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Abstract 
The potential consequences for mankind could be disastrous due to global warming, which arises from an increase in the aver-
age temperature on Earth. The elevation in temperature primarily stems from the escalation in the concentration of greenhouse 
gases (GHG) such as  CO2,  CH4, and  N2O within the atmosphere. Among these gases, methane  (CH4) is particularly significant 
in driving alterations to the worldwide climate. Methanotrophic bacteria possess the distinctive ability to employ methane as 
both as source of carbon and energy. These bacteria show great potential as exceptional biocatalysts in advancing C1 bioconver-
sion technology. The present review describes recent findings in methanotrophs including aerobic and anaerobic methanotroph 
bacteria, phenotypic characteristics, biotechnological potential, their physiology, ecology, and native multi-carbon utilizing 
pathways, and their molecular biology. The existing understanding of methanogenesis and methanotrophy in soil, as well as 
anaerobic methane oxidation and methanotrophy in temperate and extreme environments, is also covered in this discussion. New 
types of methanogens and communities of methanotrophic bacteria have been identified from various ecosystems and thoroughly 
examined for a range of biotechnological uses. Grasping the processes of methanogenesis and methanotrophy holds significant 
importance in the development of innovative agricultural techniques and industrial procedures that contribute to a more favorable 
equilibrium of GHG. This current review centers on the diversity of emerging methanogen and methanotroph species and their 
effects on the environment. By amalgamating advanced genetic analysis with ecological insights, this study pioneers a holistic 
approach to unraveling the biopotential of methanotrophs, offering unprecedented avenues for biotechnological applications.

Key points
• The physiology of methanotrophic bacteria is fundamentally determined.
• Native multi-carbon utilizing pathways in methanotrophic bacteria are summarized.
• The genes responsible for encoding methane monooxygenase are discussed.
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Introduction

Global warming and initiation of ice ages are still a 
serious scientific problem (Supran et al. 2023). It seems 
that the global warming debate is increasing following the 

publication of Cheng et al. (2022) which was emphasized 
on imbalance evidence of human influence on climate. 
This leads to considerable controversy among different 
environmental and atmospheric scientists, as evidenced 
in several previous publications (Lackner 2015; Harvey 
et al. 2023; Jansson and Wu 2023). These publications and 
reports questioned the relationship between the increasing 
concentration of greenhouse gases (GHG) and the earth 
surface temperature.

It is reported that the atmospheric  CO2 concentration 
was reached to 420 μmol  mol−1 in 2022 (Le and Lee 
2022) which was increased by 51% and is responsible 
for 16% of the greenhouse effect (Jang et al. 2023). It is 
demonstrated that the atmospheric  CO2 concentration is 
an important factor in global warming and climate change 
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(Giunta et al. 2022). However, methane  (CH4) is a serious 
GHG that is 28 to 34 folds stronger than  CO2 in increasing 
global warming potential and climate change during the 
time (Wang et al. 2022). Le and Lee (2022) reported that 
the global atmospheric  CH4 concentration is increasing 
by 166% higher than the preindustrial level. Sadeh et al. 
(2023) reported that the  CH4 atmospheric concentration 
increased at a rate of 0.003 μmol  mol−1  year−1.

GHG cycling is complex and several biological and 
anthropogenic processes are involved (Lackner et  al. 
2021; Han et al. 2023). The most important anthropogenic 
activities are agriculture, fossil fuels, and biofuel burning, 
energy, waste, and industrial production (Chew et al. 2023). 
Previous research (Bartosiewicz et al. 2023) reported that 
waste, energy, industry, and agriculture contribute 20.61%, 
28.65%, 0.10%, and 50.63% of the calculated annual  CH4 
emission, respectively. The main biological source of 
atmospheric  CH4 in anoxic environments is produced by 
methanogens bacteria (Sadeh et al. 2023). The effect of 
reduction of  CH4 in reducing the global warming is 20 to 
60 times more than  CO2 emissions (Sadeh et al. 2023). So, 
finding a solution way to reduce the atmospheric  CH4 is 
so critical.

Methanotrophs or methane-oxidizing bacteria (MOB) 
have the unique ability to use  CH4 as their sole carbon and 
energy source (Cheng et al. 2022). In this comprehensive 
review, we will focus on methanotroph bacteria, their 
taxonomy, physiology, diversity, ecology and distribution, 
associations of methanotrophs with other bacteria, 
biodegradation of toxic chemicals by methanotrophic 
bacteria, anaerobic methane oxidation mechanism, and 
factors affecting their function all based on the recent new 
findings and research all over the world.

In this comprehensive review, we addressed most 
recent findings in methanotrophs, including aerobic and 
anaerobic methanotrophs, taxonomy, diversity, genetics, 
molecular ecology, and their biochemical potential all 
based on the recent new findings and research all over 
the world. Although there are some previous reports 
on methanotrophs, however, this ground-breaking 
comprehensive review unveils a multitude of recent 
discoveries in the realm of methanotrophs, ranging 
from their intricate genetics to the dynamic landscape 
of molecular ecology. With a focus on recent genetic 
revelations, molecular intr icacies, and untapped 
biopotential, this research introduces a novel chapter in 
methanotrophic studies, underscoring its contribution to 
both fundamental knowledge and practical applications. 
By amalgamating advanced genetic analysis with 
ecological insights, this study pioneers a holistic approach 
to unraveling the biopotential of methanotrophs, offering 
unprecedented avenues for biotechnological applications.

Methanotrophic bacteria, aerobic, 
and anaerobic

Methanotrophic bacteria are a subgroup of so-called 
methylotrophic bacteria (methylotrophs), and they can 
utilize methane as their sole carbon and energy source 
(while the latter metabolize methanol). Methanotrophs 
can catalyze the oxidation of methane to methanol by 
using methane monooxygenases (MMOs) enzyme (Rhee 
et  al. 2019; Lackner et  al. 2022). It is well known that 
the aerobic methanotrophs are Gram-negative bacteria 
and with a total of 23 genera and roughly 60 species 
being identified (Guerrero-Cruz et al. 2021; Wang et al. 
2023a). There are different types of aerobic methanotrophs 
known as Gammaproteobacteria, type I, with families 
Methylococcaceae  and Methylothermaceae ,  and 
Alphaproteobacteria, type II, with families Methylocystaceae 
and Beijerinckiaceae (Guerrero-Cruz et al. 2021).

The metabolism and unique pathways of methanotroph 
bacteria including an important role of formaldehyde as an 
intermediate in catabolism and anabolism are shown in Fig. 1 
(Hanson and Hanson 1996). There is another pathway (dihy-
droxyacetone) in yeast strains which is growth on methanol and 
leads to formaldehyde assimilation. Then, carbon assimilation 
will be occurred after oxidation steps (Giunta et al. 2022).

The anaerobic methanotrophs were found in the marine 
sediments for the first time where sulfate is present and is 
involved in methane consumption (Kalyuzhnaya et al. 2019). 
Sulfate-reducing bacteria (SRB) are responsible for sulfate-
dependent anaerobic methane oxidation process in anaerobic 
conditions (Yu et al. 2022) (Fig. 2). However, it is reported 
that nitrite  (NO2

−) and nitrate  (NO3
−) are more abundant 

than sulfate  (SO4
2−) in freshwater environments and can 

Fig. 1  Routes for the conversion of methane through oxidation and 
the incorporation of formaldehyde. Short forms: CytC, cytochrome c; 
FADH, formaldehyde dehydrogenase; FDH, formate dehydrogenase 
(Hanson and Hanson 1996)
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involve in microbial processes of methane oxidation (Malyan 
et al. 2021). Equation 1 summarizes the sulfate reduction 

involved in anaerobic methane oxidation processes (Sinis-
calchi et al. 2022): 

(1)CH
4 (aq) + SO2−

4
→ HS− + HCO−

3
+ H

2
O �G = −34 kJ mol−1 CH
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Fig. 2  Diagram illustrating two theoretical situations of anaerobic 
methane oxidation linked to AQDS as the final electron receptor by 
ANME-2 and SRB communities. The ANME-2 cell is depicted in 
red, while the cooperating SRB partner is shown in green. In sce-
nario A, ANME oxidizes methane and conducts extracellular electron 
transfer to reduce AQDS. While sulfate boosts ANME metabolism, it 
is not respired, and the synergistic SRB remain inactive. In scenario 
B, ANME oxidizes methane and reduces both AQDS and sulfate. 

Subsequently, SRB mediate the transformation of zerovalent sulfur, 
a by-product of ANME, into various compounds. This scenario sug-
gests a concealed sulfur cycle where AQDS and sulfide chemically 
react to regenerate zero-valent sulfur. ANME’s metabolic activity 
intensifies due to the availability of these two electron acceptors. Our 
research findings align with the extracellular electron transfer concept 
depicted in scenario A, rather than the active sulfate respiration and 
sulfur disproportionation model shown in scenario B (Yu et al. 2022)

The co-occurrence of anaerobic methanotrophic archaea 
and Deltaproteobacteria was reported in sulfate-reducing 
enrichment environments, and it is probably in a syntrophic 
manner (Siniscalchi et al. 2022); they both have an extremely 
low energy yield of the net reaction (Eq. 1). However, the 
biological nature of sulfate reduction bacteria is complex 
and is a geomicrobiological puzzle.

Several documents demonstrated the effective role of 
nitrate/nitrite reduction in methane oxidation that is criti-
cal to processes of GHG emission (Baba and Miyaji 2020; 
Farhan Ul Haque et al. 2020; Hwang and Lee 2023). Recent 
findings in molecular biology techniques could successfully 
determine the important role of nitrate/nitrite reduction 
bacteria and archaea in methane oxidation (N-AOM pro-
cesses) (Le and Lee 2023). In this context, novel biological 
16S rRNA and gene amplicon analysis demonstrated that 
Methylomirabilis- and Methanoperedens-like microorgan-
isms are more widespread than previously believed (Hopple 
et al. 2022). Meanwhile, there are new evidence that novel 
Candidatus Methylomirabilis sinica and Candidatus Methy-
lomirabilis lanthanidiphila can support the N-AOM process 
(Hwang and Lee 2023; Bhattarai et al. 2019). Presence of M. 
nitroreducens and M. oxyfera require the controlled environ-
mental conditions because of their slow growth rate of these 
bacteria (Wang et al. 2022).

Isotopic evidence demonstrated the important role of M. 
nitroreducens as a N-AOM using nitrate as electron accep-
tor (Le et al. 2021). As shown in Fig. 3, methanogenesis is 
a biological process that consumes  CH4 and produces  CO2 
and  H2 using methyl coenzyme M reductase (MCR). It is 
recognized that some new genes are involved in MCR syn-
thesis such as mcrABCDG genes in M. nitroreducens. So, 
mcrA can be used as an important biomarker to identify 
methanotrophic bacteria in different cultures (Chan and Lee 
2019). The nitrate reductase genes and reverse methanogen-
esis were recognized in the genome of M. nitroreducens, 
whereas no enzymes were reported for the subsequent deni-
trification. So, some anaerobic methanotrophic archaea can 
reduce  NO3

− to  NO2
− and must rely on a partner to further 

reduce  NO2
− to  N2 (Muñoz-Gómez et al. 2022).

The most common operating conditions set in N-AOM 
investigations are summarized in Table 1. This information 
is so important on future research for the N-AOM under 
relevant conditions. It should be mentioned that the  CH4 
consumption was not reported in different N-AOM studies 
which complicates the evaluation of the reported process 
performance. In this context,  N2 production data cannot 
strongly demonstrate the N-AOM occurrence, because alter-
native electron donors are present in the inoculum which are 
able to trigger nitrite/nitrate reduction.
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Taxonomy of methanotrophic bacteria

Challenges encountered in the pursuit of obtaining pure cul-
tures, understanding phenotypic traits, and adhering to the 
guidelines outlined in the International Code of Nomencla-
ture of Bacteria (Oren 2020) have given rise to limitations 
in the classification of methanotrophs. Over the past five 
decades, a considerable number of methanotrophic cultures 
have been successfully isolated and formally characterized, 
beginning with the seminal work of Whittenbury. Presently, 
our understanding encompasses 18 clusters of aerobic meth-
anotrophic bacteria within the Gammaproteobacteria class 
and an additional five clusters within the Alphaproteobacte-
ria class, constituting a diverse spectrum of approximately 
60 distinct species.

Methanotrophic organisms with formally recognized 
names are classified into two distinct classes, namely, the 
Gammaproteobacteria (also referred to as type I and type X) 
and Alphaproteobacteria (also referred to as type II) classes 
(Muñoz-Gómez et al. 2022). Gammaproteobacterial metha-
notrophs are categorized within the Methylococcales order 

and encompass three families: Methylococcaceae, Methy-
lothermaceae, and Crenotrichaceae. This group presently 
encompasses 42 species with officially published names 
distributed across 19 genera (Le et al. 2021). The Methy-
lothermaceae family encompasses two genera and two spe-
cies, while the Crenotrichaceae family comprises a single 
genus and species (Nguyen and Lee 2021). These taxonomic 
assignments are primarily founded on the phylogenetic anal-
ysis of 16S rRNA gene sequences (Cheng et al. 2022). A 
summary of discernible characteristics displayed by species 
within Methylomicrobium, Methylotuvimicrobium gen. nov., 
and Methylosarcina can be found in Table 2.

Category I methanotrophs have been classified into three 
distinct groups. The initial group, comprising phenotypes 1 
to 3, is represented by the species Methylomonas methanica, 
Methylomonas fodinamm, and Methylomonas aurantiaca, 
which are characterized by the presence of pink and orange 
carotenoid pigments. These species share common attrib-
utes, including encapsulated cells with a coccobacillary or 
rod-shaped morphology, the presence of poly-P-hydroxybu-
tyrate inclusions, non-desiccation resistant cysts, carotenoid 

Fig. 3  The reverse methanogenesis pathway in M. nitroreducens 
linked with nitrate reduction involves a series of enzymes: CDH 
(molybdenum-dependent formylmethanofuran dehydrogenase), 
FMD (formylmethanofuran dehydrogenase), FRH (F420-dependent 
hydrogenase), FTR (formylmethanofuran-H4MPT formyltransferase), 
HDR (coenzyme B-coenzyme M heterosulfide reductase), MCH 
(methenyl-H4MPT cyclohydrolase), MCR (methyl coenzyme M 

reductase), MER (methylene H4MPT reductase), MTD (methylene-
H4MPT dehydrogenase), MTR (methyl-H4MPT:coenzyme M 
methyltransferase), NAR (nitrate reductase), and NRF (nitrite 
reductase ammonium-forming). Within this context, CoA, CoB, 
and CoM represent coenzymes A, B, and M, respectively. H4MPT 
corresponds to tetrahydromethanopterin, and MFR signifies 
methanofuran (Costa et al. 2022)
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pigments, and motility facilitated by a single polar flagellum. 
Additional distinguishing phenotypic traits for these species 
are outlined in detail in Table 3.

Type II methanotrophs pertain to the Alphaproteobac-
teria class and encompass representatives from the Methy-
locystaceae and Beijerinckiaceae families. Within the type 
II methanotrophs, there are closely affiliated clusters pre-
sent in the validated species within the Methylocystis and 

Methylosinus genera. Specific characteristics that differen-
tiate the genera of type II methanotrophs are outlined in 
Table 4. On the other hand, type I methanotrophs are cat-
egorized as the “high capacity” group, primarily inhabiting 
environments abundant in methane but lacking in oxygen. 
Conversely, the “low capacity” type II methanotrophs pre-
vail in environments with scant methane and ample oxygen. 
This distinction implies that varying types of methanotrophs 

Table 1  Performance of N-AOM processes at different experimental conditions

* NE, not evaluated

Inoculum Liquid-phase 
operation

Gas-phase opera-
tion

NO2
− removal rate NO3

− removal rate CH4 removal rate Reference

(g  m−3  h−1) (g  m−3  h−1) (g  m−3  h−1)

Sludge from a 
WWTP

Batch Batch NE 1.32 ×  10−3 NE Islas-Lima et al. 
2004

Anoxic sediment 
from a canal

Batch Batch 1.4 NE 0.21  Costa et al. 2022

Sediments from 
ditches draining 
agricultural land 
of the river Rhine

Semicontinuous Continuous 1.22 NE 0.70 Ettwig et al. 2009

Mixture of 
sediments from 
a freshwater 
lake, anaerobic 
digester sludge, 
and the return 
sludge

Semicontinuous NE* NE 7.0 NE Hu et al. 2009

Secondary sludge 
from an activated 
sludge system

Semicontinuous Continuous 0.40 NE 0.19 Luesken et al. 2011

Sludge from a 
parental reactor

Batch and semi-
continuous

NE 0.1 NE NE Hu et al. 2011

Sludge from a 
parental reactor

Semicontinuous Continuous NE 7.9 NE Shi et al. 2013

Mixture of metha-
nogenic sludge 
and activated 
sludge

Batch Batch NE 2.82 NE Ding et al. 2014

Mixture of second-
ary sludge and 
digested second-
ary sludge

Continuous Continuous 1.5 NE NE Kampman et al. 
2014

Coastal sediments Semicontinuous Batch 9.15 NE 0.27 He et al. 2015
Sediments from a 

freshwater lake
Batch Batch 2.1 2.5 0.42 Fu et al. 2017

Mixture of fresh 
secondary acti-
vated sludge and 
anoxic sludge 
from a denitrify-
ing bioreactor

Continuous Continuous NE 2.8 0.03–20.6 Lopez et al. 2017

Sludge from a 
parental reactor

Continuous Continuous NE 7.1 NE Liu et al. 2019

Secondary acti-
vated sludge

Semicontinuous Continuous NE 1.4–9.6 21–55 Valenzuela et al. 
2021
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may partake in methane oxidation under diverse moisture 
conditions, as highlighted by Zhou et al. (2020).

Biotechnological potential 
of methanotrophs

Methanotrophs, found widespread, offer potential for reme-
diating contaminated sites. A research has demonstrated that 
introducing methane can enhance the aerobic breakdown of 
halogenated hydrocarbons, as discussed in the review by Le 
et al. (2021). Both variants of the MMO can convert these 
halogenated compounds. However, the available data sug-
gests that despite its slower degradation rate, the particulate 

MMO (pMMO) ultimately proves to be the more efficient 
system. Considering this, the utilization of adaptable Methy-
locystis strains becomes appealing. Within these strains, the 
pMMO is activated in the presence of acetate or ethanol, 
as observed in studies by Khanongnuch et al. (2022). This 
approach could be employed to provide the necessary reduc-
ing agents for the MMO. Such a strategy would be more 
feasible to implement in polluted sites compared to methane 
introduction and would additionally prevent competition for 
binding to the monooxygenase enzyme.

As another example of bioremediation, Methylocella was 
among the bacteria associated with degradation of plastics 
in landfill lysimeters (Khanongnuch et al. 2022). Obligate 
methanotrophs such as Methylococcus capsulatus, which can 

Table 2  Phenotypic characteristics of member species of Methylomicrobium, Methylotuvimicrobium gen. nov. (Orata et al. 2018)

Genus Methylomicrobium Methylotuvimicrobium gen. nov.

Species Methylomicro-
bium agile

Methylomi-
crobium 
album

Methylomicro-
bium lacus c.n.

Methylotu-
vimicrobium 
alcaliphilum 
c.n.

Methylotu-
vimicrobium 
buryatense 
c.n.

Methylotu-
vimicrobium 
japanense 
c.n.

Methy-
lotuvimi-
crobium 
kenyense 
c.n.

Methylotu-
vimicrobium 
pelagicum 
c.n.

Former name NA NA Methylosarcina 
lacus

Methylomi-
crobium 
alcaliphilum

“Methyl-
omicrobium 
buryatense”

Methylomi-
crobium 
japanense

Methylomi-
crobium 
kenyense

Methylomi-
crobium 
pelagicum

Type strain ATCC 35068 BG8 LW14 20Z 5B NI AMO1 AA-23
Type species Yes No No Yes No No No No
Characteristics
 Pigmentation W to SL W to SL W to SL W to SL W to SL W to SL W to SL W to SL
 Motility + + - + + + + +
 Cyst formation - - - - - - - -
 Desiccation 

resistance
- - - + + - - -

 Growth occurs 
with 3.0% NaCl

- - NR + + + + +

 Temp. growth, 
range (°C)

10–37 10–37 4–35 NR 4–45 NR NR 10–30

 Temp. growth, 
optimum (°C)

25–30 25–30 28–30 NR 28–30 15–37 NR 20–25

 Growth at 37 
°C

+ V - + + + - -

 Growth at 45 
°C

- - NR - + - - -

 Heat resistance 
(80 °C)

- - - + + - - -

 pH growth, 
range

6–9 6–9 4–7 6.5–9.5 6–11 NR 9–10.5 6–8.5

 pH growth, 
optimum

7 7 5.5–6.5 9 8.5–9.5 8.1 10 7

 pMMO + + + + + + + +
 sMMO - - - - + + - -
 Main fatty acid C16:1 ω5t C16:1 ω5t C16:1 ω8c C16:1 ω7c C16:1 ω7c C16:1 NR C16:1 ω5t
 DNA G + C 

content (mol%)
58.1–59.6 54.4–56.3 52–54.7 48–49 48–49 49 50.2 48.5
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grow relatively quickly and to high cell densities, have been 
exploited for production of single-cell protein (Khanong-
nuch et al. 2022). While Methylocella, which exhibits slower 
grow, may not be as useful to produce low value, bulk chem-
icals, it can still be grown to high cell densities in fermenter 
culture (Priyadarsini et al. 2023). Its metabolic versatility 
warrants further examination in this respect. Large-scale 
production of methanol from methane is an attractive propo-
sition and promising results have been obtained in several 
studies (Baba and Miyaji 2020). As an illustration, combina-
tions of Methylomonas methanica and Methylocella tundra 
co-cultures, which were encapsulated within silica gel, were 
supplied with simulated biogas as a nutrient source.

It is worth noting that the introduction of hydrogen 
resulted in a significant enhancement in methanol produc-
tion, nearly doubling it to approximately 0.32 g  l−1, with 
a corresponding 66% conversion efficiency (Zhou et al. 
2020). However, a notable challenge in utilizing the MMO 
for methanol production lies in the need for a costly elec-
tron donor, such as formate, to facilitate methane oxidation. 
Nonetheless, a promising solution may be found in faculta-
tive methanotrophs, as they possess the capability to utilize 
compounds like acetate, which are commonly found in waste 
streams, as an alternative electron donor (Lee et al. 2023).

While Methylocella spp. exhibit a wider array of meta-
bolic capabilities compared to obligatory methanotrophs, 
their potential biocatalytic applications have not been fully 
explored. The soluble methane monooxygenase (sMMO) has 
traditionally been recognized as an exceptionally versatile bio-
catalyst, facilitating the oxidation of a diverse spectrum of 
compounds, including alkanes, alkenes, and even relatively 
large aromatics like naphthalene (Priyadarsini et al. 2023).

The utilization of intact cells of methanotrophs like Meth-
ylococcus capsulatus for the production of chemicals such as 
propylene oxide (from propylene) is a viable approach. How-
ever, the toxicity associated with this metabolite necessitates 
the implementation of a recycling system to regenerate the 

entire-cell biocatalyst (Samanta and Sani 2023). If Methy-
locella demonstrates reduced susceptibility to the adverse 
effects of propylene epoxide, it could potentially have an 
advantage over M. capsulatus in the production of this com-
pound. This advantage stems from Methylocella ability to 
harness alternative energy sources for facilitating the oxida-
tion of propylene through the sMMO enzyme.

Beyond Methylocella metabolic adaptability, these strains 
hold a distinct advantage over obligate methanotrophs, as the 
expression of the sMMO is not inhibited by copper (Cruz 
and Pijuan 2022). The potential utilization of sMMO as a 
biocatalyst, in conjunction with the ability to use multi-
carbon compounds like succinate or acetate for both carbon 
and energy, suggests that Methylocella could emerge as a 
promising cellular platform for the production of valuable 
commodities. Notably, this includes the production of valu-
able substances such as chiral alcohols and epoxides.

Findings on physiology of methanotrophic 
bacteria

Gaining insights into the factors governing methane metabo-
lism and the ecological behavior of methanotrophic bacte-
ria necessitates a comprehensive grasp of the physiological 
traits exhibited by diverse methanotroph groups. Distinctions 
in the enzyme systems utilized by various genera and spe-
cies to catalyze methane oxidation, the pathways employed 
for assimilating one-carbon units into central metabolic 
processes, the chemical constitution of cellular compo-
nents, regulatory mechanisms governing one-carbon com-
pound metabolism, and the nutritional responses of distinct 
methanotrophs collectively determine their competencies in 
varying habitats. Hence, it is apt to assess the present under-
standing of the physiological attributes characterizing dif-
ferent methanotroph groups, particularly in relation to their 
aptitude for thriving, proliferating, and methane oxidation 

Table 4  Characteristics that 
distinguish genera of type II 
methanotrophs

All these organisms are characterized as gram-negative, strictly aerobic, and obligate methylotrophs. They 
utilize the serine pathway to assimilate formaldehyde. Notably, they possess intracytoplasmic membranes 
that are oriented parallel to the cell wall. Their growth is not supported at a temperature of 458 °C. These 
microorganisms possess a complete tricarboxylic acid cycle but lack the enzymes associated with the Cal-
vin-Benson cycle. Additionally, they engage in nitrogen fixation through an aerotolerant nitrogenase sys-
tem. The prominent phospholipid fatty acid is 18:1v8c, and their DNA base compositions exhibit a range 
of 62 to 67 mol% G1C (Whiddon et al. 2019; Le et al. 2021)

Characteristics Methylosinus Methylocystis

Cell morphology Vibriod or pyriform Cocci, curved rods, ellipsoidal
Cyst formation (desiccation sensitive) - +
Exospore (bud) formation + -
Lysed by 2% (wt/vol) SDS + -
Representative species M. trichosporium

M. sporium
M. echinoides, M. parvys, M. 

pyriformis, M. minimus



 Applied Microbiology and Biotechnology          (2024) 108:60    60  Page 10 of 21

across diverse environments. Additionally, this assessment 
should consider their potential for breaking down hazardous 
environmental contaminants that pose risks to human health 
and ecosystem stability.

Methane oxidation

The initial step in the oxidation of methane by aerobic meth-
anotrophs is catalyzed by MMOs. These MMOs (Bo et al. 
2023; Samanta and Sani 2023) represent classical monooxy-
genases that employ two reducing equivalents to cleave the 
O-O bonds of dioxygen, a process also noted by Lee et al. 
(2023) and Zhou et al. (2023). Within this process, one of 
the oxygen atoms undergoes reduction, ultimately resulting 
in the production of water  (H2O), while the other oxygen 
atom is integrated into methane, leading to the formation of 
methanol  (CH3OH). Two distinct forms of MMOs have been 
identified in methanotrophic bacteria (Shen et al. 2023). It is 
well-established that in most Proteobacteria and some Ver-
rucomicrobia, the process of methane oxidation is linked to 
the creation of specialized subcellular compartments (Kha-
nongnuch et al. 2022).

One of these forms, known as sMMO, employs NADH + 
 H+ as an electron donor and retains its solubility even after 
centrifugation of cell extracts at 150,000 × g for 75 min, as 
detailed by Singh et al. (2023). It is widely acknowledged 
that all sMMOs consist of three distinct components. The 
first component, the hydroxylase, possesses a size of 245 
kDa and contains nonheme iron. This hydroxylase is com-
prised of three different subunits, namely, a, b, and g. The 
second component, referred to as the B component, has a 
mass of 15.8 kDa, lacks any cofactors, and appears color-
less. The third component, known as the reductase com-
ponent, boasts a size of 38.4 kDa and includes both flavin 
adenine dinucleotide and an  Fe2S2 cluster. For a more in-
depth understanding of this enzyme, its reaction kinetics, 
and the individual roles of each component in the catalytic 
cycle, comprehensive reviews are available elsewhere (Han 
et al. 2023).

Oxidation of formaldehyde and formate

The majority of the necessary reducing potential required 
for methane metabolism is generated through a series of 
steps involving the oxidation of formaldehyde, progress-
ing through formate, and ultimately leading to the produc-
tion of carbon dioxide. Within methylotrophs, there are 
multiple enzyme systems responsible for the oxidation of 
formaldehyde to formate (Rozova et al. 2021). These sys-
tems encompass NAD (P)-linked aldehyde dehydrogenases, 
which may or may not necessitate reduced glutathione or 

other cofactors, as well as dye-linked dehydrogenases, which 
are quantified through the reduction of dyes like 2,6-dichlo-
rophenol, (Singh et al. 2023).

The conversion of formate to carbon dioxide is facili-
tated by an NAD-dependent formate dehydrogenase in 
most, if not all, methanotrophs (Schmitz et  al. 2022). 
Some methylotrophs that employ the RuMP pathway 
for formaldehyde assimilation utilize a cyclic pathway 
for the oxidation of formaldehyde to carbon dioxide 
(Cruz and Pijuan 2022). In this pathway, formaldehyde 
and ribulose-5-phosphate engage in a reaction, yielding 
hexulose-6-phosphate, which is subsequently isomerized 
to fructose-6-phosphate, eventually transforming into 
glucose-6-phosphate. This glucose-6-phosphate under-
goes further oxidation to yield 6-phosphogluconate. As 
the cycle progresses, 6-phosphogluconate is oxidized to 
generate both carbon dioxide and ribulose-6-phosphate, 
effectively concluding the cyclic pathway responsible for 
formaldehyde oxidation. NAD1 or  NADP+ serve as elec-
tron acceptors in the two oxidation steps within this cycle. 
While most obligatory methanotrophs utilize the linear 
pathway for formaldehyde oxidation, many non-methane 
utilizing methylotrophs predominantly employ the cyclic 
pathway (Khanongnuch et al. 2022).

Methanol oxidation

Methanol, originating from both endogenous sources (result-
ing from methane oxidation via MMO) and exogenous 
sources (such as pectin and lignin degradation), undergoes 
oxidation to formaldehyde via a periplasmic methanol dehy-
drogenase (MDH) in gram-negative methylotrophs (Le and 
Lee 2023). MDH exists as an α2β2 tetramer, composed of 
large (60 to 67 kDa) and small (8.5 kDa) subunits (Le and 
Lee 2022). This enzyme is classified as a quinoprotein, 
with each tetramer containing 2 moles of pyrroloquino-
line quinone and 1 mole of calcium (Zhu et al. 2022). The 
transfer of electrons from MDH to cytochrome cL, an atypi-
cal cytochrome serving as the specific electron acceptor 
for MDH, is the subsequent step (Tikhonova et al. 2023). 
Cytochrome cL, in turn, is oxidized by a typical class I 
cytochrome c (cytochrome cH), which is also specific for 
methanol oxidation (Kang-Yun et al. 2022). Importantly, all 
three components—MDH, cytochrome cL, and cytochrome 
cH—are soluble and reside within the periplasm of gram-
negative methylotrophs (Tentori et al. 2022). In contrast, 
gram-positive methylotrophs employ an NAD-linked MDH 
for methanol oxidation, while methanol-oxidizing yeast spe-
cies use a methanol oxidase system for the same purpose. 
Notably, these enzymes have not been detected in gram-
negative methanotrophic bacteria (Priyadarsini et al. 2023).
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The regulation of MDH (malate dehydrogenase) syn-
thesis involves complex regulatory networks in facultative 
methylotrophs and is at least present in one methanotrophic 
organism. A comprehensive understanding of the control 
mechanisms governing MDH synthesis has been extensively 
explored in previous literature (Howe et al. 2023; Venetz 
et al. 2022).

Findings on ecology and distribution 
of methanotrophic bacteria: 16S RRNA 
and functional genes

The most common habitats for methanotroph bacteria 
is shown in Fig. 4. Nearly all samples taken from muds, 
swamps, rivers, rice paddies, oceans, ponds, soils from 
meadows, deciduous woods, streams, sewage sludge, and 
several other environments contained methanotrophic bac-
teria (Oudova-Rivera et al. 2023). Estimations of methane 
emissions from wastewater treatment are scarce and accurate 
determinations are limited (Moore et al. 2023) (in detail in 
“Underestimation of Sector-Wide Methane Emissions from 
United States Wastewater Treatment”). When employing 
viable-count methods, the quantities of methanotrophs iden-
tified in soils, sediments, and aquatic environments spanned 

from 103 to 106 cells per gram (Zhou et al. 2020). Peltokan-
gas et al. (2023) reported that significant amounts of  CH4 
were produced even after homogenization of soil samples, 
where the anoxic microsites were destroyed. This has led to 
some authors to hypothesize that methanogens are not the 
sole source of  CH4 in oxic soils, but the possibility of non-
microbial  CH4 formation in soils must be considered (Galera 
et al. 2023). Lin et al. (2023) conducted an experiment in 
which  CH4 release from soil increased with increasing tem-
perature and organic C content, and with the addition of 
water to dried soils. Certain temperatures examined, reach-
ing as high as 70 °C, exceeded the established enzymatic 
activity range of methanogens, effectively ruling out the 
likelihood of microbial methane  (CH4) production. This 
implies the presence of an unidentified chemical mechanism 
generating  CH4 in oxygen-rich soil environments. Notably, 
there has been recent documentation of the abiotic creation 
of  CH4 under extremely oxidizing conditions, and this phe-
nomenon could have significance within soil ecosystems 
(Hopple et al. 2022).

Iqbal et al. (2023) highlighted the significance of rice 
paddies as a substantial source of atmospheric methane 
 (CH4), contributing to approximately 10% of total anthro-
pogenic  CH4 emissions. In freshwater lakes, it is commonly 
assumed that high methane oxidation activity occurs at the 

Fig. 4  The research studies 
investigated a certain number 
of habitats, as shown in the 
upper left diagram. The pmoA 
sequences from the NCBI data-
base were categorized based on 
the environments in which they 
were identified, depicted in the 
upper right diagram. The lower 
diagrams, however, encom-
pass non-redundant sequence 
reads only, excluding duplicate 
sequences found within the 
same study and in the same 
operational taxonomic unit (I). 
The directional arrows indicate 
the location of the group repre-
sented as the initial entry in the 
legend (Knief 2015)
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oxic-anoxic transition zones (Bashir et al. 2023). An analy-
sis of sediment microbial communities, based on 16S rRNA 
gene sequencing, revealed the presence of diverse groups of 
aerobic methanotrophs, including type I gamma- and type 
II alpha-proteobacterial MOB (Wang et al. 2023b). Within 
the Methylococcaceae family, varying proportions were 
observed, ranging from 0.07 to 0.23% of the total, with the 
highest occurrence at a depth of 3 cm. In contrast, type II 
alpha-MOB Methylocystis was found at much lower relative 
abundances, peaking at 0.01% at a depth of 6 cm (Kaise 
et al. 2023).

It is noted that approximately 50–65% of total methane 
emissions are attributed to anthropogenic activities, encom-
passing ruminant husbandry, fossil fuel extraction and usage, 
rice paddy agriculture, and emissions from landfills and 
waste. This has led to a current atmospheric methane con-
centration increase of 2.5 times compared to preindustrial 

levels (IPCC 2013). Remarkably, scientists have enhanced 
their understanding of phylogenetic relationships and the 
discovery of new methanogens within rice fields by employ-
ing both conserved and functional gene sequences, including 
the 16S rRNA and mcrA genes. Additional information on 
this subject is available in Table 5.

Findings on the native multi‑carbon utilizing 
pathways in methanotrophic bacteria

In methanotrophic bacteria, both sMMO and pMMO can 
catalyze the hydroxylation of different alkanes. pMMO can 
only oxidize C1–C5 alkanes, in contrast to sMMO, which 
has a much wider substrate range (Chan and Lee 2019). 
These findings suggest that the substrate binding site only 
accepts straight-chain C1–C5 hydrocarbons in pMMO 

Table 5  Description of novel methylotrophs and methanogens from different ecosystems

Novel microbes Methanotrophs/Methanogens Ecosystem Isolation strategy Reference

Candidatus Methylomirabilis Methanotrophs Paddy soil Metagenomic approach He et al. (2015)
Haliea sp. ETY-M Methanotrophs Marine Conserved/functional gene-

based phylogeny
Suzuki et al. (2012)

Halie asp. ETY-NAG Methanotrophs Marine Conserved/functional gene Suzuki et al. (2012)
Methanobacterium kanagiense Methanogens Paddy soil Pureculture technique & poly-

phasic taxonomy
Kitamura et al. (2011)

Methanobacterium lacus 
AL-21

Methanogens Acidic soil Phylogeny based on 16 rRNA 
an–DNA-DNA hybridization

Cadillo-Quiroz et al. (2014)

Methanobacterium lacus sp. 
no v

Methanogens Acidic soil Phylogeny based on 16 S 
rRNA an–DNA-DNA 
hybridization

Borrel et al. (2012)

Methanobactxidesmaludis 
SWAN

Methanogens High temperature Phylogeny based on 16 S 
rRNA an–DNA-DNA 
hybridization

Cadillo-Quiroz et al. (2014)

Methanocella arvoryzae Methanogens Paddy soil Pureculture technique & poly-
phasic taxonomy

Sakai et al. (2010)

Methanocel laconradii Methanogen Paddy soil Pureculture technique & poly-
phasic taxonomy

Lu and Lu (2012)

Methanoculleus chikugoensis Methanogenic archaea Paddy soil Culture dependent technique Dianou et al. (2001)
Methanosarcinaceae Methanogens Paddy soil Metagenomic approach Lueders et al. (2001)
Methylarcula marina VKMB-

2159T
Methanotrophs Marine Culture dependent technique Dianou and Adachi (1999)

Methylarcula terricola VKMB-
21 60T

Methanotrophs Marine Culture dependent technique Dianou and Adachi (1999)

Methylocella silvestris Methanotrophs Acidic forest soil Culturomics Dunfield et al. (2003)
Methylomonas EM–L 16-1 Methanotrophs Marine Floating filter culture tech-

nique
Nguyen et al. (2017)

Methylomonas lineage Methanotrophs Marine Culturomics Holmes et al. (1999)
Methyloomonus pelugica Methanotrophs Marine Culturomics Sieburth et al. (1987)
Methylophaga AH 1 Methanotrophs Marine Culture dependent technique Howat (2017)
Methylovulum miyakonense Methanotrophs Forrest soil Phylogeny based on 16 rRNA 

an–DNA-DNA hybridization
Iguchi et al. (2011)

Novimethylophi luskurashik-
iensis

Methanotrophs Paddy soil Culture dependent technique Lv et al. (2018)
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(Wang et al. 2023b). Additionally, a relatively small cavity 
in the active site restricts the substrate specificity of pMMO 
and leads to preferential oxidation of the substrate (R)-alco-
hols (Pham et al. 2023). In contrast to the comprehensive 
exploration of methane (C1) metabolism, the breakdown of 
gaseous alkanes ranging from C2 to C5 among methano-
trophs has received limited attention (as depicted in Fig. 5). 
A noteworthy case lies with the type II methanotroph, Meth-
ylocella silvestris, which exhibits the capability to utilize 
both methane and propane as sources of carbon and energy. 
This distinct trait marks M. silvestris as the initial methano-
troph known to utilize a short-chain alkane instead of meth-
ane. Furthermore, M. silvestris is equipped to metabolize 
ethane through oxidation processes.

The presence of isocitrate lyase and malate synthase 
explains its ability to thrive on ethane and its metabolic 
intermediates ethanol and acetate (Bordel et al. 2019). In 
addition to ethane assimilation, propane assimilation path-
ways have also been observed in M. silvestris (Bordel et al. 
2019) and Methylacidiphilum sp. IT6 (Awala et al. 2021). 
Two additional pathways are involved in the degradation of 
propane: the first converts propane into 1-propanol and then 

methylmalonyl-CoA, whereas the second converts propane 
into 2-propanol, which is subsequently oxidized to acetone, 
acetol, and lactate, which can be further converted into pyru-
vate by putative lactate dehydrogenase (Fig. 5) (Le and Lee 
2023).

While cultivating M. silvestris on propane, it was 
observed that both 2-propanol and acetone accumulated 
in the culture medium. This suggests that the transforma-
tion of acetone into acetol could be hindered by kinetic 
barriers. Intriguingly, during the growth of 2-propanol in 
Methylacidiphilum sp. IT6, a gene cluster responsible for 
the conversion of 2-propanol to pyruvate via acetol exhib-
ited increased expression. Notably, this cluster encompasses 
one of the three genomic operons related to pmoA, which 
generates pMMO. Interestingly, the encoded enzyme PMO3 
within this cluster facilities oxidation of acetone to acetol as 
reported by Awala et al. (2021).

In conclusion, these discoveries shed light on the 
adaptable metabolic capacities of facultative methano-
trophs, showcasing their ability to utilize a wide range of 
substrates. In the realm of metabolic engineering, given 
the inherent limitations of carbon flux connected to C1 

Fig. 5  Methanotrophic bacteria inherently employ various multi-
carbon sources. Methane, ethane, propane, and butane are subject to 
oxidation through methane monooxygenase. These oxidation path-
ways are subsequently transformed through multiple enzymatic steps 
into central metabolic intermediates. Specifically, methane oxidation 
is represented by a black line, ethane oxidation by a red line, propane 
oxidation by a blue line, and the conversion of butane leads to croto-

nyl-CoA, depicted as a rubine-colored line. Xu5P, xylulose 5-phos-
phate; Ru5P, ribulose-5-phosphate; S7P, sedoheptulose7-phosphate; 
G3P, glyceraldehyde 3-phosphate; E4P, erythrose 4-phosphate; F6P, 
fructose 6 phosphate; H6P, 3-hexulose-6-phosphate; R5P, ribose 
5-phosphate; HP, hydroxypyruvate; DHAP, dihydroxyacetone phos-
phate; MDH, methanol dehydrogenase; ADH, alcohol dehydrogenase 
(Le and Lee 2023)
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compounds, the establishment of facultative growth on 
co-substrates emerges as a potentially advantageous strat-
egy. This approach could potentially amplify carbon flux 
directed towards the biosynthesis pathway of desired prod-
ucts within methanotrophic bacteria.

The understanding of methane oxidation mechanisms 
and the rational engineering of metabolic processes have 
been challenging due to the exclusive reliance on methane 
and methanol as carbon and energy sources by obligate 
gammaproteobacterial methanotrophs. To address the gaps 
in our foundational comprehension of C1 metabolism and 
to enhance methanotrophic capabilities for methane con-
version, a potential strategy involves merging methano-
trophic and heterotrophic metabolic pathways through the 
construction of synthetic multi-carbon utilization path-
ways. This approach is especially significant for biorefiner-
ies, where cost-effective and abundant methane along with 
renewable carbon sources can be employed to generate 
value-added products. Given that obligate methanotrophic 
bacteria inherently lack the capacity to utilize multi-car-
bon substrates, the creation of synthetic multi-carbon 
utilization pathways within host strains becomes essen-
tial. This review discusses three multi-carbon utilization 

pathways present in type I methanotrophs, specifically M. 
alcaliphilum 20Z, as depicted in Fig. 6.

Glycerol‑utilizing pathway

One of the drawbacks of methanotrophic bacteria is the 
requirement of unbalanced reducing equivalents by MMO 
during the oxidation of methane, which leads to low cell 
yield of methanotrophs on methane, as well as a lack of 
reducing equivalents from methane to the formation of 
reduced products (Pham et al. 2023). Consequently, to bol-
ster cell growth, amplify carbon flow, and increase the avail-
ability of reducing agents for producing reduced products, 
it becomes imperative for these bacteria to engage in the 
simultaneous metabolism of an additional reduced substrate 
alongside methane. Glycerol, a by-product of the diesel 
industry, has been identified as a promising co-substrate due 
to its widespread availability, notable degree of reduction, 
and cost-effectiveness (Le and Lee 2023).

To establish a synthetic glycerol-utilizing pathway, three 
enzymes from E. coli including glycerol transporter (glpF), 
membrane-binding  FAD+ dependent glycerol-3 phosphate 

Fig. 6  The synthetic pathways for utilizing multi-carbon com-
pounds were reconstructed within an obligate type I methanotroph. 
To achieve this, relevant genes associated with each pathway were 
sourced from various bacteria and subsequently combined. The inte-
gration was accomplished by either inserting these genes into the 
pAW89 expression vector or incorporating them into the genome. 
Notably, these genes were placed under the regulation of the pTac 
promoter. These genes collectively contribute to the conversion of 

various compounds such as Xu5P (xylulose 5-phosphate), Ru5P (rib-
ulose-5-phosphate), S7P (sedoheptulose-7-phosphate), G3P (glycer-
aldehyde 3-phosphate), E4P (erythrose 4-phosphate), F6P (fructose 
6 phosphate), H6P (3-hexulose-6-phosphate), R5P (ribose 5-phos-
phate), HP (hydroxypyruvate), DHAP (dihydroxyacetone phosphate), 
MDH (methanol dehydrogenase), and ADH (alcohol dehydrogenase) 
(Le and Lee 2023)
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dehydrogenase (glpD), glycerol kinase (glpK), and solu-
ble  NAD+ dependent glycerol-3 phosphate dehydrogenase 
(gpsA) from M. alcaliphilum 20Z were overexpressed (Le 
et al. 2021).

Glycerol undergoes a two-step conversion into DHAP 
(dihydroxyacetone phosphate), subsequently entering 
the metabolic network (Rozova et al. 2021). It bifurcates 
towards ribulose monophosphate (RuMP) activity through 
gluconeogenic flux and towards the TCA cycle through 
glycolytic flux, facilitated by the activity of fructose-bis-
phosphate aldolase (fbaA) and triosephosphate isomerase 
(tpi), respectively. Through the overexpression of these 
four genes, noticeable cell growth was observed on glycerol 
alone, resulting in a final OD600 (optical density at 600 nm) 
of 1.4 when using 0.1% (v/v) glycerol. However, the geneti-
cally engineered strain encountered growth challenges in the 
presence of higher glycerol concentrations, specifically 0.5% 
(v/v) and 1% (v/v) (Tyne et al. 2023). This was attributed to 
the hypothesis that elevated glycerol concentrations might 
significantly influence osmotic potential, consequently hin-
dering growth (Pham et al. 2023).

Xylose utilizing pathway

In Methylomicrobium alcaliphilum 20Z, the primary meta-
bolic pathway is a combination of C1 and five-carbon (C5) 
sugars (Le and Lee 2023; Nguyen and Lee 2021). Pentose 
substrates can be directly converted into intermediates of the 
RuMP cycle, activate the non-oxidative component of the 
pentose phosphate pathway (PPP) within the RuMP cycle, 
and support cell growth, as highlighted by Nguyen and Lee 
(2021). Xylose, a frequently encountered C5 sugar in ligno-
cellulosic biomass, holds significant potential as a versatile 
multi-carbon feedstock. Methylomicrobium alcaliphilum 
20Z has demonstrated its ability to assimilate xylose as its 
sole carbon source through a strategic approach involving 
the integration of xylose metabolism pathways from Escher-
ichia coli, in combination with its native non-oxidative 
RuMP cycle.

In E. coli, the enzyme xylose isomerase (encoded by 
xylA) converts xylose into d-xylulose. Subsequently, d-xylu-
lose is phosphorylated by xylulokinase (encoded by xylB) 
to generate xylulose-5-phosphate (Xu5P). The conversion of 
Xu5P to ribulose-5-phosphate is then facilitated by ribulose-
phosphate 3-epimerase. A portion of this ribulose-5-phos-
phate is incorporated into the non-oxidative PPP. To enable 
stable xylose utilization in Methylomicrobium alcaliphilum 
20Z, genetic engineering efforts involved chromosomally 
integrating the xylA and xylB genes from E. coli, along with 
the rpe gene from M. alcaliphilum 20Z, under the control 
of the Ptac promoter. This engineering effort resulted in the 

development of a strain capable of efficiently utilizing xylose 
as its sole carbon source, as evidenced by observable growth 
under these conditions.

Glucose utilizing pathway

The enzyme responsible for phosphorylating glucose, ATP-
glucokinase (glk), has been identified in type I methano-
trophs (Zhou et al. 2020). Notably, there are no known meth-
anotrophs capable of utilizing glucose as a carbon source for 
their growth. Moreover, genome analysis has revealed that 
some type I methanotrophs may harbor putative gluconate 
kinase (GntK) and glucose-1-dehydrogenase (gdh) enzymes, 
the functions of which remain currently unknown (Rozova 
et al. 2021). Both gluconate kinase and glucose dehydroge-
nase could potentially have associations with the Entner-
Doudoroff pathway, glycolysis, and the oxidative PPP (Tyne 
et al. 2023). Double mutants (gdh─/glk─) or (gntk─/glk─) 
exhibited distinct phenotypes compared to the wild-type 
strain of Methylomicrobium alcaliphilum when grown on 
methane. These mutants displayed higher accumulations of 
glucose-trehalose and lower glycogen storage (Rozova et al. 
2021). Despite the presence of redundant sugar metabolism 
pathways in obligate methanotrophs, the precise reasons 
for their inability to utilize glucose as a carbon and energy 
source for growth remain unclear. An intriguing observation 
is the absence of a phosphotransferase system for glucose 
transport in type I methanotrophs, which may hinder the 
uptake of glucose from the surrounding medium into the 
cells.

Remarkably, Pham et al. (2023) demonstrated the engi-
neered growth of Methylomicrobium alcaliphilum 20Z on 
glucose through the overexpression of three target genes: 
glucose-facilitated diffusion protein (glf) from Zymomonas 
mobilis, native glucokinase (glk), and phosphoglucose 
isomerase (pgi) from E. coli. In the context of glucose 
metabolism, it is presumed that cells utilize a heterologous 
transporter called glf to facilitate glucose uptake from the 
surrounding medium. Subsequently, glucose is converted 
into glucose 6-phosphate and fructose 6-phosphate through 
the actions of glucokinase (glk) and phosphoglucose isomer-
ase (pgi), respectively.

Molecular biology of sMMO and pMMO

The genes responsible for encoding sMMO from various 
methanotrophic organisms have been successfully cloned 
and sequenced. The most extensively studied are those 
from Methylococcus capsulatus (Bath) and Methylosinus 
trichosporium OB3b (Hwang and Lee 2023). sMMO genes 
are organized in clusters on the chromosomes of these 
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methanotrophic organisms (as shown in Fig. 7A,B). Spe-
cifically, within this cluster, mmoX, mmoY, and mmoZ are 
responsible for encoding the α-, β-, and γ-subunits, respec-
tively, of the hydroxylase. Additionally, mmoB and mmoC 
are the genes that encode protein B and the reductase com-
ponent, respectively.

Interestingly, mmoB lies between mmoY and mmoZ; an 
ORF of unknown function, designated orfY, with a cod-
ing capacity of 12 kDa, lies between mmoZ and mmoC in 
all genes clusters analyzed to date (Guo et al. 2022). The 
genes responsible for coding sMMO exhibit a high degree of 
conservation across all studied methanotrophic genera. The 
nucleotide sequences of these genes share identities rang-
ing from 55 to 94%, while the corresponding amino acid 
sequences exhibit similarities ranging from 47 to 96%.

The genes encoding pMMO from Methylococcus capsu-
latus (Bath) have been cloned and sequenced (Dawson et al. 
2023) and are clustered on the chromosome in the order 
pmoCAB (Fig. 7B). There are two virtually identical copies 
of these genes (13 bp changes over 3183 bp of pmoCAB) 
present in the genome of Methylococcus capsulatus (Bath) 
and a third copy of pmoC has also been identified (Bo et al. 
2023). This is very similar to the analogous system in nitrifi-
ers that also contain two copies of genes encoding ammonia 
monooxygenase, amoCAB, and a third amoC gene (Eltayb 
et al. 2023).

Comparison of pmo and amo genes from methanotrophs 
and nitrifiers suggests that the pMMO and AMO may be 
evolutionarily related (Samanta et al. 2022). The presence 
of multiple copies of these genes in such bacteria raises 

questions about their functional significance. In the case of 
Nitrosomonas europaea, for example, the reasons for having 
multiple copies of the amoA gene are not yet fully under-
stood. An interesting observation is that when an insertion 
mutant with a deficiency in one copy of the amoA gene was 
created, it exhibited slower growth compared to the wild-
type strain. Surprisingly, a mutant with a defect in the sec-
ond copy of the amoA gene showed normal growth. This 
suggests that while some copies of the gene might be essen-
tial for optimal growth, others could be dispensable or have 
redundant functions.

Singh et al. (2023) successfully developed chromosomal 
insertion mutants in all seven pmo genes found in Methylo-
coccus capsulatus (Bath). Interestingly, except for the singu-
lar third copy of the pmoC gene, which did not yield any null 
mutants, the mutants from the other genes displayed growth 
when supplied with methane. This suggests a functional 
equivalence between the two sets of genes. Specifically, the 
mutants related to the first copy demonstrated approximately 
two-thirds of the methane oxidation activity seen in the wild-
type strain, while the mutants related to the second copy 
exhibited roughly one-third of the activity observed in the 
wild-type strain. No double null mutants defective in both 
copies of pmoCAB were obtained which suggests that the 
cells require pMMO for normal growth (Zhu et al. 2022).

The complete pMMO gene clusters from two additional 
methanotrophic genera, Methylosinus trichosporium OB3b 
and Methylocystis sp. strain M, have been recently cloned 
and sequenced. Similar to other studied methanotrophs, they 
also possess two copies of the pmoCAB genes (as outlined 

Fig. 7  The soluble methane 
monooxygenase (A) and partic-
ulate methane monooxygenase 
(B) gene clusters of methane-
oxidizing bacteria (Farhan Ul 
Haque et al. 2020)
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in Antony et  al. 2023). Comparative examination of the 
derived polypeptide sequences of pMMO and AMO (ammo-
nia monooxygenase) underscores the resemblances between 
these two enzyme systems and highlights the conserved nature 
of their sequences. These sequences exhibit identities ranging 
from 42 to 87% and similarities spanning from 58 to 95% at 
the amino acid level. PmoC and PmoA are anticipated to be 
highly hydrophobic, consisting primarily of putative trans-
membrane-spanning helices, while PmoB contains only two 
presumed transmembrane regions. The extensive dataset of 
pMMO gene sequences from various methanotrophs offers 
the opportunity to utilize pmo as a “functional gene probe” 
in molecular ecology studies, enabling investigations into the 
diversity of methanotrophs within natural environments. This 
utilization has been recently explored and reviewed in pub-
lications such as Tentori et al. (2022) and Tyne et al. (2023).

Research needs and future direction

Currently, no bacterial strain has demonstrated efficient 
methane assimilation for both cell growth and chemical 
production. The challenge lies in achieving stable folding 
of MMO, with the primary obstacle being the control of 
DNA-protein crosslinking by formaldehyde during methanol 
oxidation (Cheng et al. 2022). The development of robust 
synthetic methanotrophs for targeted product production 
demands significant efforts in engineering techniques and 
the study of evolutionary mechanisms, as emphasized by 
Whiddon et al. (2019). To enhance the efficiency of pMMO 
in different organisms for methane incorporation, it is cru-
cial to understand its native environment and the specific 
sites where methane binds. These insights would bridge a 
substantial knowledge gap for researchers.

Despite recent advancements in methanogenesis and 
methanotrophy research, particularly the importance of soils 
like paddy soils in the methane cycle, further exploration is 
essential to deepen our understanding of these mechanisms 
and develop innovative eco-friendly methods. Additionally, 
a more comprehensive grasp of the contributions of various 
ecosystems to the global methane balance is needed. Sev-
eral research areas warrant further investigation, including 
extensive field studies in rice paddies, exploration of novel 
methane production processes in aerobic conditions (such as 
non-microbial methanogenic chemical processes and meth-
ane production by terrestrial plants), utilization of advanced 
molecular biology techniques to study high-affinity metha-
notrophs, and comprehension of anaerobic oxidation of 
methane (AOM). These endeavors can establish a theoretical 
framework and a scientific foundation for striving towards 
“carbon neutrality” within soil ecosystems.
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