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Abstract  
The Gemmatimonadota phylum has been widely detected in diverse natural environments, yet their specific ecological roles 
in many habitats remain poorly investigated. Similarly, the Candidatus ARS69 phylum has been identified only in a few 
habitats, and literature on their metabolic functions is relatively scarce. In the present study, we investigated the ecological 
significance of phyla Ca. ARS69 and Gemmatimonadota in the Arctic glacier foreland (GF) ecosystems through genome-
resolved metagenomics. We have reconstructed the first high-quality metagenome-assembled genome (MAG) belonging to 
Ca. ARS69 and 12 other MAGs belonging to phylum Gemmatimonadota from the three different Arctic GF samples. We 
further elucidated these two groups phylogenetic lineage and their metabolic function through phylogenomic and pangenomic 
analysis. The analysis showed that all the reconstructed MAGs potentially belonged to novel species. The MAGs belonged 
to Ca. ARS69 consist about 8296 gene clusters, of which only about 8% of single-copy core genes (n = 980) were shared 
among them. The study also revealed the potential ecological role of Ca. ARS69 is associated with carbon fixation, deni-
trification, sulfite oxidation, and reduction biochemical processes in the GF ecosystems. Similarly, the study demonstrates 
the widespread distribution of different classes of Gemmatimonadota across wide ranges of ecosystems and their metabolic 
functions, including in the polar region.

Key points
• Glacier foreland ecosystems act as a natural laboratory to study microbial community structure.
• We have reconstructed 13 metagenome-assembled genomes from the soil samples.
• All the reconstructed MAGs belonged to novel species with different metabolic processes.
• Ca. ARS69 and Gemmatimonadota MAGs were found to participate in carbon fixation and denitrification processes.

Keywords Genome-resolved metagenomics · Phylogenomics · Candidatus ARS69 · Gemmatimonadota · Biogeochemical 
processes

Introduction 

The Arctic glacier foreland (GF) ecosystems are formed due 
to glaciers retreat; recent studies show that they continuously 
expand in the polar and alpine regions (Ficetola et al. 2021; 
Li et al. 2019a). When a glacier retreats, new landscapes are 
exposed, locked under the ice for several years (Venkatacha-
lam et al. 2021). Microorganisms initially colonize these 

new terrains and play a pivotal role in nutrient recycling and 
ecosystem functioning by participating in biogeochemical 
processes (Mapelli et al. 2018; Sun et al. 2023; Venkatacha-
lam et al. 2021). In the present study, we focused on micro-
bial phyla, Ca. ARS69 and Gemmatimonadota, to decipher 
their potential ecological role in the Arctic GF ecosystems.

Current progress in genome sequencing technologies 
and the development of novel bioinformatics tools revo-
lutionized microbial ecology research by circumventing 
the necessity to isolate and characterize microbial groups 
from complex environmental samples (Parks et al. 2017). 
The genome-based phylogenetic taxonomic framework has 
been used to describe several novel microbial lineages, to 
elucidate key microbially mediated metabolic processes 
even among complex ecosystems (Nayfach et al. 2021). 
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The Genome Taxonomy Database Toolkit (GTDB-Tk) has 
reclassified several microbial candidate phyla due to their 
distinct lineages (Chaumeil et al. 2022). One such group is 
Ca. ARS69, a monophyletic group from the phylum Gem-
matimonadota. To date, the Ca. ARS69 phylum does not 
have any culturable representative. As of June 2023, only 
one MAG, reconstructed from the samples collected in 
the Indian Ocean (Sunagawa et al. 2015), was publicly 
available in the NCBI database. However, the MAG was 
only 55.49% complete, thus making it challenging to elu-
cidate several critical metabolic processes associated with 
this phylum. Recently, Pallen et al. (2022) proposed a new 
taxonomic name Ca. Tufoliota for Ca. ARS69. However, 
the International Committee on Systematics of Prokary-
otes (ICSP) has yet to approve the proposed name.

The Ca. ARS69 closest lineage, phylum Gemmatimon-
adota, was considered as cosmopolitan group account-
ing for about 0.2–6.5% of total diversity and identified 
as one of the top eight abundant bacterial phyla in the 
soil (Venkatachalam et al. 2021). To date, only six cul-
turable representatives, namely, Gemmatimonas auranti-
aca, G. phototrophica, G. groenlandica, Roseisolibacter 
agri, Gemmatirosa kalamazoonesis, and Longimicrobium 
terrae, have been isolated from this particular phylum 
(Aldeguer-Riquelme et al. 2022). Species L. terrae are 
associated with the class of Longimicrobia, whereas all 
the remaining isolates belong to the class of Gemmati-
monadetes. Previous reports have shown that G. auranti-
aca can reduce  N2O, whereas G. phototrophica is known 
to participate in anoxygenic phototrophic mechanisms due 
to the presence of photosynthesis gene cluster (PGC) in 
their genome (Park et al. 2017). These PGC gene clus-
ters are very similar to the one present in the phylum 
Proteobacteria, and it is suggested that the phototrophic 
mechanism in the Gemmatimonadota originated from Pro-
teobacteria through horizontal gene transfer mechanisms 
(Mujakić et al. 2021). Recent studies have also shown the 
pivotal role of Gemmatimonadota in oxidizing greenhouse 
gases like  N2O, hydrogen, and participating in the nitrogen 
and sulfur cycling process (Mujakić et al. 2021; Mujakić 
et al. 2022). The 16S rRNA gene–based metabarcoding 
approach revealed its global presence across several eco-
systems, including marine, terrestrial, glacier, deep sea, 
hydrothermal vents, and wastewater (Aldeguer-Riquelme 
et al. 2022). A recent study from Aldeguer-Riquelme et al. 
(2022) deciphered the distribution, abundance, and eco-
logical functions of Gemmatimonadota class PAUC43f, 
which are known to be prevalently distributed across 
marine ecosystems. However, the ecological role of Gem-
matimonadota groups especially in GF ecosystems is 
relatively scarce. Similarly, there is no literature on the 
genetic diversity and metabolic functions of Ca. ARS69 
phylum, which led us to investigate in detail about the 

genetic, metabolic diversity and ecological functions of 
these two phyla in the present study.

Materials and methods

Sample collection and data description

In this study, three surface soil samples were collected 
across the Midtre Lovénbreen GF during the summer season 
of 2019 (Venkatachalam et al. 2021). The genomic DNA was 
extracted from these three soil samples using PureLink™ 
microbiome DNA purification Kit (Invitrogen, USA). Three 
metagenomic shot-gun libraries from the extracted DNA 
were prepared using the NEBNext® Ultra™ DNA Library 
Prep Kit (New England Biolabs). The quality of the librar-
ies was assessed using Tapestation (Agilent Technologies) 
and sequenced using paired-end sequencing (2 × 150 bp) 
chemistry on an Illumina HiSeq X10 platform. In the present 
study, we have also used publicly available metagenomic 
datasets (https:// www. ebi. ac. uk/ ena/ brows er/ view/ PRJEB 
41174) from three different GF ecosystems (Varliero et al. 
2021; Nash et al. 2018), namely, Midtre Lovénbreen glacier 
(Svalbard), Russell glacier (Greenland), and Storglaciären 
(Sweden). The MAGs belonging to Gemmatimonadota were 
reconstructed from these reference datasets. The metadata 
of all the samples used in the present study is listed in Sup-
plementary table S1. The sequence datasets generated in this 
study are publicly available under the following NCBI Bio 
project ID: PRJNA944391.

Metagenome assembly and reconstruction of MAGs

The sequence datasets were first subjected to a quality check 
using the FastQC program, followed by the removal of low 
quality and trimming of adapter sequences using “iu-filter-
quality-minoche,” implemented in Illumina-utils v2.11 
package in Anvio v7.1 (Eren et al. 2021; Eren et al. 2013). 
Similarly, any sequences matching the human genome were 
removed from the dataset using Bowtie2 v2.3.5 (Langmead 
and Salzberg 2012). The sequence reads were assembled 
into longer contiguous sequences by a de novo assembly 
approach using metaSPAdes v3.15.2 (Nurk et al. 2017). The 
assemblies were further quality-checked using MetaQUAST 
v5.0.2 (Mikheenko et al. 2015), followed by automated bin-
ning was performed using three separate binning tools, 
namely, CONCOCT v1.1.0 (Alneberg et al. 2013), maxbin2 
v2.2.7 (Wu et al. 2015), and METABAT2 v2.12.1 (Kang 
et al. 2019) to generate MAGs in the Anvio v7.1 pipeline. 
The MAGs were manually refined by the anvi-refine pro-
gram using anvi’o interactive interface by exploiting differ-
ential coverage, tetranucleotide frequency, and marker gene 
content information to remove contamination/redundancy. 

https://www.ebi.ac.uk/ena/browser/view/PRJEB41174
https://www.ebi.ac.uk/ena/browser/view/PRJEB41174
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Then, DAS_Tool v1.1.2 was employed to sort the MAGs 
which contain completeness of > 50% and redundancy of < 
10% among the three binning MAG sets. The MAG abun-
dance was calculated by considering the mean coverage of 
each contig divided by that sample’s overall mean coverage 
using an anvi-profile program (Eren et al. 2021). Further-
more, a non-metric multidimensional scaling (NMDS) plot 
and ANOSIM analysis were carried out on the MAG abun-
dance data to study the distribution patterns using PRIMER 
v7 (Clarke and Gorley 2015).

Taxonomic classification, phylogenomic, 
pangenomic, and metabolic functional analysis 
of MAGs

All the reconstructed MAGs were subjected to average 
nucleotide identity (ANI)–based taxonomic classification 
using GTDB-Tk tool v1.5.1 against reference database 
V207 (Chaumeil et al. 2019, 2022). If any MAGs that do 
not classify ANI cut-off of 95% were considered as novel 
species. Furthermore, to facilitate the comparative phylog-
enomic analysis of Ca. ARS69 and Gemmatimonadota, we 
have downloaded publicly available MAG datasets belong-
ing to Gemmatimonadota (n = 1278) and Ca. ARS69 (n = 
1) phyla using the NCBI genome portal. The downloaded 
MAGs were again reclassified GTDB-Tk tool v1.5.1 as 
described above. Similarly, the quality of the genomes was 
also screened by checkM tool v1.2.2 (Parks et al. 2015) 
(Supplementary table S2). The classification revealed a 
further 3 MAGs belonged to Ca. ARS69 phylum. How-
ever, these MAGs were only about 55 to 77% complete 
(Supplementary table S2). Despite their low completeness, 
we have included those MAGs in the analysis as they are 
the only available source belonging to Ca. ARS69. While 
among Gemmatimonadota, only those MAGs with high 
completeness (> 85%) and less redundancy (< 10%) were 
subjected to dereplication using dRep v3.0.0 tool at 95% 
ANI to select only representative MAGs at the species 
level. The resulting reference MAGs (n = 240) belonged to 
diverse ecosystems like freshwater (n = 73), terrestrial (n 
= 71), marine (n = 64), wastewater (n = 17), deep sea (n = 
10), groundwater (n = 7), glacier (n = 6), alkaline salt lake 
(n = 4), and wood decay (n = 1). The reference MAGs, 
along with reconstructed MAGs from GF ecosystems (n = 
13), were further subjected to phylogenomic analysis using 
PhyloPhlAn v.3.0 package (Asnicar et al. 2020) with the 
following parameters (“-diversity high,” “-d phylophlan,” 
“--accurate”). The generated phylogenetic tree was visual-
ized using Anvio v7.1. Based on the phylogenomic analy-
sis, only those MAGs and isolated genomes closely affili-
ated with reconstructed MAGs were further subjected to 
pangenomic analysis. The study was carried out as per the 
pangenomics workflow (https:// meren lab. org/ 2016/ 11/ 08/ 

pange nomics- v2/) using Anvio v7.1. The metabolic capac-
ity of the MAGs was analyzed by the METABOLIC v4.0 
program to identify the potential metabolic genes corre-
sponding to carbon, nitrogen, sulfur cycles using 143 cus-
tom HMM profiles against the curated reference databases 
of KEGG, TIGRfam, and Pfam (Zhou et al. 2022). We 
also analyzed the potential community-level functions and 
relative abundance of these MAGs in the glacier foreland 
ecosystems.

Results

Metagenome assembly and genomic characteristics 
of the reconstructed MAGs

The paired-end metagenomic reads were assembled by 
the de novo approach for the samples collected across 
Midtre Lovénbreen GF along with publicly available 
metagenomic datasets from similar Arctic GF ecosystems 
(Varliero et al. 2021), namely, Russell glacier (Greenland) 
and Storglaciären (Sweden). The metagenome assembly 
resulted in an average of 6437 Mb length for each sample 
with approximately 70,303 contigs with > 2.5-kb length 
(Supplementary table S3). A list of metagenome assembly 
characteristics for each sample, including L50, N50, and 
the number of genes annotated, was given in Supplemen-
tary table S3. We have used both automated and manual 
binning refinement processes (visually inspecting contigs 
through an interactive interface) along with dereplication 
strategies to reconstruct high-quality MAGs belonging to 
Gemmatimonadota (n = 12) and Ca. ARS69 (n = 1) from 
the metagenome assemblies through genome genome-
resolved metagenomic approach. The MAGs complete-
ness ranged from 86 to 99%, with the redundancy ratio 
between 0 and 9%, whereas size ranged from 2.3 to 5.1 
Mb (Supplementary table S4). Similarly, the GC content 
of the MAGs was from 60.9 to 68%. All the reconstructed 
MAGs (n = 13) were of medium to high-quality draft, 
with most of them containing all the ribosomal rRNA 
genes (5S, 16S, 23S rRNA, and tRNAs) within their 
genome according to MIMAG genomic standards (Bow-
ers et al. 2017). The MAG abundance was also found to 
be varied, with few MAGs being exclusively present only 
in a few of the samples (Supplementary fig. S1, Supple-
mentary table S4). For example, ML2_Bin_1 and ML1_
Bin_2 were highly abundant only in Midtre Lovénbreen 
GF, while G1_Bin_29 and G5_Bin_00004 were preva-
lently distributed across Russell and Storglaciären GFs. 
The NMDS analysis also showed that MAG abundance 
patterns significantly differed across three GF ecosystems 
(P < 0.002, R = 0.561; Fig. S1B).

https://merenlab.org/2016/11/08/pangenomics-v2/
https://merenlab.org/2016/11/08/pangenomics-v2/
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Phylogenomic analysis of MAGs

The phylogenomic analysis was carried out by using the Phy-
loPhlAn v.3.0 package (Asnicar et al. 2020), which placed 
all the MAGs belonging to Ca. ARS69 phyla as a distinct 
lineage outside of Gemmatimonadota cluster (Fig. 1A). The 
reconstructed MAG (ML1_Bin_00002) belonging to Ca. 
ARS69 clustered within the family of ARS69 MAGs which 
was recovered from the marine sediment (GCA_013002585) 
and wastewater (GCA_021604925) ecosystems (Fig. 1A; 
Supplementary table S2). The genome-based taxonomic 
classification based on ANI showed that this MAG was 

classified up to only family level, thus potentially belong-
ing to novel genera (Supplementary table S4). Similarly, 
the MAGs belonging to Gemmatimonadota were grouped 
into four major clusters (Fig. 1A). Most of them belonged 
to the order of Longimicrobiales (aka SG8-23) and KS3-
K002, which was mainly recovered from marine, freshwater, 
and deep-sea ecosystems. While MAGs belonging to the 
order of Gemmatimonadales were widespread across ter-
restrial (n = 61), deep sea (n = 4), freshwater (n = 57), 
wastewater (n = 15), glacier (n = 6), groundwater (n = 6), 
marine ecosystems (n = 4) (Supplementary table S2). The 
reconstructed MAGs from GF ecosystems, ML2_Bin_1, 

Fig. 1  A Phylogenomic analysis 
of Ca. ARS69 and Gemmati-
monadota based on 253 MAGs 
and isolate genomes (publicly 
available) recovered among 
diverse ecosystems. The bar 
graphs represent the genome 
type, completeness, redundancy. 
Isolate genome Methanococcus 
maripaludis (GCF_002945325) 
was used as an outgroup. The 
color codes represent differ-
ent taxonomic lineages and 
ecosystems of the recovered 
MAGs. Bootstrap values are 
represented in the nodes of the 
tree. The taxonomic names in 
the supplementary table S2 
were arranged according to the 
names in the phylogenomic 
tree. B Pangenomic analysis of 
Ca. ARS69 MAGs (n = 5). The 
circle diagram was based on 
presence/absence of the 8296 
gene clusters (GCs) where it is 
represented by each layer for a 
single genome. Black and blue 
bars indicate presence of GCs, 
whereas grey indicates absence. 
The GCs are categorized based 
on their frequency among all 
the genomes as single copy 
core genes, accessory genes, 
and singletons. The other outer 
rings represent the presence of 
different KEGG, COG functions 
among each genome, where 
ANI values are also represented 
as heatmaps
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SW3_Bin_2 and G5_Bin_3, were phylogenetically closely 
associated with the family of GWC2-71-9, which is often 
found in terrestrial, freshwater, marine and deep-sea eco-
systems (Zheng et al. 2022). The MAGs, SW3_Bin_16, 
SW5_Bin_8, SW6_Bin_27, ML3_Bin_9, SV1_Bin_3, were 
clustered with genus UBA4720 which have been previously 
identified from terrestrial and freshwater ecosystems (Sup-
plementary table S4). Similarly, SW4_Bin_66 clustered with 
genus JACDCY01; G1_Bin_29 clustered with genus AG11; 
G5_Bin_4 clustered with genus FEN-1250. The ecological 
significance of these identified genera has not been studied 
previously.

Pangenomic analysis of MAGs

The pangenomic analysis was conducted using ANIVIO 
v.7.1 software (Eren et al. 2021). The investigation revealed 
that all the MAGs (n = 5) belonging to phylum Ca. ARS69 
consist of 8,296 gene clusters (12,925 genes), of which only 
about 8% of single-copy core genes (n = 980) were shared 
among them (Fig. 1B and Supplementary table S5). This 

observation suggests either the presence of incomplete refer-
ence genomes within this group or the existence of a distinct 
lineage that has yet to be discovered. The analysis further 
revealed the distribution of accessory genes (i.e., genes pre-
sent in more than one genome but not in all the genomes), 
which consist of 43% (n = 5571) of the total pangenome, 
whereas 49% of the genes (n = 6368) were categorized 
as singletons (i.e., genes only present in a single genome) 
among the studied genomes (Supplementary table S5). Alto-
gether, with the distribution of diverse metabolic gene clus-
ters along with average nucleotide identity (ANI), it is evi-
dent that the MAGs among this phylum are more divergent 
(ANI varied from 69 – 73%) and potentially belonging to 
novel microbial lineage (ANI < 85 % cut off; Supplementary 
table S6). For the Gemmatimonadota pangenome analysis, 
only those MAGs and isolate genomes that are found to be 
phylogenetically closely affiliated with reconstructed MAGs 
belonging to the phyla of Gemmatimonadota were used 
(Fig. 2). The study showed Gemmatimonadota (n = 27) was 
formed of 4 primary groups with about 10,424 gene clusters 
(63,837 genes). These four distinct groups within Gemmati-
monadota comprised about 22% of single-copy core genes 

Fig. 2  Pangenomic analysis of 
Gemmatimonadota MAGs and 
isolate genomes (n = 27). The 
circle diagram was based on 
the presence/absence of gene 
clusters (GCs), represented by 
each layer for a single genome. 
Black and blue bars indicate the 
presence of GCs, whereas grey 
indicates absence. The MAGs 
reconstructed from the present 
study were highlighted using 
the blue font. The GC is catego-
rized based on frequency among 
all the genomes as single copy 
core genes, accessory genes, 
and singletons. The other outer 
rings represent the presence 
of different KEGG and COG 
functions among each genome, 
where ANI values were also 
portrayed as heat maps
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and 48% of accessory genes (Supplementary table S7). The 
ANI values among the studied genomes varied from 69.7% 
to 99% (Supplementary table S8). Based on KEGG, most 
of the metabolic functions among these two bacterial phyla, 
Ca. ARS69 and Gemmatimonadota, were carried out mainly 
by core and accessory gene clusters (Supplementary table 
S5 & S7).

Metabolic functions of the reconstructed 
MAGs

Among the carbon cycling pathways, the metabolic genes 
encoding organic carbon oxidation were highly abundant 
(coverage 100%) across all the Ca. ARS69 MAGs. The meta-
bolic potential for acetate oxidation (coverage 100%), fer-
mentation (coverage 100%) and methanotrophy were also 

found to be prevalent in the Ca. ARS69 (Fig. 3). Among 
the nitrogen cycles, metabolic genes encoding for complete 
denitrification processes (nitrate, nitrite, nitric oxide, nitrous 
oxide reduction) and nitrite ammonification (anammox) 
genes, where in the case of sulfur cycles, genes encoding 
for sulfite oxidation, sulfate reduction and thiosulfate dis-
proportionation were identified in the Ca. ARS69 (Fig. 3). 
Biologically,  H2S is produced via sulfite reduction, thiosul-
fate disproportionation, and sulfur reduction, which were 
all identified exclusively in the MAG, ML1_Bin_2. A few 
of the MAGs within this group were also found to contain 
additional metabolic potential for iron oxidation and reduc-
tion processes (ML1_Bin_2, CA_021604925), arsenate 
reduction (CA_021604925) and selenate reduction processes 
(CA_021604925). Among the analyzed Gemmatimonadota 
MAGs (n = 27), many of them were found to contain genes 
encoding for organic carbon oxidation (n = 23, coverage = 

Fig. 3  Potential ecological role of Ca. ARS69 in biogeochemical pro-
cesses. The metabolic pathways associated with A the carbon cycle, 
B the nitrogen cycle, C the sulfur cycle, and D other cycles were rep-

resented in the schematic diagram. The number of MAGs containing 
each metabolic pathway and their coverage (%) was provided for each 
carbon, nitrogen, sulfur, and other cycles
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100%), fermentation (n = 17, coverage = 81%), acetate oxi-
dation (n = 12, coverage = 56.9%), and methanotrophy (n = 
2, coverage = 2.4%) (Fig. 4). The metabolic genes encoding 
carbon fixation, hydrogen generation, and hydrogen oxida-
tion were also found exclusively in a few MAGs belonging 
to this group which is not identified within the Ca. ARS69 
phylum. Similarly, among the sulfur cycles, genes encod-
ing sulfide and sulfur oxidation were exclusively found 
within MAGs belonging to Gemmatimonadota (Fig. 4). 
Where in the case of nitrogen cycles, all of the metabolic 
processes that are identified within the Ca. ARS69 phylum 
were also present among the MAGs of Gemmatimonadota 
(Fig. 4). Similarly, iron oxidation (n = 11, coverage 61.3%) 
and reduction process (n = 12, coverage 55.3%) were also 
prevalently identified within the MAGs belonging to Gem-
matimonadota, while none of them contain metabolic genes 

associated with arsenate and selenate metabolism. From 
the above analysis, it is evident that these MAGs belonging 
to Gemmatimonadota could be able to catabolize a wide 
range of organic and inorganic sources available in the GF 
ecosystems.

Discussion

The Arctic GF ecosystems are known to chronologically 
consist of different soil types at various developmental stages 
and inhabit distinct microbial community structures medi-
ating key biogeochemical processes (Mapelli et al. 2018). 
Due to rapid global warming, these GF ecosystems are rap-
idly evolving, which influences the succession of microbial 
community and vegetation structure across GF ecosystems 

Fig. 4  Potential ecological role of MAGs belonging to Gemmati-
monadota in the biogeochemical processes. The metabolic pathways 
associated with A the carbon cycle, B the nitrogen cycle, C the sul-
fur cycle, and D other cycles were represented in the schematic dia-

gram. The number of MAGs containing each metabolic pathway and 
their coverage (%) was provided for each carbon, nitrogen, sulfur, and 
other cycles



 Applied Microbiology and Biotechnology         (2024) 108:128   128  Page 8 of 11

(Kim et al. 2017; Schütte et al. 2009; Varliero et al. 2021; 
Venkatachalam et al. 2021, 2024). However, the rate of 
these successional dynamics can vary among different GF 
ecosystems, which is influenced by many variables such as 
climatic conditions, topography, bedrock composition, and 
nutrient availability (Mapelli et al. 2018). Microbial commu-
nities and their associated biogeochemical processes might 
be specific to each GF (Varliero et al. 2021). The physico-
chemical factors, total nitrogen, and total organic carbon 
mainly shaped the microbial community structure across 
Russell GF (Greenland), whereas chronological distance 
from glacier ice edge and soil pH shaped the community 
structure in the Midtre Lovénbreen and Storglaciären GFs 
(Varliero et al. 2021; Venkatachalam et al. 2021; Nash et al. 
2018). These differences may be due to the rate at which 
these GFs retreat in the current global warming scenario. 
Though several studies reported diversity and succession of 
microbial communities across the different GF ecosystems 
(Kim et al. 2017; Schuette et al. 2010; Schütte et al. 2009; 
Venkatachalam et al. 2021), only a few studies investigated 
functions and processes associated with microbial commu-
nities (Nash et al. 2018; Varliero et al. 2021). In particular, 
reconstructing MAGs directly from soil samples provides 
unique opportunities to study individual community mem-
bers, their metabolisms, and their survival strategies (Mag-
giori et al. 2021). In particular, the samples collected from 
the extreme environmental region are often much more dif-
ficult to cultivate in the laboratory in comparison to other 
tropical regions. In the present study, we specifically focused 
on reconstructed MAGs belonging to two microbial phyla, 
namely, Ca. ARS69 and Gemmatimonadota, to decipher their 
potential ecological functions.

One of the main notable findings from our study was 
the recovery of the first high-quality MAG belonging to 
Ca. ARS69 from the recently deglaciated region of Midtre 
Lovénbreen GF, Svalbard. The phylogenomic analysis of 
all the available MAGs within this group, along with its 
closets monophyletic group Gemmatimonadota, confirmed 
its distinct lineage (Fig. 1A). The genomic diversity among 
this group was also found to be highly diverse based on the 
ANI similarity and shared only few gene clusters between 
the analyzed MAGs in the study (Fig. 1B). The analysis 
showed several metabolic genes associated with organic car-
bon oxidation, acetate oxidation, fermentation, methanotro-
phy, denitrification, nitrate ammonification, sulfite oxidation, 
sulfate reduction, iron oxidation, iron reduction, and arsenate 
reduction processes among the Ca. ARS69 group (Fig. 3). 
The GF ecosystems are generally known to be oligotrophic 
(Dong et al. 2022; Venkatachalam et al. 2021), while the 
presence of diverse metabolic processes within this group 
suggests the prevalence of autotrophic mechanisms for their 
survival (Wong et al. 2020). Previous studies have also iden-
tified many novel microbial groups from such oligotrophic 

environments with potential ecological functions. For exam-
ple, novel MAGs belonging to Ca. Nitrosopolaris and Ca. 
Eremiobacterota were reported from the polar and alpine 
ecosystems and found to have genes associated with car-
bon and nitrogen fixation processes (Ji et al. 2021; Pessi 
et al. 2022; Venkatachalam et al. 2024). Similarly, metabolic 
genes related to nitrogen fixation, and rock weathering pro-
cesses have been investigated across four different Arctic GF 
ecosystems (Nash et al. 2018; Schuette et al. 2010; Varliero 
et al. 2021). Most microbial taxa identified in the recently 
deglaciated environment are generally inhabited by pio-
neering microbial groups that act as a seed bank for further 
soil developmental processes (Rime et al. 2016; Sun et al. 
2023). The identification of Ca. ARS69 phyla with diverse 
metabolic capabilities in the recently deglaciated environ-
ment suggests its crucial role in shaping the biogeochemical 
processes in GF ecosystem.

The phylogenomic and pangenomic analysis of Gemma-
timonadota showed the existence of four different groups 
within their phyla. Interestingly, on contrary to previous 
reports (Aldeguer-Riquelme et al. 2022; Mujakić et al. 
2021), the present study showed evidence that marine and 
deep ocean lineage is also closely affiliated with the terres-
trial subgroup of Gemmatimonadota (Figs. 1A and 2). The 
reconstructed MAGs from GF ecosystems, ML2_Bin_1, 
SW3_Bin_2, and G5_Bin_3, were phylogenetically closely 
associated with the family of GWC2-71-9, which is often 
found in terrestrial, freshwater, marine, and deep-sea eco-
systems (Zheng et al. 2022). All the reconstructed MAGs 
from this study belonged to the class of Gemmatimona-
detes and potentially novel taxa (Supplementary table 
S4). Bacterial taxa belonging to this class are known to 
be prevalent in different types of soil environments and 
wastewater treatment plants (Mujakić et al. 2021; Mujakić 
et al. 2022). In the Arctic GF ecosystems, taxa belonging 
to Gemmatimonadota were found to be composed of up 
to 6.5% of total bacterial diversity (Venkatachalam et al. 
2021). Previous studies based on 16S rRNA gene-based 
amplicon sequencing also showed the prevalent distribu-
tion of this group in the polar cold, dry desert soils (Cary 
et al. 2010; Chan et al. 2013). Despite numerous existing 
literatures on the diversity and distribution profiles of Gem-
matimonadota, still little is known about their metabolic 
strategies to delineate their role in the environment. The 
present study showed evidence of potential metabolic pro-
cesses associated with Gemmatimonadota bacterial groups 
in the Arctic GF ecosystems through genome-resolved 
metagenomics. One of the notable findings was the pres-
ence of metabolic genes encoding for hydrogen generation 
and hydrogen oxidation processes in the MAGs (Fig. 4), 
which delineates the involvement of Gemmatimonadota 
bacterial groups in scavenging atmospheric hydrogen for 
their chemosynthetic metabolic processes. Previous studies 
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have shown this chemosynthesis process was prevalently 
identified in the bacterial taxa belonging to Verrucomicro-
biota, Eremiobacterota, Proteobacteria, Chloroflexota, and 
Bacteroidota (Ortiz et al. 2021; Ray et al. 2022; Ray et al. 
2020). The genes encoding sulfide and sulfur oxidation 
processes were also identified only in the Gemmatimon-
adota MAGs, which were absent in the Ca. ARS69. Similar 
abundant bacterial groups associated with sulfur metabolic 
processes were also previously identified in polar soils (Li 
et al. 2019b; Ortiz et al. 2021; Xue et al. 2020). How-
ever, both of these groups were found to contain several 
genes encoding for nitrogen cycling, iron oxidation, and 
iron reduction processes. Previous studies have also shown 
iron-driven denitrification processes in many autotrophic 
microorganisms (Li et al. 2023; Mapelli et al. 2011). Sev-
eral previous studies have also reported the prevalence of 
microbial taxa associated with iron oxidation, iron reduc-
tion, and denitrification processes in the recently deglaci-
ated regions of GF ecosystems (Nash et al. 2018; Varliero 
et al. 2021). From the study, it is evident that both of these 
groups will play crucial roles in shaping the Arctic GF 
ecosystem functioning.

In the present study, we reconstructed the first high-
quality draft genome belonging to Ca. ARS69 phylum, 
which could participate in diverse metabolic processes in 
the Arctic GF ecosystems. We also deciphered the phy-
logenetic diversity of Gemmatimonadota and their wide-
spread distribution across several ecosystems, including its 
potential role in shaping the GF ecosystems. Our results 
expand the diversity of these two phyla and their putative 
role in carbon, nitrogen, and sulfur biogeochemical cycles. 
The reconstructed MAGs presented in this study will also 
serve as a valuable resource for future investigations into 
the dynamics, ecophysiology, and evolutionary processes 
within the Arctic GF ecosystems.
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