_0349 (AAO75456), BT_2911 (AAO78017), 
BT_0137 (AAO75244), BT3531 (AAO78637), BT2097 
(AAO77204), BT1003 (AAO76110), BT3674 (AAO78779)

https://services.healthtech.dtu.dk/services/SignalP-5.0/
https://services.healthtech.dtu.dk/services/SignalP-5.0/
https://www.ebi.ac.uk/interpro/
https://www.ebi.ac.uk/interpro/
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pH and temperature dependence of Bll3HypBA1 
activity

The hydrolytic activity of Bll3HypBA1-NΔ35CΔ761 
was assayed using Araf-β1,3-ArafGal2-ABEE as the sub-
strate and 50 mM sodium acetate (pH 3.5–6.0) and 50 mM 
sodium phosphate (pH 6.5–8.0) as buffers. The substrate 
(25 µM) was incubated with 0.05 µg/ml of Bll3HypBA1-
NΔ35CΔ761 in 40 µL of each buffer (50 mM) at 40 °C for 
20 min. The reaction was stopped by adding 10 µL of 5% 
trichloroacetic acid (TCA) and then analyzed via HPLC. 
Next, the effect of temperature on enzyme activity was 
examined using 50 mM sodium acetate buffer (pH 5.5) at 
25–60 °C.

Substrate specificities of Bll3HypBA1 
toward polysaccharides

The hydrolytic activity of Bll3HypBA1-NΔ35CΔ761 was 
analyzed using sugar beet arabinan, larch AG, and gum 
arabic AGP as polysaccharide substrates. These substrates 
(1.0%) were incubated with 0.1 µg/mL of Bll3HypBA1-
NΔ35CΔ761, Bll1HypBA1, Bll2HypBA1, or Bll4HypBA1 
in 40 µL of 50 mM sodium acetate buffer (pH 5.5) at 40 °C 
for 16 h. Following incubation, the released l-arabinose was 
analyzed using TLC, as described previously. For the com-
parison of the specific activity of Bll3HypBA1 with or with-
out N-terminal LamG domain, the substrates (1.0%) were 
incubated with 0.1 µg/ml of Bll3HypBA1-NΔ35CΔ761 and 
Bll3HypBA1-NΔ379CΔ761 in 40 µL of 50 mM sodium 
acetate buffer (pH 5.5) at 40 °C for 2 h. The reaction was 
terminated by boiling, and the liberated l-arabinose was ana-
lyzed using HPAEC-PAD.

Combination reactions of Bll3HypBA1 and AGP 
degradative enzymes

Bll3HypBA1-NΔ35CΔ761 (0.1 µg/ml) reacted with Araf-
β1,3-ArafGal2 and Araf-β1,3-Araf4 with or without BlArafA/
AnAFASE at 40 °C for 16 h. The reaction mixtures were 
analyzed via HPAEC-PAD and MALDI-TOF MS. To deter-
mine the mode of action of rice AGP, the following reac-
tions involving Bll3HypBA1-NΔ35CΔ761, BlArafA, and 
Bl1,3Gal were conducted: 1.0% rice AGP were incubated 
with enzymes (0.1 µg/mL each) in a 50 mM sodium phos-
phate buffer (pH 6.0) at 37 °C for 16 h. The reaction prod-
ucts were analyzed via HPAEC-PAD.

Substrate specificities of Bll3HypBA1 
toward oligosaccharides

Next, the substrate specificities of Bll3HypBA1 were ana-
lyzed using synthetic and natural substrates. Since the 

region following residue 1052 in the NΔ379CΔ761 was not 
affected to structure of the catalytic region, Bll3HypBA1-
NΔ379CΔ761 or CΔ933 were used for the analysis of 
substrate specificities. Synthetic Araf-β1,2-Araf-α-OMe, 
Araf-β1,3-Araf-α-OMe, and Araf-β1,5-Araf-α-OMe were 
incubated with 0.1 µg/ml of the Bll3HypBA1-NΔ379CΔ933 
or Bll1HypBA1 in 40 µL of 50 mM sodium acetate buffer 
(pH 5.5) at 37 °C for 16 h. The reaction products were ana-
lyzed using TLC as previously described. To determine 
specific activities, natural oligosaccharides containing ter-
minal Araf-β1,3 and Araf-β1,2 and synthetic Araf-β-pNP and 
Araf-β-OMe were used. Araf-β1,3-ArafGal2 (0.15 mM) and 
Araf-β1,3-Araf4 (0.15 mM) were incubated with 0.01 µg/mL 
of Bll3HypBA1-NΔ379CΔ761 in 40 µL of 50 mM sodium 
acetate buffer (pH 5.5) at 40 °C for 20 min. Araf-β-pNP 
(1.0 mM) was incubated with 0.1 µg/mL of Bll3HypBA1-
NΔ379CΔ761 in 40 µL of 50 mM sodium acetate buffer (pH 
5.5) at 40 °C for 2 h. A final concentration of 0.35 mM Araf-
β1,2-Ara, 0.40 mM Araf-β-OMe, 0.11 mM Araf-β-Hyp (cis), 
0.11 mM Araf-β-Hyp (trans), 0.13 mM Araf-β1,2-Araf-β-
Hyp, and 1.0 mM Araf-β1,2-Araf-β1,2-Araf-β-Hyp were 
incubated with 12 µg/ml of the Bll3HypBA1-NΔ379CΔ761 
in 40 µL of 50 mM sodium acetate buffer (pH 5.5) at 40 °C 
for 16 h. The reactions were terminated by adding 10 µL of 
5% TCA and subsequently analyzed using HPAEC-PAD. 
One unit of enzyme activity was defined as the amount of 
enzyme required to produce 1 µmol l-arabinose per minute.

Transglycosylation activities

Transglycosylation reactions were performed using 
Arafβ1,3-AraGal2 as the donor and the 1-alkanols as accep-
tors. The substrate was incubated with 0.30  µg/mL of 
Bll3HypBA1-NΔ35CΔ761 in 40 µL of 50 mM sodium ace-
tate buffer (pH 5.5) containing 5% methanol as the acceptor. 
After 1 h of incubation at 37 °C, the reaction was terminated 
by boiling. For ethanol and 1-propanol, the reactions were 
terminated after 3 h. TLC was used for confirmation of the 
reaction products as described above.

Protein purification for crystallization

For crystallization, selenomethionine (SeMet)-labeled and 
native proteins were expressed in E. coli BL21-CodonPlus 
(DE3)-RP-X and BL21-CodonPlus (DE3)-RIL (Agilent 
Technologies, Santa Clara, CA, USA), respectively. For 
the expression of the SeMet-labeled protein, the transfor-
mants were grown in Se-Met core medium supplemented 
with 10 g/L d-glucose, 250 mg/L  MgSO4•7H2O, 4.2 mg/L 
 FeSO4•7H2O, 10 ml/L Kao and Michayluk Vitamin Solution 
(Sigma-Aldrich), and 25 mg/L seleno-l-methionine. For the 
expression of the native protein, lysogeny broth was used. 
Transformants were grown at 37 °C for 2 h in a medium 
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supplemented with 50 µg/mL chloramphenicol and 100 µg/
mL ampicillin. Protein expression was induced by adding 
0.1 mM isopropyl-β-d-thiogalactopyranoside and 0.5 mM 
 ZnSO4 to the medium, and cells were further cultured at 
18 °C for 24 h. Cells were harvested via centrifugation, sus-
pended in 20 mM Tris–HCl (pH 7.5) and 300 mM NaCl 
(buffer A), and later disrupted via sonication; the superna-
tant was then purified via serial column chromatography. Ni-
immobilized metal affinity chromatography was conducted 
using cOmplete™ His-Tag Purification Resin (Sigma-
Aldrich) with wash and elution steps of 20 mM and 300 mM 
imidazole in buffer A, respectively. The buffer of the eluted 
protein sample was exchanged with 20 mM Tris–HCl (pH 
7.5) (buffer B) using Vivaspin Turbo 15 (50-kDa cut-off; 
Sartorius Stedim Biotech, Göttingen, Germany). The pro-
tein sample was applied to a HiTrap Q HP column (5 mL) 
(Cytiva, Marlborough, MA, USA) equilibrated with buffer 
B and eluted with a linear gradient of 0 to 500 mM NaCl. 
Then, the sample was concentrated using Vivaspin Turbo 
15 MWCO 50,000, and the solution was changed to 20 mM 
Tris–HCl (pH 7.5) and 150 mM NaCl (buffer C). Subse-
quently, gel filtration chromatography was conducted using a 
HiLoad 16/60 Superdex 200 pg column (Cytiva) equilibrated 
with buffer C at a flow rate of 1 mL/min. The purified pro-
tein was concentrated again using Vivaspin Turbo 15, and 
the solution was changed to buffer B. Protein concentrations 
were determined using a BCA protein assay kit (Thermo 
Fisher Scientific, Waltham, MA, USA) with bovine serum 
albumin as the standard.

Crystallography

The protein crystals were grown at 20 °C using the hang-
ing drop vapor-diffusion method by combining the pro-
tein solution with an equal volume of a reservoir solution. 
SeMet-labeled Bll3HypBA1-NΔ379CΔ761 was crystallized 
using a 17 mg/mL protein solution and a reservoir solu-
tion containing 12% PEG 8000, 0.2 M  MgCl2, and 0.1 M 
Tris–HCl (pH 8.5). The native Bll3HypBA1-NΔ379CΔ761 
protein was crystallized using a protein solution (10 mg/mL) 
and a reservoir solution containing 15% PEG 8000, 0.2 M 
 MgCl2, and 0.1 M Tris–HCl (pH 8.5). The crystals were 
cryoprotected in a reservoir solution supplemented with 25% 
glycerol. The native Bll3HypBA1-NΔ379CΔ933 protein 
was crystallized using a protein solution (14 mg/mL) and a 
reservoir solution containing 45% MPD, 0.2 M ammonium 
acetate, and 0.1 M HEPES–NaOH (pH 7.5). The crystal was 
soaked in a reservoir solution supplemented with 100 mM 
l-arabinose before cryocooling, but no electron density for 
l-arabinose was detected in the crystal structure. The crys-
tals were flash-cooled by dipping into liquid nitrogen. X-ray 
diffraction data were collected at 100 K on beamlines at the 
Photon Factory of the High Energy Accelerator Research 

Organization (KEK, Tsukuba, Japan). Preliminary diffrac-
tion data were collected at SPring-8 (Hyogo, Japan). The 
datasets were processed using XDS (Kabsch 2010) and 
Aimless (Evans and Murshudov 2013). Phase determina-
tion and automated model building were performed for the 
data of SeMet-labeled crystal using the AutoSol pipeline 
of PHENIX (Adams et al. 2010). Manual model rebuilding 
and crystallographic refinement were performed using Coot 
(Emsley et al. 2010) and Refmac5 (Murshudov et al. 2011). 
Molecular graphic images were prepared using PyMOL 
(Schrödinger, LLC, New York, NY, USA).

Site‑directed mutagenesis and activity assay

Site-directed mutants of Bll3HypBA1 were constructed 
using the PrimeSTAR mutagenesis basal kit (TaKaRa Bio, 
Ohtsu, Japan) with the primers shown in Table S1 and the 
pET23d-Bll3HypBA1-NΔ379CΔ933 plasmid as the tem-
plate. These mutant enzymes were expressed and purified 
using the same procedures for Bll3HypBA1-NΔ379CΔ933. 
We also constructed a C805A mutant; however, it did not 
express in E. coli. The activity of the wild-type enzyme 
(NΔ379CΔ933) and mutants was assayed via TLC using 
Araf-β1,3-Araf-α-OMe as the substrate. The assay solution 
consisted of 12.5 mM Araf-β1,3-Araf-α-OMe, 0.0125 mg/
mL enzyme, 10 mM dithiothreitol, and 20 mM sodium ace-
tate buffer (pH 4.5). After incubation at 37 °C for 30 min, 
the reaction was stopped by heating the sample at 95 °C for 
10 min. Then, 2 µL of the sample was spotted on a TLC 
plate (TLC Silica gel 60  F254, Merck) and developed using 
a 2:1:1 solvent mixture (v/v/v) of ethyl acetate/acetic acid/
water. The separated sugars were visualized by spraying 
and heating with phosphomolybdic acid in ethanol on the 
plates. For mutants at Zn-coordinating and catalytic residues 
(E694Q, E694A, E723Q, E723A, C725S, C725A, C804S, 
C805S, and C805A) and E694Q/C804S double mutant, we 
determined specific activities via HPLC using Araf-β1,3-
ArafGal2-ABEE as described above.

Results

Sequence features of Bll3HypBA1

Bll3HypBA1 (BLLJ_1848) contains a GH146 cata-
lytic domain, a signal peptide, two laminin_G_3 (LamG) 
domains, which belong to the concanavalin A-like lectin/
glucanase superfamily, three bacterial Ig-like domains, and 
a transmembrane domain (Fig. 2A). Furthermore, these 
features are shared with other cell surface anchoring gly-
cosidases of B. longum subsp. longum JCM 1217, such 
as β-l-arabinobiosidase HypBA2 (BLLJ_0212) (Fujita 
et  al. 2011), GH43 α-l-arabinofuranosidases HypAA 
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(BLLJ_0213), BlArafA (BLLJ_1854) (Fujita et al. 2019a), 
BlArafB (BLLJ_1853), BlArafC (BLLJ_1852) (Komeno 
et al. 2022), BlArafD (BLLJ_1851) (Komeno et al. 2022), 
BlArafE (BLLJ_1850) (Sasaki et al. 2022), GH43_24 exo-β-
1,3-galactanase Bl1,3Gal (BLLJ_1840) (Fujita et al. 2014a), 
and GH30_5 exo-β-1,6-galactobiohydrolase Bl1,6Gal 
(BLLJ_1841) (Fujita et  al. 2019a). The aa sequence of 
the catalytic domain of Bll3HypBA1 exhibits 30% iden-
tity with the other GH146 paralog Bll4HypBA1, a β-l-
arabinofuranosidase for Araf-β1-linked Hyp on the HRGP 
backbone (Ishiwata et al. 2023). In addition, Bll3HypBA1 
exhibits 31% and 28% identities with the other character-
ized GH146 β-l-arabinofuranosidases BT0349 from Bacte-
roides thetaiotaomicron (Luis et al. 2018) and XeHypBA1 
from X. euvesicatoria (Nakamura et al. 2018), respectively. 
Furthermore, the enzymes GH146 and GH127 are sepa-
rated in the phylogenetic tree (Fig. 2B), and Bll3HypBA1 
shows only 23% and 19% identities with the GH127 β-l-
arabinofuranosidase paralogs Bll1HypBA1 and Bll2Hy-
pBA1 (BLLJ_1826), respectively. The alignment of the 
GH127 and GH146 catalytic domains revealed that the Zn-
coordinating residues and catalytic residues are conserved 
in Bll3HypBA1 (Fig. S1).

Production of recombinant Bll3HypBA1 protein

The recombinant Bll3HypBA1-NΔ35CΔ761 protein 
without the N-terminal signal peptide and the C-terminal 
domains (Fig. 2A) was detected as a soluble protein only at 
a low expression level under induction condition at 20 °C. 
The purified recombinant Bll3HypBA1-NΔ35CΔ761 
protein migrated as a single band on SDS-PAGE, which 
was in agreement with the theoretical molecular mass 
of 129,964 Da (Fig. S2). To obtain a clone suitable for 
X-ray crystallography and biochemical analysis, we con-
structed Bll3HypBA1-NΔ379CΔ761 and Bll3HypBA1-
NΔ379CΔ933 without the LamG region. These clones 
were expressed as soluble proteins at 30 °C and purified 
as a single band in agreement with the theoretical molecu-
lar mass of 94,145 Da for Bll3HypBA1-NΔ379CΔ761 and 
75,016 Da for Bll3HypBA1-NΔ379CΔ933 (Fig. S2). The 
estimated molecular masses by gel filtration chromatography 
were 91 kDa and 76 kDa for Bll3HypBA1-NΔ379CΔ761 
and Bll3HypBA1-NΔ379CΔ933, respectively, suggesting 
that both protein constructs are monomeric in solution (data 
not shown).

Substrate specificity and general properties 
of the recombinant Bll3HypBA1 protein

The substrate specificity of Bll3HypBA1 was compared with 
that of the other three paralogs of B. longum subsp. longum 
JCM 1217 using some natural polysaccharides as substrates. 

As shown in Fig. 3A, Bll3HypBA1-NΔ35CΔ761 released 
l-arabinose from sugar beet arabinan, larch AG, and gum 
arabic AGP, whereas other paralogs in B. longum subsp. 
longum JCM 1217 could not. This result suggests that Bll-
3HypBA1 has a specific ability to degrade the terminal β-l-
Araf moieties of these polysaccharides. The l-arabinose con-
tent after the overnight reaction of Bll3HypBA1 was 0.32% 
for sugar beet arabinan, 0.39% for larch AG, and 0.20% for 
gum arabic AGP. This result indicates that a small amount of 
terminal β-l-Araf residues is present in AGPs and arabinans. 
Bll3HypBA1 also released l-arabinose from Araf-β1,3-
ArafGal2 (Fig. 3B left). The mass of the degraded ArafGal2 
was m/z 474.40 (calc. m/z 474.16), which was a reduction in 
the mass of l-arabinose (MW 132) from Araf-β1,3-ArafGal2 
(m/z 606.48; calc. m/z 606.20). Subsequently, the released 
ArafGal2 was further hydrolyzed to β1,6-Gal2 by α-l-
arabinofuranosidase BlArafA. Bll3HypBA1 also released 
l-arabinose from Araf-β1,3-Araf4 (m/z 678.77; calc. m/z 
678.22), and the hydrolysate Araf4 was further degraded by 
A. niger α-l-arabinofuranosidase AnAFASE (Fig. 3B, right). 
The specific activity of Bll3HypBA1-NΔ379CΔ761 for 
Araf-β1,3-ArafGal2 was two times higher than that for Araf-
β1,3-Araf4 (Table 2). In a comparison of the specific activi-
ties of larch AG, sugar beet arabinan, and gum arabic AGP, 
Bll3HypBA1-NΔ35CΔ761 with N-terminal LamG was 5.8-, 
1.7-, and 1.1-fold higher than Bll3HypBA1-NΔ379CΔ761 
without N-terminal LamG, respectively (Table S2). Alterna-
tively, Bll3HypBA1-NΔ35CΔ761 was 1.6-fold lower than 
Bll3HypBA1-NΔ379CΔ761 for Araf-β1,3-ArafGal2.

Furthermore, synthetic arabinosyl disaccharides con-
taining terminal β1,2-, β1,3-, and β1,5-Araf structures were 
used for a detailed evaluation of the linkage specificity of 
this enzyme (Ishiwata et al. 2022a). Bll3HypBA1 released 
l-arabinose from Araf-β1,3-Araf-α-OMe and slightly from 
Araf-β1,2-Araf-α-OMe but not from Araf-β1,5-Araf-α-OMe 
(Fig. 3C). Conversely, Bll1HypBA1 completely hydrolyzed 
these substrates. Bll3HypBA1 also exhibited < 1% degra-
dative activity for Araf-β-pNP, Araf-β-OMe, Araf-β-Hyp 
glycosides, and β-AOSs containing Araf-β1,2-linkage com-
pared with Araf-β1,3-ArafGal2 containing Araf-β1,3-linkage 
(Table 2). These results showed that Bll3HypBA1 is a β-l-
arabinofuranosidase specific for Araf-β1,3-Araf structures.

The optimal temperature and pH for Araf-β1,3-ArafGal2-
ABEE were 50 °C and 5.5, respectively (Fig. S3). Trans-
glycosylation products were detected via TLC when 5% 
methanol, ethanol, and 1-propanol were used as acceptors 
(Fig. S4). These Rf values of TLC spots were similar to pre-
vious ones for Bll1HypBA1 (Fujita et al. 2014b). This result 
indicates that Bll3HypBA1 is the same anomer-retaining 
enzyme as other GH127/146 enzymes.

The rice anther AGP was predicted to contain Araf-β1,3-
ArafGal2 side chains, as depicted in the schematic in Fig. 4’s 
right column. To clarify the importance of Bll3HypBA1 in 
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Fig. 3  Substrate specificities of 
Bll3HypBA1. A TLC analysis 
using sugar beet arabinan, larch 
AG, and gum arabic AGP as 
substrates. The substrates were 
incubated in the absence ( −) 
or presence ( +) of enzymes 
(Bll1HypBA1, Bll2HypBA1, 
Bll3HypBA1-NΔ35CΔ761, or 
Bll4HypBA1) at 37 °C for 16 h. 
B HPAEC-PAD analysis using 
Araf-β1,3-ArafGal2 and Araf-
β1,3-Araf4 as substrates. The 
substrates were incubated with 
Bll3HypBA1-NΔ379CΔ761 at 
40 °C for 16 h. The hydrolysate 
was further incubated with α-l-
arabinofuranosidases BlArafA 
or AnAFASE. C TLC analysis 
using Araf-β1,2-Araf-α-OMe 
(β2), Araf-β1,3-Araf-α-OMe 
(β3), and Araf-β1,5-Araf-α-
OMe (β5) in the absence ( −) 
or presence of Bll3HypBA1-
NΔ379CΔ933 or Bll1HypBA1 
at 37 °C for 16 h. aThe substrate 
was ( +) completely hydrolyzed, 
( ±) partially hydrolyzed, and 
( −) not hydrolyzed
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the degradation of AGPs, a combination reaction with AGP-
degrading enzymes was performed. The reaction of Bll3Hy-
pBA1 alone produced a small amount of l-arabinose, whereas 
the reaction of Bl1,3Gal and BlArafA without Bll3HypBA1 
produced Araf-β1,3-ArafGal2 in addition to l-arabinose, 
galactose, and β1,6-Gal2 (Fig. 4). In contrast, Araf-β1,3-
ArafGal2 was completely degraded to l-arabinose and β1,6-
Gal2 in a combination reaction involving three enzymes. The 
releasing β1,6-Gal2 is probably degraded to galactose by intra-
cellular GH42 β-galactosidase (BLLJ_0443) in B. longum 
subsp. longum JCM 1217 (Fujita et al. 2019b). These findings 
suggest that Bll3HypBA1 is an effective cell surface anchor-
ing enzyme for the degradation of AGPs.

Crystal structure of Bll3HypBA1

The crystal structure of Bll3HypBA1-NΔ379CΔ761 
(aa: 380–1223) was determined at a resolution of 1.75 Å 
by the single-wavelength anomalous dispersion using a 
SeMet-derivative (Table S3). The NΔ379CΔ761 structure 
contained one molecule per asymmetric unit, and resi-
dues M379–V1051 were modeled. In the active site of the 
NΔ379CΔ761 structure, a Zn atom coordinated by E723, 
C725, C804, and C805 was clearly observed, and a Tris 
molecule was bound to the l-arabinose-binding site (sub-
site − 1) (Fig. S5A and B). A crystallographic anomalous 
scattering analysis was performed to identify the metal atom 
(Table S3). A Bijvoet difference density map of the data 
collected at 1.280 Å wavelength revealed a prominent peak 
at the metal site, whereas a difference map of the data col-
lected at 1.300 Å wavelength, which is above the absorp-
tion edge of Zn (1.2837 Å), showed a significant decrease 
in the anomalous scattering ability (Fig. S5C). This result 
confirmed that the metal ion bound at the active site is  Zn2+.

Since the region following residue 1052 in the 
NΔ379CΔ761 structure was disordered, we also crystallized 
the Bll3HypBA1-NΔ379CΔ933 (aa: 380–1051) construct. 
The crystal structure of NΔ379CΔ933 was determined at a 
resolution of 1.70 Å (Table S3). The NΔ379CΔ933 structure 
contained two molecules per asymmetric unit, and residues 
from M379 to E1050 were modeled for both chains (A and 
B). The three molecules, including one in NΔ379CΔ761 and 
two in NΔ379CΔ933, had almost identical main chain struc-
tures, as the root mean square deviation (RMSD) values for 
the Cα atoms between all chain pairs were less than 0.24 Å. 
The Zn-coordination site structure of NΔ379CΔ933 was 
also almost identical to that of NΔ379CΔ761 (Fig. S5D), 
but no Tris molecule was identified in the active site. 

Table 2  Substrate specificity of Bll3HypBA1 toward oligosaccha-
rides containing terminal β-Araf structure

a Bll3HypBA1-NΔ379CΔ761 was used for the enzymatic reactions as 
described in Materials and Methods
b Relative activity was expressed as the percentage of the activity 
toward Araf-β1,3-ArafGal2

Substrates Conc. (mM) Specific 
 activitya 
(units/mg)

Relative 
 activityb 
(%)

Araf-β1,3-ArafGal2 0.15 13 100
Araf-β1,3-Araf4 0.15 6.9 51
Araf-β-pNP 1.0 0.11 0.82
Araf-β-OMe 0.40 0.0027 0.021
Araf-β-Hyp(cis) 0.11 0.00027  < 0.01
Araf-β-Hyp(trans) 0.11 0.0071 0.053
Araf-β1,2-Ara 0.35 0.011 0.079
Araf-β1,2-Araf-β1,2-Araf-

β-Hyp
1.0 0.00011  < 0.01

Araf-β1,2-Araf-β-Hyp 0.13 0.00043  < 0.01

Fig. 4  Stepwise hydrolysis of 
rice AGP by bifidobacterial 
AGP degradative enzymes. Rice 
AGP was incubated with a com-
bination of Bl1,3Gal, BlArafA, 
and Bll3HypBA1-NΔ35CΔ761. 
A schematic drawing is shown 
in the right column. The cleav-
age sites of enzymes: Bl1,3Gal 
(black arrow), BlArafA (gray 
arrow), and Bll3HypBA1 (white 
arrow)
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Therefore, we primarily focused on the chain A structure 
of NΔ379CΔ933.

The crystal structure of GH146 Bll3HypBA1 consists 
of three domains: catalytic (α/α)6 barrel (aa: 379–820), 
β-sandwich 1 (aa: 821–920), and β-sandwich 2 (aa: 
921–1051) (Fig. 5A). The GH146 family member BT0349 
has an α-helical linker and a jelly roll domain following the 
β-sandwich 2 domain (Fig. 5B). Although the C-terminal 
jelly roll domain of BT0349 is structurally similar to carbo-
hydrate-binding module (CBM) family 35, the function of 
this domain remains unknown (Luis et al. 2018). While the 
GH146 enzymes (Bll3HypBA1 and BT0349) are monomeric 
in solution, GH127 Bll1HypBA1 forms a homodimer by 

interactions between the β-sandwich 2 domains (Fig. 5C). 
Extended structural elements in the β-sandwich 2 domain of 
the GH146 enzymes (a loop with two β-strands in Bll3Hy-
pBA1 and the jelly roll domain in BT0349) interact with the 
catalytic domain (Fig. 5A and B).

Figure 5D, E, and F depict the top views of the catalytic 
domain of GH146 and GH127 enzymes. In Bll3HypBA1, 
loop 1 in β-sandwich 2 (aa: 947–969) partially covers the 
active site, whereas loop 2 (aa: 707–718) supports loop 
1 (Fig. 5D). The C-terminal jelly roll domain of BT0349 
shields its active site (Fig. 5E, transparent red). Loop 1 (aa: 
566–590) is distant from the active site in BT0349, whereas 
loop 2 is absent. In GH127 Bll1HypBA1, the active site is 

Fig. 5  Overall and the catalytic 
domain structures of the GH146 
and GH127 enzymes. A–C 
Domain structures of A GH146 
Bll3HypBA1 and B GH146 
BT0349 and dimer structure 
of C GH127 Bll1HypBA1. 
A ribbon presentation with 
a rainbow color (blue to red 
from the N- to C-terminus) is 
shown. Red circles indicate 
the Zn atoms at the active 
site (gray spheres). D–F Top 
views of the catalytic domain 
of D GH146 Bll3HypBA1, E 
GH146 BT0349, and F GH127 
Bll1HypBA1. In E, an α-helix 
linker and the C-terminal 
jelly roll domain are shown in 
transparent color (orange to red)
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covered by a long loop A (aa: 35–49) in the (α/α)6 barrel 
domain (Fig. 5F) (Ito et al. 2014).

Figure 6 depicts the active site structures of the GH146 
and GH127 enzymes. The Zn atom is coordinated by E723, 
C725, C804, and C805 in Bll3HypBA1 (Fig. 6A). The Zn-
coordination structure of Bll3HypBA1 is identical to that 
of BT0349 and Bll1HypBA1 (Fig. 6B and C). R273, H194, 
H142, and Y145 form the substrate binding site of GH127 
Bll1HypBA1 (Fig. 6C), whereas these residues are com-
pletely different in GH146 enzymes. F448 and I522 occupy 
the active site in Bll3HypBA1 (Fig. 6A), whereas W162 
occupies this position in BT0349 (Fig. 6B). Therefore, 
these residues may determine the β-linkage specificity of 
Bll3HypBA1.

Mutational analysis

Next, using site-directed mutagenesis, we determined the 
significance of active site residues on enzyme activity 
(Fig. 7). Substitutions were made at the Zn-coordinating 
residues (E723, C725, C804, and C805), catalytic resi-
dues (E694 and C804), and residues near the catalytic 
center (W429, Y526, E578, H628, N630, T631, and 
Y771). The activity of the mutants was analyzed via 

TLC using Araf-β1,3-Araf-α-OMe as the substrate. The 
mutant enzymes at the Zn-coordinating and catalytic resi-
dues (E694Q, E694A, E723Q, E723A, C725S, C725A, 
C804S, C805S, and C805A) completely lost their activ-
ity (Fig. 7A). HPLC analysis also confirmed the impor-
tance of these residues (Table S4). For other active site 
residues, E578A also lost its activity, whereas W429A, 
Y526A, and N630A exhibited slight spots of l-arabinose 
release on TLC, indicating significantly diminished activ-
ity (Fig. 7A). H628A, T631A, and Y771A exhibited resid-
ual spots of the substrate Araf-β1,3-Araf-α-OMe but clear 
spots of l-arabinose after reaction at 37 °C for 30 min, 
indicating that these mutants retained their activity.

The result of the mutational analysis is shown in Fig. 7B 
by color codes. Residues without activity, residues with 
slight activity, and residues with significant activity in the 
mutant enzymes are depicted in magenta, green, and blue, 
respectively. The Zn-coordinating three Cys and one Glu 
residue and the acid/base catalyst residue were essential 
for activity. In the active site, E578 mutants lacked activ-
ity. W429 and E578 may participate in substrate recogni-
tion at subsite − 1 (Fig. 6A). N630 and Y526 play signifi-
cant roles in the activity as well. H628, T631, and Y771 
are involved in substrate recognition but are not required 

Fig. 6  Active site structures of 
the GH146 and GH127 enzymes. 
A GH146 Bll3HypBA1, B 
GH146 BT0349, and C GH127 
Bll1HypBA1. The label 
characters of the Zn-coordinating 
residues are underlined. The 
catalytic residues (nucleophile 
and acid/base catalyst) are 
indicated by labels of red 
characters
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for activity. These nonessential residues may recognize the 
reducing end side of Araf-β1,3-Araf at subsite + 1.

Discussion

Previously, we characterized AGP-degrading enzymes in 
B. longum subsp. longum. The degradative enzymes are 
encoded by an AGP degradation gene cluster containing 
GH43_24 Bl1,3Gal (BLLJ_1840) and GH30_5 Bl1,6Gal 
(BLLJ_1841) and a GH43 gene cluster containing five 
GH43 α-l-arabinofuranosidases. GH43_22 BlArafA 
(BLLJ_1854) acts on the α1,3-linked Araf of AGP (Fujita 
et  al. 2019a), GH43_22 BlArafB (BLLJ_1853) acts 
on the α1,5-linked Araf of the arabinan backbone, and 
GH43_27 BlArafC (BLLJ_1852) acts on the α1,2- and 
α1,3-linked Araf on the arabinan side chains (Komeno 
et al. 2019). Recently, BlArafD (BLLJ_1851) and BlArafE 
(BLLJ_1850) with tandem GH43 domains have been char-
acterized. The GH43_UC (uncharacterized subfamily of 
GH43) domain of BlArafD acts on the α1,2-linked Araf 
of the α1,2- and α1,3-Araf doubly substituted arabinoxy-
lan, whereas the GH43_26 BlArafD domain acts on the 

arabinan backbone (Komeno et al. 2022). In contrast, the 
GH43_22 BlArafE acts on the α1,3-linked Araf of the 
α1,3- and α1,4-Araf doubly substituted gum arabic AGP, 
whereas GH43_34 BlArafE acts on the remaining α1,4- 
linked Araf (Sasaki et al. 2022). A mixture of Bl1,3Gal, 
Bl1,6Gal, and BlArafA had a synergistic effect on the 
degradation of larch AG but only released 3.3% of the 
polysaccharide’s sugar component (Fujita et al. 2019a). A 
GH127 β-l-arabinofuranosidase, BT3674, in Bacteroides 
thetaiotaomicron showed a synergistic effect with exo-β-
1,3-galactanases for the degradation of larch AG (Cart-
mell et al. 2018). Notably, Bll3HypBA1 (BLLJ_1848) is 
flanked by the AGP degradation gene cluster and GH43 
gene cluster. In addition to Bll3HypBA1, all AGP degrada-
tion enzymes and GH43 α-l-arabinofuranosidases contain 
C-terminal membrane anchoring regions, indicating that 
these enzymes act synergistically to degrade AGPs and 
arabinans on the bifidobacterial cell surface. In contrast, 
the AGP degradation gene cluster is conserved in nearly 
all B. longum subsp. longum strains, whereas the Bll3Hy-
pBA1 ortholog (> 99% identity) was conserved in only 
31 strains (5.2%) in 600 B. longum and B. longum subsp. 
longum strains in the NCBI genome database. In addition, 

Fig. 7  Mutational analysis of 
Bll3HypBA1. A TLC analysis 
of the wild-type Bll3HypBA1-
NΔ379CΔ933 and its mutants 
using Araf-β1,3-Araf-α-OMe at 
37 °C for 30 min. B Active site 
residues colored by the effects 
of mutation: magenta, no activ-
ity detected for mutants; green, 
weak activity detected by TLC; 
blue, activity detected; white, 
not examined
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the orthologous proteins (> 78% identity) are not con-
served in other bifidobacterial species except for strains of 
B. aesculapii and B. primatium, which were isolated from 
the feces of common marmosets and cotton-top tamarins, 
respectively. These findings indicate that the Bll3HypBA1 
ortholog is not a universal gene in bifidobacteria.

Bll3HypBA1 contains two independent LamG domain 
modules. Upon comparing the reactivities of Bll3HypBA1-
NΔ35CΔ761 with N-terminal LamG and Bll3HypBA1-
NΔ379CΔ761 without LamG, the former were more reac-
tive for polysaccharides than the latter (Table S2). Notably, 
the N-terminal LamG domain was conserved in two adjacent 
AGP degradative enzymes (Bl1,3Gal and Bl1,6Gal) and four 
GH43 α-l-arabinofuranosidases (BlArafB-E) in B. longum 
subsp. longum JCM 1217. CBMs in bifidobacteria are pre-
dicted to serve as substrate and/or hydrolysate docking sta-
tions (van den Broek et al. 2008). The N-terminal LamG 
domain may aid in the degradation of AGPs and arabinans 
for bifidobacterial cell surface anchoring enzymes.

In the present study, the crystal structure of Bll3HypBA1 
was determined as the second three-dimensional structure 
of the GH146 member following BT0349. BT0349 has a 
C-terminal jelly roll domain that covers the active site, and 
this enzyme does not appear to bind polymer substrates 
(Fig. 5B). BT0349 is present in the PUL of rhamnogalactu-
ronan-I (RG-I), which comprises multiple GHs and is antici-
pated to act on oligosaccharides cleaved by other GHs. In 
contrast, Bll3HypBA1 can act independently on rice AGP 
(Fig. 4). This is consistent with the structural characteristics 
of Bll3HypBA1, which contains no large structural element 
covering the active site. The Zn atom of Bll3HypBA1 is 
coordinated by  Cys3-Glu residues, and GH127 and GH146 
enzymes share this structural characteristic (Cartmell et al. 
2018; Ito et al. 2014; Luis et al. 2018; Maruyama et al. 
2022; McGregor et al. 2021). In our previous studies, we 
elucidated the reaction mechanism of GH127 Bll1HypBA1 
using synthetic inhibitors that were specifically designed for 
cysteine glycosidase (Ishiwata et al. 2022b; Maruyama et al. 
2022). It has been demonstrated that the coordination of 
cysteine to  Zn2+ is necessary for deglycosylation from the 
thioglycosyl intermediate, which is energetically unfavorable 
in the absence of metal coordination (McGregor et al. 2021). 
Consequently, this zinc coordination structure is shared by 
clan GH-P (GH127 and GH146) with cysteine as the cata-
lytic nucleophilic residue. In addition, we performed a muta-
tional analysis of the active site residues of Bll3HypBA1 
and demonstrated the significance of these residues for the 
enzyme activity toward β1,3-linked Araf disaccharide. In 
addition to Zn-coordinating and catalytic residues, E578 was 
demonstrated to be essential for activity. Several other active 
site residues have been shown to contribute significantly to 
the enzyme activity, providing a structural basis for the strict 
recognition toward the Araf-β1,3-linkages.

Although it is known that gum arabic AGP from Acacia 
senegal is partially substituted by Gal-α1,3- or Arap-β1,3- at the 
Araf-α1,3-terminal sugar (Sasaki et al. 2021), the presence of 
Araf-β1,3 substitution has never been reported. Bifidobacterial 
GH39 3-O-α-d-galactosyl-α-l-arabinofuranosidase has been 
previously characterized for the release of Gal-α1,3-Araf disac-
charide and 3-O-β-l-arabinopyranosyl-α-l-arabinofuranosidase 
for the release of Arap-β1,3-Araf disaccharide on AGP (Sasaki 
et al. 2021, 2023). The presence of β-Araf in gum arabic AGP 
and larch AG has been demonstrated, but the linkage positions 
remain unclear (Cartmell et al. 2018). In addition to quinoa 
arabinan (Wefers et al. 2014) and rice AGP (Kawaguchi et al. 
1996), we found Araf-β1,3 substitution in larch AG, gum 
arabic AGP, and sugar beet arabinan. These results indicated 
that AGPs and arabinans may contain terminal Araf-β1,3-
linkages. Since partially substituted sugars prevent enzymatic 
degradation of these polysaccharides by bacteria, the pres-
ence of Bll3HypBA1 and orthologous enzymes is advanta-
geous for some Bifidobacterium and Bacteroides species with 
AGP-degrading ability. Jones et al. found GH39 α-l-(β-1,2)-
arabinofuranobiosidase from rumen fungi; this enzyme releases 
Araf-β1,2-Araf disaccharide on sugar beet arabinan (Jones et al. 
2017). To the best of our knowledge, Araf-β1,3-Araf disaccha-
ride-releasing enzyme has not been discovered. Bll3HypBA1 
is useful for glycan structure analysis, oligosaccharide prepara-
tion, and Araf-β1,3 content measurement due to its specificity 
for the Araf-β1,3-Araf structure.
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