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Abstract 
The discovery and characterization of bacterial carbohydrate-active enzymes is a fundamental component of biotechnology 
innovation, particularly for renewable fuels and chemicals; however, these studies have increasingly transitioned to exploring 
the complex regulation required for recalcitrant polysaccharide utilization. This pivot is largely due to the current need 
to engineer and optimize enzymes for maximal degradation in industrial or biomedical applications. Given the structural 
simplicity of a single cellulose polymer, and the relatively few enzyme classes required for complete bioconversion, the 
regulation of cellulases in bacteria has been thoroughly discussed in the literature. However, the diversity of hemicelluloses 
found in plant biomass and the multitude of carbohydrate-active enzymes required for their deconstruction has resulted in 
a less comprehensive understanding of bacterial hemicellulase-encoding gene regulation. Here we review the mechanisms 
of this process and common themes found in the transcriptomic response during plant biomass utilization. By comparing 
regulatory systems from both Gram-negative and Gram-positive bacteria, as well as drawing parallels to cellulase regulation, 
our goals are to highlight the shared and distinct features of bacterial hemicellulase-encoding gene regulation and provide 
a set of guiding questions to improve our understanding of bacterial lignocellulose utilization.

Key points
• Canonical regulatory mechanisms for bacterial hemicellulase-encoding gene expression include hybrid two-component 
systems (HTCS), extracytoplasmic function (ECF)-σ/anti-σ systems, and carbon catabolite repression (CCR).
• Current transcriptomic approaches are increasingly being used to identify hemicellulase-encoding gene regulatory patterns 
coupled with computational predictions for transcriptional regulators.
• Future work should emphasize genetic approaches to improve systems biology tools available for model bacterial systems 
and emerging microbes with biotechnology potential. Specifically, optimization of Gram-positive systems will require 
integration of degradative and fermentative capabilities, while optimization of Gram-negative systems will require bolstering 
the potency of lignocellulolytic capabilities.

Keywords  Carbon catabolite repression · Carbohydrate active enzyme · Extracytoplasmic function · Hemicellulose · 
Hybrid two-component systems · Transcription factor

Introduction

The decomposition of plant biomass plays a significant 
role in environmental and biotechnological settings (Zhang 
et al. 2020). As the largest source of renewable carbon 
on the planet, the deconstruction of its polysaccharide 
components is heavily studied (Von Freiesleben et al. 2018; 
Michalak et al. 2020; Mhatre et al. 2022). Plant cell wall 

polysaccharides are broadly classified as either cellulose or 
hemicellulose. Cellulose polymers are exclusively comprised 
of glucose with a single linkage type (Gardner and Blackwell 
1974). Alternatively, hemicelluloses possess greater linkage 
and sugar varieties which can include xyloglucans, xylans, 
mannans, arabinans, and pectins (Hoch 2007). This diversity 
in linkage and sugar type contributes to the insolubility and 
recalcitrance of plant cell walls, making them difficult to 
degrade (Holland et al. 2020).

Environmental bacteria and fungi are the central 
decomposers of this material (Pascoal et al. 2021), and produce 
carbohydrate-active enzymes (CAZymes) for its deconstruction 
(Henrissat et  al. 2022). Considerable biochemical and 
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bioinformatic research has organized CAZymes into classes and 
families based on amino acid sequences and are documented 
in the CAZy database (Drula et al. 2022). This resource has 
facilitated efforts to predict and sort novel CAZymes for 
evolutionary phylogeny studies of lignocellulose degradation 
(Aspeborg et al. 2012; Wu et al. 2023), as well as enzyme 
engineering for industrial applications (Chettri and Verma 
2023; Jayachandran et al. 2023).

As bacterial lignocellulose degradation systems become 
more fully described, work has branched out to several 
new areas to include the regulation of CAZyme-encoding 
genes. While cellulase systems in both Gram-negative and 
Gram-positive bacteria have been reviewed (Liu et al. 2021; 
Ziles Domingues et al. 2022), there have been much fewer 
for hemicellulase systems because of the large number of 
substrates and enzymes required, as well as the assertion 
that carbon catabolite repression (CCR) is the dominant 
modulator of gene expression (Stülke and Hillen 1999). 
Despite these challenges, recent hemicellulase-encoding 
gene regulation studies have characterized novel systems 
that were leveraged to engineer a single bacterium capable 
of fully degrading and fermenting lignocellulose (Mhatre 
et al. 2022; Singhania et al. 2022).

The goal of this review is to consolidate previously 
summarized work for a single phyla (Grondin et al. 2017; 
Lee et al. 2020) and provide commentary on the current 
direction of regulation-based studies for genes encoding 
hemicellulases like xyloglucanases, xylanases, mannanases, 
arabinanases, and pectinases in both Gram-negative and 
Gram-positive bacteria. Furthermore, this review discusses 
the breadth of knowledge regarding CAZyme-encoding 
gene regulatory systems to include the recent influx of 
transcriptomic and computational studies that predict 
regulons specific to hemicellulase-encoding genes. We 
conclude with a few open questions and offer suggestions 
on promising future directions for studying the regulation of 
hemicellulase-encoding genes that may be of environmental 
or industrial interest.

Canonical regulatory mechanisms 
for bacterial hemicellulase‑encoding gene 
expression

Expression of CAZyme-encoding genes requires precise 
regulation to ensure efficient energy expenditure under 
specific nutrient conditions. Despite the multitude of 
mechanisms that bacteria employ to regulate gene expression, 
there are only three systems commonly used for CAZyme-
encoding genes, specifically hybrid two-component systems, 
extracytoplasmic function-σ/anti-σ systems, and carbon 
catabolite repression (Fig. 1). Given that these regulatory 
systems have been comprehensively reviewed previously (Liu 

et al. 2019; Pinto et al. 2019; Franzino et al. 2022), we will 
only briefly summarize each of their general functions and 
the current knowledge on these systems that is relevant for 
the expression of hemicellulase-encoding genes.

Hybrid two‑component systems

Hybrid two-component systems (HTCS) in bacteria use a 
sensing/phosphorylation relay mechanism to up-regulate 
genes involved in antibiotic resistance, virulence, biofilm 
formation, quorum sensing, and carbohydrate metabolism 
(Gutu et al. 2013; Cui et al. 2018; Gellatly et al. 2018; 
Kampik et al. 2020). This system, which is found in both 
Gram-negative and Gram-positive bacteria, recognizes an 
external stimulus with a cytoplasmic-membrane protein 
that initiates a phosphorylation cascade to modulate gene 
expression (Howell et al. 2003). As shown in Fig. 1A, a sub-
strate binds the sensor domain of a transmembrane histidine 
kinase. Substrate binding initiates a phosphate transfer from 
ATP to a histidine residue on the cytoplasmic domain. The 
phosphorylated histidine kinase then transfers the phosphate 
to a response regulator which binds the transcriptional start 
site of interest to modulate transcription (Buschiazzo and 
Trajtenberg 2019; Francis and Porter 2019). It should be 
noted that there are examples of much lengthier phospho-
relays with additional histidine kinases and response regu-
lators before RNA polymerase recruitment. Two specific 
examples can be found in Bacteroides thetaiotaomicron and 
Bacillus cereus for glycan utilization and stress response, 
respectively (Been et al. 2006; Sonnenburg et al. 2006).

Previous research on hybrid two-component systems 
characterized the regulation of genes encoding xylanases, 
glucanases, arabinanases, and esterases from a diverse set 
of Gram-negative and Gram-positive bacteria (Emami et al. 
2009; Martens et al. 2011; Shulami et al. 2014; Kampik et al. 
2020). For example, in Gram-negative Cellvibrio japonicus, 
Bacteroides thetaiotaomicron, and Gram-positive Rumini-
clostridium cellulolyticum, it was noted that HTCS regula-
tors induced expression for biochemically or physiologically 
important xylanase-, arabinosidase-, and esterase-encoding 
genes (Emami et al. 2009; Martens et al. 2011; Kampik et al. 
2020). The characterized HTCSs associated with xylanase 
and arabinanase-encoding gene expression are now cata-
loged as response regulators belonging to the AraC/XylS 
family of transcriptional activators (Emami et al. 2009; Celik 
et al. 2013). This family has recently been reviewed and 
is categorized based on two characteristic helix-turn-helix 
DNA-binding motifs (Cortes-Avalos et al. 2021). Regulation 
predominantly occurs via activation when the phosphoryl-
ated regulator binds to a recognized -10 and -35 consen-
sus sequence upstream of the promoter for RNA polymer-
ase recruitment (Celik et al. 2013). The sensing domains 
of these HTCS bind branched xylo-oligosaccharides or 
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arabino-oligosaccharides in the periplasmic space for Gram-
negative bacteria (Emami et al. 2009; Schwalm et al. 2017) 
and extracellularly for Gram-positive bacteria (Lansky et al. 
2020). For the former, species like C. japonicus and B. the-
taiotaomicron require an efficient mechanism to degrade 
extracellular hemicellulose into oligosaccharides and trans-
port them to the periplasm where they can be sensed by 
the corresponding HTCS. It is therefore unsurprising that 
these two species possess a disproportionally high number 
of outer membrane transporters that can bring large com-
plex oligosaccharides into the periplasm (Emami et al. 2009; 
Larsbrink et al. 2014; Blake et al. 2018; Pollet et al. 2021).

Extracytoplasmic function (ECF)‑σ/anti‑σ systems

Similar to HTCS, extracytoplasmic function (ECF)-σ/anti-σ 
systems are also comprised of a membrane-spanning sen-
sory protein with a cytoplasmic regulatory protein partner 
that controls gene expression, with specific roles in bacterial 

virulence, stress response, and carbohydrate catabolism 
(Sun et al. 2004; Alvarez-Martinez et al. 2007; Wang et al. 
2019a). ECF-σ/anti-σ systems are found in both Gram-neg-
ative and Gram-positive bacteria, but have been most well-
characterized in Actinobacteria and human gut symbionts 
belonging to the Bacteroides phylum (Martens et al. 2009; 
Bahari et al. 2011; Huang et al. 2015; Despres et al. 2016a; 
Wang et al. 2019a). The anti-σ element of the system is a 
protein in the cytoplasmic membrane that binds a cytoplas-
mic ECF-σ protein (Helmann 2002) (Fig. 1B). Release of the 
ECF-σ protein occurs upon substrate binding, which can be 
a glycan, metal, or chemical stressor like limonene (Pudio 
et al. 2015; Marcos-torres et al. 2016; Goutam et al. 2017). 
The freed σ-factor then binds to RNA polymerase, form-
ing a holoenzyme, and initiates transcription after binding 
a recognized consensus mRNA sequence (Bae et al. 2015).

In the context of carbohydrate catabolism, ECF-σ/
anti-σ systems are prominent regulators in human gut sym-
bionts, especially for the expression of genes encoding 

Fig. 1   Common regulatory systems for Carbohydrate-Active Enzyme 
(CAZyme) encoding genes in Gram-positive and Gram-negative bac-
teria. A Hybrid two-component system in Bacteroides thetaiotaomi-
cron. Upon sensing of arabinoxylan from the transmembrane domain, 
the intracellular histidine kinase (HK) phosphorylates the associated 
response regulator (RR) which recruits RNA polymerase for gene 
transcription. B ECF-σ/anti-σ factor system in Bacteroides xylani-
solvens. Binding of arabinoxylan to the carbohydrate domain of the 
transmembrane ECF protein releases the intracellular σ factor from 
the membrane-attached anti-σ factor which aids RNA polymerase in 
gene transcription. C Carbon catabolite repression in Gram-negative 
Escherichia coli. In the absence of glucose, phosphorylated EIIA 
accumulates and activates adenylate cyclase (AC) via phosphoryla-

tion, which generates high cAMP levels. The cAMP subsequently 
binds to the cAMP receptor protein (CRP) and initiates transcription 
of hemicellulase-encoding genes. D Carbon catabolite repression in 
Gram-positive Bacillus subtilis. In the absence of glucose, fructose 
1,6-biphosphate is not generated because glycolysis does not occur. 
Without fructose 1,6-biphosphate, histidine protein (HPr) does not 
get phosphorylated and therefore cannot dimerize with the carbon 
catabolite control protein (CcpA). Without this dimerization, the cou-
pled protein cannot inhibit transcription. For all panels, phosphate is 
shown as a gold circle with a “P”; arabinoxylan is shown with orange 
stars for xylose and the green stars for arabinose” fructose is shown 
as a green pentagon. Model generated with BioRender.com 
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O-glycan-degrading enzymes (Martens et al. 2008). ECF-σ/
anti-σ systems in Bacteroides species also frequently regu-
late genes encoding TonB-dependent transporters (e.g., 
SusC/D) (Martens et al. 2009). Furthermore, Gram-nega-
tive Cytophaga hutchinsonii and Gram-positive Clostridium 
thermocellum also have well-characterized ECF-σ/anti-σ 
systems that regulate cellulase-encoding gene expression 
(Nataf et al. 2010; Sand et al. 2015; Wang et al. 2019a). In 
C. thermocellum, cellulosomes are assembled using at least 
six ECF-σ/anti-σ systems that are specific for distinct cel-
lulolytic regulons (Ortiz de Ora et al. 2018; Ichikawa et al. 
2022).

In contrast to what is known about ECF-σ/anti-σ system 
to control cellulase-encoding genes, the regulatory involve-
ment of ECF-σ/anti-σ systems for hemicellulase-encoding 
genes is less understood. Using the best-described exam-
ples from Actinobacteria, ECF-σ/anti-σ systems have been 
placed into families based on the regulons they control 
(Huang et al. 2015). For example, ECF families 52 and 53 
have been computationally predicted to possess a C-terminal 
fusion domain comprised of the anti-sigma factor sequence 
coupled with a transmembrane portion of the protein (Mar-
cos-Torres et al. 2022). More interestingly, some ECF52 and 
ECF53 proteins also have computationally predicted glyco-
syl hydrolase catalytic domains and carbohydrate-binding 
domains (Huang et al. 2015; Pinto et al. 2019); however, 
experimental validation has yet to be performed. In C. ther-
mocellum, xylanase-encoding genes are regulated by alter-
native sigma factors σI6 and σI7 and the vegetative promoter 
σA (Sand et al. 2015; Ichikawa et al. 2022). It was demon-
strated that the vegetative σA provided basal expression of 
xylanase-encoding genes, while σI6 and σI7 were employed 
for stronger expression in the presence of xylans (Bahari 
et al. 2011; Sand et al. 2015). Furthermore, the characteriza-
tion of C. thermocellum ECF-σ/anti-σ systems aided in the 
prediction of homologous regulators in related species like 
Psuedobacteroides cellulosolvens, specifically for a pectin-
degrading regulon (Ortiz de Ora et al. 2018).

Carbon catabolite repression

The final canonical system, carbon catabolite repression 
(CCR), is widely known for controlling the preferential uti-
lization of specific carbon sources (typically glucose) over 
others (Ammar et al. 2018). In contrast to HTCS and ECF 
systems, which work similarly in Gram-negative and Gram-
positive bacteria, the CCR mechanism in Gram-negative 
is markedly different compared to Gram-positive bacteria 
(Kundig et al. 1964; Deutscher and Saier 1983). In Gram-
negative bacteria, a phosphotransferase system is utilized 
wherein glucose is imported intracellularly and simulta-
neously phosphorylated by a component of the transport 
protein (EIIA). Expression of non-glucose metabolizing 

genes has very low basal expression and requires activation 
(Fig. 1C). A phosphorylated EI protein transfers a phosphate 
group to the HPr protein, which in turn phosphorylates EIIA. 
In the absence of glucose, there is an abundance of phospho-
rylated EIIA (EIIA ~ P), which activates adenylate cyclase 
(AC) via phosphorylation (Magasanik 1961; Feucht and 
Saier 1980). The resulting accumulation of cAMP activates 
the cAMP receptor protein (CRP) and increases the tran-
scription of genes that encode the proteins responsible for 
the metabolism of non-preferred carbon sources.

In Gram-positive bacteria, expression of genes impor-
tant to the metabolism of non-glucose sugars requires inac-
tivation of the repressor catabolite control protein (CcpA) 
(Fig. 1D). This occurs in the absence of glucose wherein 
fructose 1,6-bisphosphate (FBP) is not generated because 
glycolysis is not occurring. Without FBP, histidine protein 
(HPr) cannot be phosphorylated and dimerized with CcpA 
to repress the transcription of genes involved in metabolizing 
non-preferred carbon sources (Deutscher and Saier 1983). 
It should be noted that CcpA can also act as a transcrip-
tional activator for quorum sensing (trpA), stress response 
(cidAB), and export of excess carbon (ackA) in Streptococ-
cus pneumoniae, Streptococcus mutans, and Bacillus subtilis 
respectively (Henkin 1996; Kim et al. 2019a). Additionally, 
other counter-examples of CCR in Pseudomonas sp. found 
preferential utilization of succinate, citrate, or aromatic com-
pounds over glucose (Liu 1952; Basu et al. 2006).

One example of CCR-based regulation for hemicellulase-
encoding genes is found in Bacillus subtilis and uses both 
CcpA and the repressor GmuR (Sadaie et al. 2008). Man-
nanase-encoding genes in B. subtilis are in an operon that 
also contains genes encoding substrate-specific transporters 
and metabolic enzymes. In the presence of cellobiose or 
mannobiose (and in the absence of glucose), expression of 
the mannan utilization operon occurs due to a lack of fruc-
tose 1,6-bisphosphate. This results in limited amounts of 
phosphorylated HPr, which is necessary for CcpA binding to 
the promoter region. Consequently, the mannanase-encoding 
genes are de-repressed. Mannanase-encoding genes are fur-
ther regulated by the repressor GmuR, which requires phos-
phorylation via GmuA, a component protein of the phospho-
transferase system (PTS) and a structural homolog to EIIA 
(Sadaie et al. 2008). Briefly, glucomannan disaccharides 
are imported and phosphorylated via the PTS (comprised 
of transport proteins GmuABC). Inverse to the processes 
described for carbon catabolite repression, the presence of 
glucomannan oligosaccharides results in an abundance of 
unphosphorylated GmuA. Consequently, GmuR cannot be 
phosphorylated, which results in the transcription of man-
nanase-encoding genes.

Co-regulation of arabinanase and xylanase-encoding 
genes are found in Gram-negative and Gram-positive bacte-
ria, with two characterized repressors being AraR and XylR 
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(Laikova et al. 2001; Rodionov et al. 2001). Both belong 
to the LacI family of transcriptional regulators and work in 
conjunction with CCR (Book et al. 2016; Ohashi et al. 2021; 
Rodionov et al. 2021). Co-regulation of xylanase and ara-
binanase genes provides an efficient means of streamlining 
gene expression given the monosaccharide composition of 
lignocellulose, namely hexoses coming from cellulose and 
pentoses coming from hemicellulose (Jamander et al. 2014; 
Kim et al. 2015). Not surprisingly, CCR has been widely 
studied to characterize the regulation of lignocellulose-
derived sugar metabolism in Clostridium, Caldicellulosirup-
tor, Pseudomonas, and Escherichia species (Gosset 2005; 
Vanfossen et al. 2009; Bruder et al. 2015; Liu et al. 2015).

Current applications of canonical systems

The use of bacteria as lignocellulose bioprocessors has 
renewed interest in the three canonical regulatory mecha-
nisms for biotechnologically relevant bacteria (Mearls et al. 
2015; Taylor et al. 2018; Elmore et al. 2020; Ling et al. 
2022). Using HTCS and ECF-σ/anti-σ systems, recent stud-
ies have focused on the regulation of polysaccharide utiliza-
tion loci (PULs) containing hemicellulase-encoding genes, 
especially in Bacteroides sp. (Luis et al. 2018; Mackie and 
Cann 2018; Pereira et al. 2021; Beidler et al. 2023). Simi-
larly, C. thermocellum is commonly used to study ECF-σ/
anti-σ systems due to it possessing unique σI factors that can 
be studied heterologously in B. subtilis (Munoz-Gutierrez 
et al. 2016). Comparative studies of C. thermocellum σI fac-
tors were also important to the discovery that transcriptional 
initiation of cellulosomal genes relied on an auto-proteolysis 
system for ECF upon binding to the glycan of interest (Chen 
et al. 2023a). Likewise, dismantling CCR-related mecha-
nisms in biotechnologically relevant bacteria (e.g., E. coli, 
C. thermocellum, and P. putida) found that co-utilization of 
xylose and glucose is more easily achieved with intracellular 
cellobiose hydrolysis (Xiong et al. 2018; Wang et al. 2019b; 
Cabulong et al. 2021). Intracellular cellobiose hydrolysis 
and phosphorylation bypassed some of the inhibitory effects 
caused by bacterial sensing/detection of extracellular glu-
cose. Moreover, Pseudomonas putida KT2440 has under-
gone extensive engineering to co-metabolize glucose with 
cellobiose, galactose, xylose, and arabinose (Dvorak and de 
Lorenzo 2018; Peabody et al. 2019; Elmore et al. 2020).

Transcriptomic approaches to identify 
hemicellulase‑encoding gene regulatory 
patterns

The use of transcriptomic data to assess global changes in 
CAZyme-encoding gene regulation has rapidly become 
a standard approach to identify critical components of 

polysaccharide degradation (Gruninger et al. 2018; Lilling-
ton et al. 2020; Chen et al. 2023b). This method is particu-
larly useful for non-model bacterial systems whose regu-
latory mechanisms are less characterized compared to E. 
coli or B. subtilis. While it should be noted that CAZyme-
encoding gene expression was previously known to be regu-
lated by growth rate and bacterial life cycle for Bacteroides 
succinogenes and Clostridium thermocellum (Russell 1987; 
Rydzak et al. 2012), more recent reports have uncovered 
unique differences in hemicellulase-encoding gene regula-
tion for both Gram-positive and Gram-negative bacteria. 
Below is a summarization of the recent developments using 
transcriptomics to elucidate regulatory features in lignocel-
lulose-degrading bacteria.

Hemicellulase gene expression in Gram‑positive 
species

Current RNAseq analyses using Gram-positive bacteria 
grown on hemicelluloses have often revealed highly specific 
gene expression responses (Blumer-schuette et al. 2017; La 
Rosa et al. 2019; Rodionov et al. 2021). For example, the 
human gut symbiont Roseburia intestinalis has a substrate-
specific response during growth on glucomannan and galac-
tomannan (Fig. 2A) (La Rosa et al. 2019). Notably, 16 up-
regulated genes were from two distinct mannan utilization 
loci that differ from PULs described in Bacteroides by the 
absence of genes that encode TonB-dependent transporters. 
Additionally, R. intestinalis growth on galactose (a com-
ponent of galactomannan) did not result in up-regulation 
of any of these genes, suggesting that mannose or manno-
oligosaccharides were the sole nutritional signal for mannan 
deconstruction (La Rosa et al. 2019).

Highly specific CAZyme-encoding gene regulation has 
been observed in Bacillus sp. N16-5, where up-regulation of 
β-mannanase and α-galactosidase-encoding genes was only 
observed when the bacterium was grown using galactoman-
nan, but not on xylan, pectin, CMC, or any tested monosac-
charide (glucose, fructose, mannose, galactose, arabinose, or 
xylose) (Song et al. 2013). Furthermore, Bacillus sp. N16-5 
grown using xylan only up-regulated β-xylanase-encoding 
genes, but growth on xylan or xylose up-regulated xyluloki-
nase and xylose-related transporter-encoding genes.

As a third example, in Caldicellulosirupter species like 
C. bescii and C. saccharolyticus, xylanase-encoding genes 
were strongly up-regulated during growth on xylan (Fig. 2B) 
but repressed on either xylose or cellulose (Blumer-schuette 
et al. 2017; Rodionov et al. 2021). Expression data of C. 
bescii when grown using xylan also identified a putative 
key xylanase for extracellular xylan degradation (Xyn11A-2) 
(Crosby et al. 2022); however, a comparison of enzymatic 
activity between the C. bescii xylanases showed relatively 
mediocre activity for Xyn11A-2. The authors suspect this 
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Fig. 2   Differences in up-reg-
ulation of CAZyme-encoding 
genes from selected Gram-posi-
tive and Gram-negative bacteria 
when grown using hemicel-
luloses. A CAZyme-encoding 
gene expression of Gram-
positive Roseburia intestinalis 
and Gram-negative Cellvibrio 
japonicus on glucomannan. B 
CAZyme-encoding gene expres-
sion response of Gram-positive 
Caldicellulosiruptor bescii and 
Gram-negative Roseithermus 
sacchariphilus on xylan. C 
CAZyme-encoding gene expres-
sion response of Gram-positive 
Caldicellulosiruptor saccha-
rolyticus and Gram-negative 
Bacteroides xylanisolvens on 
pectin
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observed difference in gene expression could be a com-
pensatory mechanism to overcome the modest activity of 
Xyn11A-2. The use of transcriptomic data from C. bescii 
when grown on xylan has also proven useful for pairing the 
important degradative loci to their likely regulators, which 
included XynR, XylR, AraR, BxgRS, and AxuRS (Rodi-
onov et al. 2021). Interestingly, transcriptomic analysis of 
C. saccharolyticus grown using pectin found a much broader 
gene expression response than that observed on other hemi-
celluloses (Blumer-schuette et al. 2017). Growth of C. sac-
charolyticus using pectin elicited up-regulation of various 
CAZyme-encoding genes, including cellulases, mannanases, 
xylanases, arabinanases, pectinases, and chitinases (Fig. 2C).

As a final example, Clostridium sp. exhibited some diver-
gence in their regulatory circuits for xylanase-encoding 
genes (Petit et al. 2015; Munir et al. 2016). The expression 
of xylanase-encoding genes possessed by C. termitidis was 
dependent on xylan, but not xylose, cellobiose, or cellulose, 
while those belonging to C. phytofermentans were up-reg-
ulated when grown on both xylan and cellulose. Alongside 
the differences in hemicellulase gene expression observed 
between growth media, growth rate is also a critical mediator 
of CAZyme gene expression in Clostridium sp., with several 
studies reporting C. thermocellum transcription of cellulase-
encoding genes dependent upon growth phase (Dror et al. 
2003; Riederer et al. 2011). One interesting exception was 
for a xylanase-encoding gene (xynC), which exhibited high 
expression irrespective of growth rate (Dror et al. 2005).

Hemicellulase gene expression in Gram‑negative 
species

For Gram-negative bacterial species, transcriptomic studies 
have revealed much broader gene expression responses than 
those observed in Gram-positive bacteria (Blake et al. 2018; 
Chen et al. 2018; Novak and Gardner 2023). For example, 
in Leeuwenhoekiella sp. MAR_2009_132 and Salegenti-
bacter sp. Hel_I_6, up-regulated α- and β-mannanase-
encoding genes were identified when these bacteria were 
grown on both α- or β-mannan despite the selective activity 
of these CAZymes for each substrate (Chen et al. 2018). 
This suggested that these species regulate mannanase gene 
expression with less specificity, possibly at the level of the 
mannose monosaccharide given that these bacteria cannot 
differentiate between α- versus β-mannan.

A broad gene expression response was revealed in the 
saprophyte Cellvibrio japonicus when grown on glu-
comannan (Fig. 2A) (Novak and Gardner 2023). Eight 
of the ten predicted mannanase-encoding genes were up-
regulated, as well as an additional 46 CAZyme-encoding 
genes. Strong up-regulation of non-substrate specific 
CAZyme-encoding genes in C. japonicus suggests that 
it is likely the presence of complex polysaccharides that 

induce gene expression. Additionally, a previous study of 
the C. japonicus transcriptomic response on cellobiose 
also resulted in broader up-regulation of cellulases and 
hemicellulases (Nelson et al. 2017). Interestingly, a much 
more specific response was elicited when C. japonicus was 
grown on oat-spelt xylan (Blake et al. 2018). This report 
concluded that C. japonicus only up-regulated xylanase 
genes during mid-exponential growth, though a com-
parison of the RNAseq from the stationary phase showed 
up-regulation of genes encoding xylanases, arabinanases, 
mannanases, and cellulases. In terms of the growth rate 
affecting CAZyme-encoding gene expression in C. japoni-
cus, it was observed that expression was more prominent 
during active growth compared to the stationary phase 
(Blake et al. 2018; Novak and Gardner 2023).

Roseithermus sacchariphilus exhibited a transcriptomic 
response quite dissimilar to C. japonicus when it was grown 
on beechwood xylan (Liew et al. 2020). This bacterium had 
up-regulation of genes encoding cellulases, mannanases, 
xylanases, arabinanases, pectinases, and other glycosidases 
(Fig. 2B). Surprisingly, pectinase-encoding genes were the 
most prominently up-regulated CAZyme-encoding genes 
when R. sacchariphilus was grown on xylan. The authors 
hypothesize that the broad response was due to co-expres-
sion of genes encoding various glycosidic activities by the 
same promoter. However, they also suggested that a multi-
timepoint transcriptomic analysis could reveal more about 
the patterns of hemicellulase gene expression.

Finally, expression of CAZyme-encoding genes in Bac-
teroides xylanisolvens also elicited a broad gene expres-
sion response on oat-spelt xylan, with up-regulation of 150 
carbohydrate utilization-encoding genes that included all 
identified PULs for xylan utilization and 15 PULs for starch 
and pectic metabolism (Despres et al. 2016a). The authors 
hypothesized that the broad response was from the detec-
tion of shared oligosaccharides present in both oat-spelt 
xylan and pectins (i.e., arabinoside side-chains). However, 
this response was very different when B. xylanisolvens was 
grown on citrus pectin and resulted in a much more specific 
result (Fig. 2C) (Despres et al. 2016b). Here, researchers 
were able to compare the gene expression response on two 
different types of pectins and discern the PULs that were 
most likely to be involved in the degradation of different pec-
tic linkages. Specifically, PUL 2 was suspected to be impor-
tant to degrading type II rhamnogalacturonan, PUL 13 was 
likely involved in de-branching arabinose sidechains, and 
PULs 49 and 50 were the most up-regulated on both pectins 
and were suspected to be involved in degrading homogalac-
turonan and type I rhamnogalacturonan, respectively. Addi-
tionally, B. xylanisolvens shared the traits observed in other 
bacterial species with high expression of CAZyme-encoding 
genes during active growth compared to the stationary phase 
(Despres et al. 2016b).
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Hemicellulase gene expression in bacterial 
co‑culture

There has been increasing interest in the metatranscriptomic 
of co-cultured bacteria using complex polysaccharide-rich 
substrates given that environmental lignocellulose degrada-
tion is performed by a microbial community. For example, 
a study of the Gram-positive Butyrivibrio hungatei MB2003 
transcriptome during mono- and co-culture with rumen gut 
symbiont Butyrivibrio proteoclasticus B316 found that in 
monoculture, B. hungatei was unable to grow on xylan or 
pectin despite the presence and expression of several hemi-
cellulase-encoding genes (Palevich et al. 2019). Strikingly, 
when in co-culture with B. proteoclasticus, B. hungatei had a 
substantial increase in its growth capabilities at the expense 
of B. proteoclasticus final cell density. Since B. hungatei acts 
more as a sugar scavenger than a hemicellulose-degrader, 
its RNAseq results in monoculture unsurprisingly showed 
marked increases in the expression of many genes important 
to translation, signal transduction, defensive mechanisms, 
lipid/amino acid metabolism, and cell wall biogenesis com-
pared to its co-cultured counterpart. During co-culture with 
B. proteoclasticus, B. hungatei expressed fewer genes overall 
but exhibited more specificity in the expression of genes 
encoding for carbohydrate metabolism (e.g., ABC sugar 
transporters). Interestingly, B. proteoclasticus gene expres-
sion was relatively unchanged between mono- and co-culture 
(excluding a few CAZyme-encoding genes which were up-
regulated during co-culture) despite the increase in competi-
tion provided by culturing with B. hungatei.

As another example, the Gram-negative gut symbionts P. 
intestinalis, P. muris, and P. rodentium underwent compara-
tive metatranscriptomic analysis, and the study concluded 
that P. intestinalis was the most competitive strain due to 
its distinct up-regulation of PULs encoding xylanase and 
pectinase-encoding genes when the rat host was given a diet 
heavy in arabinoxylans (Galvez et al. 2020). The three most 
up-regulated glycoside hydrolase families in all three species 
were from GH43, GH2, and GH28. These families contain 
members able to hydrolyze β-glucan, β-xylan, α-arabinan, 
and pectic linkages (Lombard et al. 2014).

Co-cultures containing both Gram-positive and Gram-
negative species have been used to investigate the bottle-
necks of complete lignocellulose bioconversion in the guts 
of rumen or humans (Leth et al. 2018; Badhan et al. 2022). 
A recent metatranscriptomic study examined a complex con-
sortium of Gram-positive and Gram-negative gut symbionts 
in ruminant animals grown in ex vivo batch culture on total 
tract indigestible residue (TTIR). The primary goal of the 
study was to assess the bottlenecks in ruminant digestion 
to uncover mechanisms to enhance the system. Transcripts 
encoding xylanases were abundant when the micro-commu-
nity was grown on TTIR, which indicated that heteroxylans 

and xyloglucans were the primary remaining polysaccharide 
in the TTIR. It was hypothesized that the sheer quantity of 
inter- and intramolecular bonds act as a hindrance to enzyme 
accessibility to the substrate.

Overall, there appears to be a distinguishing difference 
between the hemicellulose-encoding gene expression pat-
terns in Gram-positive versus Gram-negative bacteria. 
Specifically, the narrowed specificity of gene expression 
observed in Gram-positive compared to Gram-negative 
species. Additionally, investigations of co-culture tran-
scriptomics containing Gram-positive and/or Gram-negative 
communities on lignocellulose have focused on the inter-
species relationships and competition for carbon acquisi-
tion (Palevich et al. 2019; Galvez et al. 2020; Badhan et al. 
2022). The knowledge obtained from these analyses has 
subsequently been applied in studies on gut microbiomes 
and biotechnology applications, specifically for studies that 
successfully predicted the impact of synthetic gut microbiota 
on host immune response (Afrizal et al. 2022) and identified 
patterns in microbe abundance based on diet (Corbin et al. 
2023).

Computational prediction of transcriptional 
regulators using compilations of transcriptomic 
data

In addition to the plethora of information provided by 
RNAseq data from a singular dataset, compilations of such 
data can extrapolate more information on transcriptional 
regulatory systems using computational methods. For exam-
ple, transcriptomic compilations with DNA-binding motif 
studies have predicted extensive transcriptional regulatory 
networks of several different bacteria (Poudel et al. 2020; 
Rychel et al. 2020). The known computationally predicted 
regulons of Gram-negative plant bioprocessors are rela-
tively exclusive to the fermentative bioprocessing bacteria 
that possess few hemicellulases (Sastry et al. 2019; Lim 
et al. 2022). However, this approach has yielded interest-
ing results for Gram-positive species. For example in C. 
thermocellum, a LacI transcriptional regulator (GlyR2) was 
computationally predicted as important for genes encod-
ing two mannanases (man5A and man26A), a xylanase 
(clo1313_2530), and two cellulases (clo1313_0413 and 
clo1313_1425) (Wilson et al. 2017; Hebdon et al. 2021). 
Previous experimental research on GlyR2 had identified it 
as a mannobiose-responsive transcriptional repressor with 
only confirmed regulatory activity on a mannanase-encoding 
gene (man5A) (Wilson et al. 2017). GlyR2 was hypothesized 
to have indirect effects on the transcriptional regulation of 
certain hemicellulose-encoding genes that may require 
different conditions to de-repress other genes with the 
recognized binding motif (Hebdon et al. 2021). Addition-
ally, a C. bescii genome analysis and comparison to other 
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Caldicellulosiruptor species improved the organism-specific 
bioprocessing model through the discovery of 16 key regula-
tors important to the degradation and metabolism of hemi-
cellulose and pectin (Rodionov et al. 2021). It was noted 
that most of these regulators were involved in the expression 
of xylanase or pectinase-encoding genes, while genes that 
encoded cellulases, mannanases, and amylases generally 
only had one regulator for each CAZyme type. Additionally, 
the mechanistic regulatory actions of the predicted regula-
tors were overwhelmingly repressive in function with the 
few activators belonging to the AraC family. Interestingly, 
the study found that most of these activators were involved 
in the regulation of pectinase-encoding genes.

Future directions

A thorough understanding of how hemicellulase-encoding 
genes are regulated is essential to optimize lignocellulose 
bioprocessing (Chettri et al. 2020). Consequently, detailed 
studies that include hemicellulase-encoding gene regulation 
are generally conducted exclusively on well-characterized 
model bacteria and those already being used as chassis in 
biotechnology applications (Xiong et al. 2018; Rodionov 
et al. 2021).

Given that metagenomic and metatranscriptomic data 
for less characterized lignocellulolytic bacteria with unop-
timized systems are available (Dai et al. 2015; Kougias et al. 
2018; Lopez-Mondejar et al. 2020) but beyond the scope of 
this review, we have endeavored to summarize and highlight 
the current state of hemicellulose-encoding gene regulation 
patterns between Gram-positive and Gram-negative bacteria.

Overall, we argue there are two critical features of 
hemicellulase-encoding gene regulation that must be con-
sidered for optimization, which are (1) identifying the 

specific metabolic inducer (often an oligosaccharide), and 
(2) mitigating the impacts of carbon catabolite repression. 
Current lignocellulose bioconversion systems typically use 
Gram-positive species for saccharification and Gram-nega-
tive species for fermentation (Dai et al. 2015; Thapa et al. 
2019). While it has been previously argued that co-culture 
or consortia-based bioconversion processes will improve the 
efficiency and completeness of lignocellulose degradation 
(Chin et al. 2020; Kumar et al. 2023), the amount of strain 
engineering and optimization significantly increases for 
each strain added to the process, especially given the current 
trend of focusing only on improving either degradative or 
metabolic/fermentative capabilities. Therefore, the follow-
ing commentary will focus exclusively on the optimization 
of single bacterium bioprocessing systems for the complete 
deconstruction and utilization of lignocellulose (Table 1).

Optimizing Gram‑positive systems will require 
integration of degradative and fermentative 
capabilities

Clostridia and Caldicellulosiruptor species are highly stud-
ied genera for their prolific degradation of plant polymers 
(Artzi et al. 2018; Brunecky et al. 2018; Williams-Rhaesa 
et al. 2018). However, neither system has been successfully 
engineered to fully metabolize and ferment all components 
of lignocellulose. In the case of Clostridia systems, this is 
due to an inherent inability to ferment pentoses. A previous 
attempt to engineer a pathway for xylose fermentation in C. 
thermocellum found that while xylose and Avicel could be 
co-utilized, xylan and Avicel could not (Xiong et al. 2018). 
It was argued that this is likely due to an inhibitory effect 
posed by cello-oligosaccharides on xylanases or unknown 
regulators that repress xylanase gene expression in the pres-
ence of cello-oligosaccharides. More recently, efforts have 

Table 1   Current limitations of select bacterial bioprocessors and suggested research approaches

Bacterium Current limitations Suggested approach

Gram-positive Clostridium thermocellum • Requires synthetic biology to utilize non-
cellulose-derived sugars

Improve genetic tools to control regulation of 
heterologously expressed genes

• Engineered fermentation pathways for plant 
sugars repressed by plant oligosaccharides

Improve transcriptional control over heterolo-
gously expressed genes

Caldicellulosiruptor bescii • Low expression and degradative efficiency of 
heterologously expressed CAZyme-encoding 
genes

Gram-negative Cellvibrio japonicus • No high-yielding, stable plasmid system for 
gene expression

Develop a stably replicating plasmid for gene 
expression

• Does not produce any current high-value 
metabolite in abundance

Saccharophagus degradans • Poor genetic system Develop genetic tools to engineer a commodity 
product-producing strain

• Cannot natively ferment sugars to fuels and/
or renewable chemicals
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transitioned to develop CRISPR/Cas systems or riboswitches 
(Marcano-Velazquez et al. 2019; Walker et al. 2020) to medi-
ate the observed repression of xylanase gene transcription in 
the presence of cellodextrins or cellobiose.

In Caldicellulosiruptor systems, the limiting factor is that 
the expression and degradative efficiency of heterologously 
expressed CAZymes is low. C. bescii has been extensively 
manipulated to improve its saccharifying proficiency via het-
erologous expression of xylanases (Kim et al. 2018; Crosby 
et al. 2022); however, it has been observed that degraded 
oligosaccharides repress the expression of secreted enzymes. 
Additionally, many heterologously expressed genes in C. 
bescii employ a highly active constitutive promoter, which 
is unoptimized for lignocellulose bioprocessing due to the 
energetic output required to constitutively and highly express 
heterologous CAZyme-encoding genes (Conway et al. 2017; 
Kim et al. 2017; Lee et al. 2020). Therefore, control over 
the expression of the heterologously expressed genes could 
spare the metabolic burden of their high expression levels 
and improve this limitation.

Optimizing Gram‑negative systems will require 
bolstering the potency of lignocellulolytic 
capabilities

Gram-negative species elicit a much broader hemicellu-
lase-encoding gene regulatory response than Gram-positive 
bacteria. We argue that this diversification of CAZyme 
gene expression is an underutilized resource to optimize 
lignocellulose bioconversion in single bacterium systems. 
Biotechnology-relevant model systems like E. coli and P. 
putida have been largely focused on improving co-utilization 
of hexoses and pentoses by overcoming the effects of CCR 
(Kim et al. 2019b; Peabody et al. 2019; Elmore et al. 2020; 
Cabulong et al. 2021). However, these systems are limited 
as they are unable to innately degrade lignocellulose. The 
necessary step needed to drive either model into a fully self-
sufficient system is the inclusion of lignocellulolytic machin-
ery. This approach has several obstacles, most pressingly, 
identifying the minimally sufficient set of CAZymes that 
can completely depolymerize plant biomass and engineer-
ing an efficient export system for these CAZymes from the 
heterologous host.

In contrast, the genes/proteins needed to ferment plant 
sugars or produce other bioproducts are known and could be 
integrated into lignocellulolytic Gram-negative species. One 
example of a system not yet tapped for industrial use but has 
to potential to do so is Cellvibrio japonicus, a Gram-nega-
tive saprophyte that can fully degrade lignocellulose (Deboy 
et al. 2008; Gardner et al. 2014; Larsbrink et al. 2014; Blake 
et al. 2018). C. japonicus has also been shown to make etha-
nol and rhamnolipids as targeted products from lignocel-
lulose bioconversion on a proof-of-concept scale (Gardner 

and Keating 2010; Horlamus et al. 2018). Another Gram-
negative model is Saccharophagus degradans which also 
possesses a large number of CAZymes capable of degrad-
ing polysaccharides including cellulose, xylan, and pectin 
(Ensor et al. 1999). Engineering efforts using S. degradans 
have successfully generated strains capable of producing 
polyhydroxyalkanoate (PHAs) from cellulose, xylan, and 
agarose (Esteban Alva Munoz and Riley 2008; Sawant et al. 
2017). However, S. degradans cannot generate ethanol and 
still relies on co-culture with other microbes for its produc-
tion (Takagi et al. 2016). While both C. japonicus and S. 
degradans show promise with their degradative ability, 
improvements to their genetic systems are still needed to 
heterologously express the necessary metabolic pathways 
to produce high-value products.

Concluding statement

This review discussed mechanisms that regulate hemicel-
lulase-encoding gene expression in Gram-positive versus 
Gram-negative bacteria. Experimental studies that character-
ize the molecular mechanisms of hemicellulase gene expres-
sion are useful to identify relevant activators or repressors 
for each regulon, and we argue that such research is essential 
for the field to significantly advance. Given the discussed 
limitations of the reviewed models, the field should prior-
itize efforts that predict transcriptional regulatory networks 
and engineer the requisite enzymes for plant sugar biocon-
version in species innately capable of prolific lignocellulose 
degradation.
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