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Abstract

Aspergillus fumigatus is a ubiquitous pathogenic mold and causes several diseases, including mycotoxicosis, allergic reac-
tions, and systemic diseases (invasive aspergillosis), with high mortality rates. In its ecological niche, the fungus has evolved
and mastered many reply strategies to resist and survive against negative threats, including harsh environmental stress and
deficiency of essential nutrients from natural environments, immunity responses and drug treatments in host, and competition
from symbiotic microorganisms. Hence, treating A. fumigatus infection is a growing challenge. In this review, we summarized
A. fumigatus reply strategies and escape mechanisms and clarified the main competitive or symbiotic relationships between
A. fumigatus, viruses, bacteria, or fungi in host microecology. Additionally, we discussed the contemporary drug repertoire
used to treat A. fumigatus and the latest evidence of potential resistance mechanisms. This review provides valuable knowl-
edge which will stimulate further investigations and clinical applications for treating and preventing A. fumigatus infections.

Key points

e Harsh living environment was a great challenge for A. fumigatus survival.

o A. fumigatus has evolved multiple strategies to escape host immune responses.
o A. fumigatus withstands antifungal drugs via intrinsic escape mechanisms.

Keywords Aspergillus fumigatus - Aspergillosis - Escape mechanisms - Immunity responses - Microecological agents -
Drug resistance
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2021). Moreover, in recent years, during the Coronavirus
2019 (COVID-19) pandemic, pulmonary aspergillosis led
to Aspergillus co-infections with COVID-19 developed into
a clinical, major life-threatening fungal disease (Giacobbe
et al. 2022; Hoenigl 2021). As a saprophytic fungal patho-
gen, A. fumigatus proliferates via abundant, small diameter
(2-3 pm), air-borne asexual conidia. Although the fungus
may encounter harsh natural conditions, such as high tem-
peratures, poor carbon or nitrogen sources, ultraviolet light,
and reduced metal ion levels, it has evolved adaptive survival
systems. Generally, conidiophores generate thousands of
conidia; indoor and outdoor airborne conidia concentrations
can range from 1 to 100 conidia/m® and even reach up to
108 conidia/m? in certain environments (Latgé and Chamilos
2019). Moreover, abundant conidia are inhaled daily into
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human lungs (Furlong-Silva and Cook 2022). In immuno-
competent hosts, approximately 90% of inhaled conidia are
swiftly cleared at mucosal surfaces and ciliated cells in the
respiratory tract. Residually activated and swollen conidia
face hostile environments, including low carbon sources, low
oxygen concentrations, and host immune responses (Mar-
galit and Kavanagh 2015); therefore, A. fumigatus survival
in healthy individuals poses challenges to the fungus. How-
ever, A. fumigatus can evade host defenses for the spores to
germinate or proliferate and causes aspergillosis in immu-
nocompromised and immunodeficient individuals (Verburg
et al. 2022).

When A. fumigatus breaks through host airway defenses
and accesses the lungs, a chain reaction of antifungal host
responses is activated. For example, germinating conidia
may be phagocytized by alveolar macrophages (AMs) while
germ tubes are quickly and effectively targeted by neutro-
phils (Ortiz et al. 2022). However, several complex fungal
regulatory systems, such as altering recognition recep-
tors, releasing reactive oxygen species (ROS) detoxifying
enzymes, as well as biofilm and aspergilloma development,
have been evolved to cope with the host immune responses
(Latgé and Chamilos 2019). A. fumigatus also appears to
co-operate with viruses, bacteria, and fungi to facilitate mul-
tiple colocalization sites that augment A. fumigatus invasion
and its seriousness. Currently, A. fumigatus is mainly treated
using azoles, echinocandins, and polyenes. Especially the
itraconazole, voriconazole, isavuconazole, and posaconazole
were the primary treatment drugs (Ben-Ami 2023). How-
ever, with long-term drug use, drug-resistant strains can sur-
vive via targeted protein overexpression or mutation, efflux
pump overexpression, and altered mitochondria-related the
high-osmolarity glycerol (HOG)-mitogen-activated protein
kinase (MAPK) signaling and Heat Shock Protein (Hsp)90-
calcineurin pathways. Therefore, A. fumigatus infection
requires serious clinical attention.

In this review, recent research progress on A. fumiga-
tus and its ability to confront negative factors in the natu-
ral environment, host defenses, and other lung-colonizing
microorganisms are outlined. Importantly, fungal adaptation
mechanisms, incorporating perception, regulation, response,
and adaptation processes, are examined. Also, current fungal
therapies and major fungal drug resistance mechanisms are
discussed. This review could provide valuable insights on A.
fumigatus infection prevention and treatment measurements.

Fungal adaption in the natural environment

A. fumigatus is ubiquitous in external environments, includ-
ing soil, decaying vegetation, and air, and has evolved many
regulatory mechanisms to adapt growth to different factors
(temperature, pH, carbon and nitrogen sources, and metallic
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ions). A. fumigatus grows and survives in extreme environ-
ments in temperatures up to 70 °C by exploiting multiple
temperature regulatory systems (Hokken et al. 2023). In
2010, A. fumigatus proteome alterations during 30-48 ‘C
shifts were examined by mass spectrometry and showed
that Hsp30, Hsp42, and Hsp90 proteins were highly ele-
vated after heat shock (Albrecht et al. 2010). Hsp90 is a
conserved and essential eukaryotic molecular chaperone; it
mediates proteostasis to avoid protein damage and misfold-
ing during hyperthermy (Hervas and Oroz 2020). Hsp90
also interacts with cell wall integrity pathway (CWIP) com-
ponents which are crucial signaling pathways maintaining
cell viability under thermal stress (Crunden and Diezmann
2021). With the temperature increase, Hsp90 could interact
with the CWIP component MAPK to prevent its aggregation
(Rocha and Minari 2021). Furthermore, hsp expression is
regulated by heat shock transcription factors (HSFs). Under
stress, HSF factor 1 (Hsfl) homotrimers bind to specific
DNA motifs or heat shock elements in target gene promot-
ers to induce thermal adaptation gene expression, such as
Hsp90 and Hsp70. Hsp90 also regulates Hsfl activity by
binding to the Hsf1 feedback regulatory loop to maintain its
inactive state under normal conditions (Fabri et al. 2021).
Additionally, many other genes are reportedly involved in
A. fumigatus thermotolerance regulation, e.g., a putative
a-1,2-mannosyltransferase deletion strain exhibited thinner
hyphal cell walls when compared with the parental strain
at 48 °C. The thermotolerance gene thtA was essential for
A. fumigatus growth at 48 “C, while a thtA deletion mutant
was more sensitive at this temperature when compared with
the original strain (Chang et al. 2004; Wagener et al. 2008).
Thermotolerance regulated genes from the literature are
summarized (Table 1).

Nutrients are essential for A. fumigatus survival as the
fungus has evolved highly sophisticated homeostatic mecha-
nisms to respond to, take up, recycle, and use many varied
nutrients. In the natural environment, nitrogen predomi-
nantly occurs in inorganic forms: atmospheric nitrogen,
ammonia, nitrite, and nitrate. As a nitrogen sensor in A.
fumigatus, rapamycin (TOR) protein was crucial for this
fungal, and the gene missing mutant was more sensitivity
and deficits in germination ability on poor nitrogen medium
compared to wild strains. TOR promoted GLN3 (promoted
GATA transcription factor) binding to cytoplasmic protein
URE?2 to control cytoplasmic protein synthesis and degrada-
tion under nitrogen-limited conditions (Baldin et al. 2015;
Beck and Hall 1999). The Ras-related gene rhbA deletion
mutant exhibited TOR kinase inhibitor rapamycin hyper-
sensitivity and also had significantly reduced growth rates
on poor nitrogen-sources (Panepinto et al. 2003). The briA
gene (C,H, zinc finger transcription factor) deletion mutant
exhibited downregulated gene expression encoding riboso-
mal proteins under nitrogen-limiting conditions; however,



53

Page 3 of 21

(2024) 108:53

Applied Microbiology and Biotechnology

(810€ yoseIQ pue Suo)

(T10T 'Te 10 SorRA)

(220T e 1 ung)

(8107 'Te 10 SueyZ 710T T8 19 PYdIA)

(120T T8 19 1qed)

(910T T8 19 BY20Y)

(010 T8 0 11Q)

UOII JO QUIONI[ )IM UOTJRIUSW

-orddns £q paino 2q ued pue Jo9Jp

YIMOIS pamoys JueInwu uona[ap ayJ,
WNIUOWIWE

uo KJ1A1)oR QWAZUd HO-dAVN JO
S[OAS] PONPAI JUBINW UOTII[P YT,

9[qeIAUI AIE SUTeN)s uonaR(

a3eyeo orwise[dojko pamoys

PUE [[eM [[2D JU) UO SajI0W

qururesoon|3 pue ueon|3-¢‘1-¢g
JO UONONPAI SJUBINW UOHI[IP YL,

j10dor oN

sjuade
Surqrmuiad-[[em [[99 0) 90URII[O}
pue [1m0I3 2A1BI239A JO S)09Jp
9y} PaMoys pue uonezuesIio
[Tem [0 paIa)[e Jueinu ouds oy,
jueINW Ay} Ul
KIADISUSs ssans aaneprxo pue ‘Hd
qurreye ‘ASojoydrow reydAy pue
IMOIS oY) PamMoys syueIn Uond[e
[[eA [[99 0) pajefaI uorssardxo

OAIA UI PUR ONIA UT uonIsmboe
UOII PUE ‘WsI[oqeldw uagontu
‘SISQUIUASOIq YYD U POAJOAU]

90In0S U0qIEd pue udSonIu € se
sururSIe uonezinn Y} 10j asuodsay

Amqe
-[reAe juarnnu o) asuodsar ur uon
-eI1J1j01d pue YIMOI3 [[99 SUIIA0D)

Do 81 18 YImoI3 ) 109V

Kemyied DOH pue 1MD oW
Jo s19Ae]d utew 9U) YIIM UOT)ORIIU]

93ewrep aAnepIXO 0]
QOUBIA0) AU} PUB ), /€ 9A0QE UON
-BUTWIAZ pue YIMOI3 9} 20uUdnyuy

Do LE e YIMoI3 10 [enjuassg
Do LE dr0qe

J018AT)OR [euondiIosuel) QuIONA|

s10)083 uonduosuen YIVO

aseury 10,

A[rurey sased 1O oy

s10joe} uondriosuen Jooys JeoH

Kemyyed
K3yt [rem 199 oy jo yusuodwo)

soseury urojoxd
pajeAnoe-uago)iw jusuodwod-2a1y |,

qnaj

gaiv ‘yain

40}

uonisimboe uoqres 10 usSonIN

FOYL “TOYL [ OUYL

vy

Vil

VIS 2Py “ 108

(S10T ‘T8 19 BYoOy) soua3 oY) paIdle Jueinw Auas Ay, uoneUILIag J0 YIMOIS Y} 00V D 9seuny urelold voyd
UONRIPINOD
pue ‘voneurwirad ‘YImoid eydAy
‘Kpiqera a1ods jo adKjouayd oy 9suodsar ssans pue J0URIIO}
(1707 IBUIJA] PUB BUOOY)  UI QAT}OQJOP Iom SJUBINW UONR[R  -OWLIoY) udamiaq jutod Surosuuo)) urajoxd yooys oy 064sy
K)IADISUQS
(002 '8 10 Suey)) aimerodwo) 9y pey JueInW UONRRJ Do 8% 18 1M013 J0J Tenuassg umouyun Iyl
Do LE T SNJOS[oNU dY) UT PIZI[ed
-o[op sem ydoN urejord rejosronu
(9002 "T® 19 e1yqeyq) Pamoys JueInw Y482 UONI[op Y], Do LE 18 YIm0I3 oY) 100}y urojoid IejoaponN V82
Do 877 1B
UOTJRULIOJ [BIPIUOD JY) PUE YIMOIS
(8007 'Te 12 19uddepy) Ul 109Jop pey JuBINW UT Y, Do LE 2A0QR YIMO0I3 10 ATBSSIIN 9seIdfsuen-[Asouuew-O [hudfp
QOURID[0JOULIAY ],
uorssaidar 1o uon
SQOUQIOfY  -9[op 2uds Jo Kousroyop ordKjousyg uonouny [eorSo[orq Ay J, uonejouUE UL}0IJ Juen

SUONIPUOD [BINJRU ISIQAPE PUBISYIIM 0} KJI[Iqe snpSiumf 7 0} pajefa1 surajord pue sauen) | 3jqel

pringer

a's



(2024) 108:53

Applied Microbiology and Biotechnology

Page 4 of 21

53

(8002 'Te 19 [M_1YdS)

(L00T 'Te 19 eIyds)

(120T T8 10 sary)

(020T Ko[meL] pue eA[IS)

(9102 "Te 3 Suny)

(¥00T T 10 onX)

(810T 'Te 30 paI)

(800T Te 10 9558BS)
(00T T 10 uuewddery)

(£00T ' 10 oyurdouey)

(610T '8 19 yose1Q)

(610T 'Te 19 yose1Q)

uolir 0} AJIADISUIS
PASEAIOUT 9I9M SJUBINW UOTII[OP Y],
SUOTIPUOD JuT)II|
-UOJI JOpuUn Yimolis J0j UONR[IWISSE
uoar aanjonpar uodn aouspuadop
91o[dwod a10M SIUBINW UOTIB[AP Y],

uoqreds
AJuo 9y} se 9eje0. ) UI S3199Jop
1MO0I3 PaMOYs Jueinul duag oy,
uone[NWNIOE Ua304[3 pue
9SO[eya1} PAId[e JurInw U3 Y],
SSQI)S QAIIRPIXO 0} JOULII[O0)
PaoNPaI pamoYs pue UONEIIWI]
U0qIed 9y} UoneuIULIoS JO UOTIBA
-noe-10dAY sem jueinuw UONI[IP Y,
[opow SULINW Ul uapIng
[eSuny ur uonONPaI %} © pey se
[[om se ‘syuade Jurdewrep [[em [0
PUE $ISSAI)S DAIIBPIXO ‘ONOWISO 0)
JAIISUSS QIOW SeM JueInu uag Y],

$901n0s uaSonIu pue
InJ[ns se 9jenIu pue dJej[ns AZINn
0] AJI[IqeUT Sem JuBINW QU3 JYJ,
uoneAre)s
PIok ouTwIe UyM A[MO[S [31Mo0I3
Sem uone[niods pue UoIsuN)xd
eydAy pamoys jueinur UONI[AP YL,
UOTIBAIR)S PIOR OUTWUE UL
1MOI3 OU Pamoys JuBINW U3 Y],
s9o1nos uaontu rood
ur parredwr sem juejnw dua3 Y],

[opou 9snour SISoj
-n131adse Areuownd e ur Jud[nIIAR
pazopual pue douapuadap aurona|
PseaIoUT JueINW UOTI[OP Y,
[opPOW UOT)OJUT JOISUT U. UT 90UI]
-IIIA PASBAIOAP JUBINW UONI[P Y],
pue souapuadap aurd
-NJ[ PASLAIOUT JURINW UOTI[OP Y,

uorne[n3ar uonismboe uoy

uorne[n3ar uonismboe uoy

9JBJA0B PUB ISOIN[3 90INOS
u0qIed Je[N[[90BNXd JO UONBZI[N)

a3e10)s Ie3ns eIy

Jursuos
90INOS U0QIED [BUINX UT UOTOUN,]

yIMOIS A7)
-e)a39A Jurmp ua3oniu 10 uoqIed
JIoj uoneAre)s uodn pajeanose oq 0}
pue ‘3uISuas [RUONLINU UT PIAJOAU]

SOSEJONPaI S)Y[NS pue ALNIU
J10J QWIAYOIIS JO SISOYIUAS ) 10V

SISOUJUASOIQ PIOB OUTWE JO WA)SKS
[onuod Aemyjed-sso1d ay) Aje[n3AY

SISOUJUASOIQ PIOE OUIWE JO WI)ISAS
[onuod Aemyyed-ssord ay) are[n3ay

S90INOS UAFONIU JUAIYIP FUISUIS

Kemyyed
ONOYIUASOIQ SUIONS] AU} UT QA[OAU]

Kemyyed
O1)OYIUASOIQ SUIONS] AU} UT QA[OAU]

s1030e} uondrosuely,

so1oydoIapIs In0j seoNpoIg

1078AT)OR [euondrIosuel],

skemmped TMD/DOH U
103dooa1 Surfeudts weansdn djSoH

10ydooa1 pajdnoo-ursjord-o

Kemyred aseuny| JVIA

QWIAZUD 9SB)R[AYI0T
-19)/oseua3oIpAyap [euonounjiq oy,

IoquIaw WSAS DD AL
J0jeATIOR [euondLIosuel],

urajold Surfeusts oyI-sey

asejuAs ayerewjAdordosi-o

aserowost ayerewAdoidosi-o

Xxdpy ‘yaus

Dp1s ‘Apis/aps ‘Opis ‘ypis
uonisinboe o

qovd

dz&do pue ‘dzgsw ‘djoys

y1ds

A2

glout

Dodo

vodo

Vqyt

onaj

yna]

SOOUQIRYY

uorssaidar 1o uon
-9[op 2uagd jo Aouaroyep dsrdAjousyg

uonouny [es1301o1q Y],

UuOoTjR)OUUE UI)0IJ

Juen

(ponunuoo) | sjqey

pringer

Qs



53

Page 5 of 21

(2024) 108:53

Applied Microbiology and Biotechnology

(010€ "Te 39 Yoruy)

(2T0T T8 190 0pa[oL)

(8707 yorury pue exronbueIjojuadIp )

(ST0T Te 0 earonb
-URIJOJUADIA $[ZOT ‘T8 10 UosuIqoy)

(T10T T8 12 19[esD)

(110T T8 10 1921819)

(S10T ‘T8 30 wod3uod)

suon

-1puod Sunrwif-ourz repun Ajoeded
YIMoI3 PIonpal jueinw duas Y],

BIpow

Sunwi-ourz surey[e ur Apuesyru
-31s poonpar juelnw UOTII[OP YT,

SUONIPUOD

PIOB UONBIWI[-UZ UT Y3MmoIS
PIsBaIOAP JUBINW UOHI[IP YL,

SUONIPUOD

PIO€ UOT)BIIWI[-UZ UT Y3moIS
PAseaIOP JUBINW UONA[P Y],

oyeidn

uoar passaidop 10J 90UL)SISAI UOIT
SOSBAIOAP JUBINWI UOTIA[SP QY

erxodAy

pUE UOTBAIE]S UOIL 0 AJIANISUS
PaseaIour Sem Jueinu Quag oy,

$90IN0S U0QIEd

O1Ua309U0oN[3 PUB SUONIPUOD P}

-WI-UoIr Jopun mois o) Ayroeded
patredwir sjueInw UONA[AP Y],

J1odwr SUIYIIUIO [BLIPUOYDOIIW pUR

QUIYIIUIOYD JOYQIYUIT SISAYIUASOIq

aurureA[od ay) 03 Aypiqudessns ay)

1mo13 [e3uny J0§ SUONIPUOD Jur
-JIWI[-OUIZ pue JuIfey[e ul passaidxyg

BIpW
Sunmui-ourz ‘ourfey[e pue [ennau
ur gf12 pue yf42 jo uorssarday

SISBISOQWIOY JUTZ SAR[NSY

j10dsuen) ouIz 9)e[n3oy

IR[ONJBA JO WSIURYOIW
SuIAJIX0)Op UOII 9Y) 0) PIJR[Y

SUOT}IPUOD UOIT MO]

pue erxodAy o031 asuodsar ur uorn
-1smboe uoir Jo uonenSar seIeIPI

ayeidn

uoI1 payeIpaw-a10ydoIapls pue uon

-B[TWISSE UOII 9AT}ONPAI J0J SOUIT

Jo uorssardxe aye[nuins 0y xdny
soonpul pue ya.s sassaiddns ANOy

Quryruio Josinoard aroydorapis

soua3 3urpooud-1ejiodsuen ouryz

10ye[n3aI euonydirosuer],

I0jeAT)OR [euondriosuer],

9uodsuen ourz

J9)10dWIT UOIT TR[ONOBA

s1030e} uondrosuen
x1[9y-door-x11ay o1seq ‘surojoxd
Surpurq juawa[e A103R[NSAI [019)S

J10)oey uoNdLIdSUE) IISN[D OUIZ

Zfdsp

Dovnd

\ 1724

Hf4Z pup ‘gz ‘qfaz ‘Ofaz ‘gfaz ‘yjaz

uonisiboe uz

V220

VqLsun

NIV ‘pYnov

(STOT 'Te 10 Jorayyeyds) PISBAIOUT dIoM SjuBINW QUAT AT, 10} JOLLIED [BLIPUOYO0IW dATIRINg Vowy Joyiodsuer) [eLIPUOYS0IIIA youn
uorssaidar 1o uon
SOOUQIOfY  -9[ep 2uds Jo Kousroyop ordKjousyg uonouny [eorSo[orq Ay J, uoneIOUUE UI}0IJ Juen

(ponunuoo) | sjqey

pringer

a's



53 Page 6 of 21

Applied Microbiology and Biotechnology (2024) 108:53

the mutant was insensitive to a TOR inhibitor, suggesting
that br/A was not downstream of TOR signaling (Twumasi-
Boateng et al. 2009). Furthermore, the stress-activated pro-
tein kinases (SakA)/HogA MAPK pathway was activated
upon nitrogen starvation during vegetative growth (Ma and
Li 2013). SakA is part of the nitrate and nitrite assimilation
cascade during fungal germination processes. When com-
pared with the wild-type stain, the sakA defective mutant
showed increased germination rates on limited nitrogen
medium and demonstrated that MAPK negatively regu-
lated conidial germination (Perez-Cuesta and Guruceaga
2021). Other major uptake and metabolic gene regulators
of non-favored nitrogen sources include the zinc finger
transcription factor GATA-like genes areA and areB. AreA
controls the expression of the glycosylphosphatidylinositol-
anchored protein SwgA, which is localized to membranes
and is involved in germination, growth, and morphogenesis
(Samalova et al. 2023). On primary nitrogen sources, AreA
interacts with NmrA protein (nitrogen metabolite repression
compound) to inhibit the induction of secondary nitrogen
sources (Andrianopoulos et al. 1998). However, when pri-
mary nitrogen sources are not present, famA (Zn(II)2Cys6
transcription factor) interacts with areA to activate nitrogen
catabolism (Downes et al. 2014). AreB is generally regarded
as a negative nitrogen metabolism regulation factor, and
AreB expression depends on AreA and AreB to negatively
regulate AreA-dependent nitrogen catabolic gene expression
under nitrogen-repressing or starvation conditions (Macios
et al. 2012). Additionally, GenE (acetyltransferase (Lin et al.
2020)), RgsC (G-protein signaling protein(Kim et al. 2017)),
and Met6 (a bifunctional dehydrogenase/ferrochelatase
enzyme (Dietl et al. 2018)) may also be involved in nitrogen
metabolism; however, little is known about these processes.
The regulatory genes responsible for A. fumigatus growth on
different nitrogen sources are summarized (Table 1).
Environmental fungi carbon sources mainly include
glucose, lactate, and acetate. Glucose is the most favored
carbon source for fungal survival and niche colonization.
It was reported that the G-protein coupled receptor system
and the hexose transporter are required to sense and uptake
glucose (Qadri et al. 2021; Ries et al. 2018). For example, a
member of this family GprK was characterized as a carbon-
sensing receptor in A. fumigatus. Gene loss mutants showed
increasing germination rates under carbon starvation and
growth restriction levels on a medium containing a sole car-
bon source (pentose) (Kim et al. 2017). Also, HOG/CWI
pathways were implicated in carbohydrate metabolism. The
Hoglp upstream signaling receptors Sholp, Msb2p mucin,
and Opy2p genetically interacted, while their null mutants
showed altered trehalose and glycogen accumulation, sug-
gesting regulated sugar storage by the HOG/CWI pathway
(Silva and Frawley 2020). Another system called Carbon
Catabolite Repression showed preferences for glucose or

@ Springer

preferred sugars. The C,H, zinc-finger transcription fac-
tor creA and the regulatory controller facB were available
for extracellular glucose and acetate utilization (Ries et al.
2021). Genes related to carbon source regulation are sum-
marized (Table 1).

Metal ion metabolism affects almost all A. fumigatus
biological functions, including fungal virulence, cell wall
integrity, azole susceptibility, protein phosphatases, anti-
gen secretion, signal transduction, and even mitochondrial
functions (Blatzer and Latgé 2017). During iron short-
ages, A. fumigatus generally increases expression of hapX
(bZip CCAAT-binding transcription factor), sidA (ornith-
ine monooxygenase), and mirB (siderophore transporter),
while down-regulating sreA (GATA transcription factor),
cccA (vacuole iron importer), and cycA (cytochrome C)
during iron abundant conditions to maintain iron homeo-
stasis (Matthaiou et al. 2018). Under iron starvation, HapX
interacts with the CCAAT-binding core complex to activate
iron acquisition and siderophore transporters, repress iron-
consuming processes, and the vacuolar iron transporter
pathway (Schrettl et al. 2010). During iron excess, SreA
represses hapX expression, represses iron uptake, and pro-
motes its use (Wiemann et al. 2014). Similarly, in the case
of excess iron, the intracellular siderophore ferricrocin and
vacuole was important to detoxification, and the vacuole
iron importer encoding gene cccA deficiency decreases iron
resistance (Gsaller et al. 2012). Also, the leucine biosyn-
thetic and signal-transduction pathways, phosphatase Z and
TOR kinases, are reportedly required during adverse iron
conditions (Orasch et al. 2019).

Zinc is essential for fungal growth, and zinc homeostasis
in A. fumigatus is regulated upon the external condition.
During zinc affluent conditions and to transport redundant
zinc to extracellular spaces or vacuoles for detoxifica-
tion, aceA (transcription factor) induces crpA (Cut P-type
ATPase) and zrcA (vacuolar zinc transporter) expression
(Cai et al. 2018). Under zinc-deficient conditions, ZafA
(transcriptional activator) up-regulates ZrfA and ZrfB (zinc
transporters) in acidic or neutral conditions, while in the
alkaline with calprotectin, it mainly up-regulated ZrfC to
reduce zinc consumption (Amich and Calera 2014; Amich
et al. 2009). Additionally, ZrfA, ZrfB, and ZrfC expression is
further modulated by PacC (transcription factor) depending
on ambient pH (Toledo et al. 2022). ZafA-mediated fun-
gal growth regulation is also influenced by iron availabil-
ity, which is enhanced in zinc- and iron-repleted media, but
growth is restricted by reducing zinc intake under iron star-
vation (Vicentefranqueira et al. 2019). Metal ion metabolism
genes are summarized (Table 1).

Thus, A. fumigatus has developed several effective
mechanisms to survive adverse conditions and combat
stress-related changes. It was reported that more than 80
A. fumigatus strains have been isolated from Arctic soils
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(Korfanty et al. 2021). Apart from normal regulatory mecha-
nisms (temperature, carbon, nitrogen, and metal ion acquisi-
tion), several highly coordinated adaptation mechanisms are
also used to exploit other external environmental conditions.
For example, A. fumigatus can be grown in 5% carbon diox-
ide, very low pH (3.5), and under ultraviolet radiation. Pro-
teome analyses have shown that stress responses, including
cell wall reorganization, DNA repair, and oxidative stress
responses during citric acid and itaconic acid production, are
increased to overcome radiation effects (Alonso et al. 2017;
Oliveira et al. 2021). However, these data constitute only
a small component of A. fumigatus survival mechanisms.
When A. fumigatus is inhaled into the human body, it faces
a more complex internal environment.

A. fumigatus survival strategies in hosts

When A. fumigatus conidia invade organisms, they become
metabolically active and swell. To quickly clear spores, host
responses are physically initiated via mucosal surface bar-
riers in the respiratory tract. On epithelial surfaces in upper
and lower respiratory tracts, most conidia are trapped in
mucus and removed via ciliated cell actions (Crossen and
Ward 2022). In healthy individuals, mucociliary clearance
and phagocytic defenses normally prevent fungal-associated
diseases; thus, A. fumigatus isolation from respiratory secre-
tions in normal hosts generally reflects colonization rather
than infection (Gago et al. 2019). However, in immunocom-
promised hosts, A. fumigatus can attach to sinonasal epithe-
lial cell monolayers to form three-dimensional biofilm struc-
tures with parallel-packed, cross-linked hyphae and channels
to induce sinusitis or tracheobronchitis (Singhal et al. 2011).
Consequently, conidia breakdown barriers to reach the lower
respiratory tract, and compromised lung epithelia provide
an entry portal for fungi (Bertuzzi et al. 2018). In alveo-
lar epithelium, epithelial cells covering over 95% of inner
alveolar surfaces function as efficient Aspergillus conidia
neutralizers via actin-dependent phagocytosis in mature
acidified phagolysosomes or by endocytosis induced by
protein—protein interactions between the host and pathogen
(Latgé and Chamilos 2019). For example, lung mucin glyco-
proteins contain twelve binding sites for fucosylated struc-
tures and avidly bind to FleA (lectin), which is expressed by
A. fumigatus, while integrin osf; interacts with A. fumiga-
tus CalA (thaumatin-like protein) (Liu et al. 2016; Richard
et al. 2018). However, most pathogens control host innate
immune responses at early stages, before infiltrating host
immune cells arrive at infection sites. For example, A. fumig-
atus Aspf2 (factor H-binding protein) blocks host innate
immune attack at early infection stages. Similarly, to avoid
C3b complement system activation, A. fumigatus recruits
several human plasma regulators (factor H, factor-H-like

protein 1, and factor H-related protein 1). Aspf2 also recruits
plasminogen to damage human lung epithelial cells, induce
cell retraction, and expose the matrix. Therefore, when A.
fumigatus is not phagocytosed, tissue is penetrated (Dasari
et al. 2018). High-resolution live-cell confocal microscopy
assays have indicated that A. fumigatus spores could sur-
vive from the maturation failure phagosome (about 60%),
and the hyphae would fused to the host plasma membrane
rather than rupture the phagolysosomal membrane to allow it
growth better. Then, hyphae escape from epithelial lung cells
in a non-lytic manner and elongate to adjacent cells without
penetrating the host cytoplasm (Seidel et al. 2020). And the
dihydroxynaphthalene (DHN)-melanin, the additional lay-
ers in the outer part of the conidia cell wall, was one of the
interference factors for host endocytosis. Proteomics analy-
ses of A. fumigatus conidia-containing phagolysosomes have
shown that melanin inhibits phagolysosome acidification,
Rab5- and Vamp8-mediated endocytic trafficking, and cath-
epsin Z (lysosomal cysteine protease) recruitment. There-
fore, melanin promotes conidia germination and escapes
from AMs via hyphal growth (Amin et al. 2014). Melanin
is also involved in fungal adhesion and biofilm formation,
enhanced fungal immune tolerance, and decreased expo-
sure to pathogen-associated molecular patterns (PAMPs) to
limit phagocyte phagocytosis. A recent study reported that
melanin also removed chemokines (CXCL10 and CCL20)
to suppress host inflammatory responses (Graf et al. 2023).

Due to continuous inflammatory response activation dur-
ing A. fumigatus infection, pulmonary would appear local
tissue hypoxia (Gago et al. 2019). As oxygen is essential
for A. fumigatus biochemical processes, the fungus adapts
to oxygen limitations. Transcriptomic and proteomic
analyses have shown that during glycolysis induction, the
transcriptional down-regulation of the tricarboxylic acid
cycle and oxidative phosphorylation processes are major
hypoxia-response measures. Transcripts were associ-
ated with iron and sterol metabolism, the cell wall, and
GABA shunts, which were significantly increased to cope
with stress (Barker et al. 2012). It was reported that TcsC
(Group III two-component sensor kinase) was required for
adapting fungi to low oxygen levels. Low oxygen caused
TcsC-dependent phosphorylation of SakA, and the AtcsC
mutant was susceptible to increased morphogenetic changes
(McCormick et al. 2012). Similarly, mitochondrial respira-
tion is also critical for fungal pathogenesis during hypoxia.
In a mouse model, the mitochondrial respiration chain
component cycA (cytochrome C gene) and alcC (alcohol
dehydrogenase gene) deleted strains have been come out
the defect virulence (Grahl et al. 2012, 2011). Chromatin
immunoprecipitation followed by parallel DNA sequencing
showed that SrbA (sterol regulatory element-binding pro-
tein gene) helped regulate ergosterol biosynthesis and iron
uptake during hypoxic conditions or iron limitation (Zhang

@ Springer



53 Page 8 of 21

Applied Microbiology and Biotechnology (2024) 108:53

et al. 2021a). Critically, the lung is a “sponge,” and there
are not enough carbon or nitrogen sources on lung surfaces
to limit A. fumigatus growth. Therefore, A. fumigatus gen-
erates proteases (serine proteases, metalloproteinases, and
aspartic proteases) to decompose organic components (Abad
et al. 2010). Besides these genes above-mentioned about
the carbon and nitrogen metabolism, the transcription fac-
tors are also important for A. fumigatus survival in vivo.
For example, facB (transcription regulatory factor required
for acetate utilization) is essential for carbon metabolism
in vivo. A facB deficient strain showed significantly reduced
virulence in both Galleria mellonella and murine invasive
pulmonary aspergillosis (IPA) models (Ries et al. 2021).
During mold infection, amino acid biosynthesis is required
for nitrogen metabolism. The cpcA gene encodes the tran-
scriptional activator of the cross-pathway control system
(CPC) of amino acid biosynthesis. Indeed, a cpcA deletion
strain not only impaired the CPC system in terms of amino
acid starvation, but also attenuated virulence in pulmonary
aspergillosis mice (Krappmann et al. 2004).

Escaping immune responses

After A. fumigatus evades the host’s upper respiratory tract,
it can survive on lung surfaces where conidia germinate and
form invasive hyphae which penetrate pulmonary tissues and
enter alveoli. AMs are first-line innate host defenses and
use pathogen-recognition receptors (PRR) and PAMPs. Toll-
like receptors (TLRs) are a major PRR class responsible for
activated innate immune responses, especially TLR2 and
TLR4, which recognize fungal PAMPs, including, pepti-
doglycans, RNAs, zymosan, lipopolysaccharide, and HSPs
(Kumar 2022). However, the TLR4 induces signals were
responding just in the stimulation of conidia, while A. fumig-
atus germinates into hyphae, the TLR4-mediated signaling
would be loosed (Netea et al. 2003). Thus, the main effects
of proinflammatory cytokines come from TLR2-activated
non-protective Th2 (T-helper 2) responses (Buckland et al.
2008). Meanwhile, the Aspergillus gliotoxin produced by
A. fumigatus could target the host cell phosphatidylinositol
3,4,5-trisphosphate [PtdIns(3,4,5)P3] metabolism to break
the phagocytes protective functions, so that this pathogen
could escape the macrophage recognition and downregu-
lating phagocytic immune defenses (Schlam et al. 2016).
Macrophages and neutrophils also generate ROS to com-
bat A. fumigatus conidia and hyphae (Henriet et al. 2011;
Shlezinger and Hohl 2021), e.g., if nicotinamide adenine
dinucleotide phosphate hydrogen oxidase is blocked and
the ROS generation by neutrophils was disturbed, this could
significantly decrease the damage of A. fumigatus swol-
len conidia (Idol et al. 2022). Additionally, A. fumigatus
has evolved an efficient ROS detoxification system which
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provides protection in high-ROS environments. Catl and
Cat2 are known catalase peroxidases; a catl deletion mutant
was found to increase conidia susceptibility to hydrogen
peroxide in vitro, and delayed infection is observed in rats
treated with double catl and cat2 mutant strains (Paris et al.
2003; Shibuya et al. 2006). A study showed that an oxrA
deficient strain decreased inflammation, cytokine secretion,
and markedly reduced neutrophil influx into the lungs. Fur-
thermore, catl or cat2 overexpression rescued phenotypes
associated with oxrA deficiency (Zhai et al. 2021). Addition-
ally, superoxide dismutase enzymes, Sod1 (cytoplasmic Cu/
ZnSOD), Sod2 (mitochondrial MnSOD), Sod3 (cytoplasmic
MnSOD), and Sod4 are important detoxifying superoxide
anions. Asodl and Asod2 mutants inhibited hypersensitive
growth to menadione, while triple sod1/sod2/sod3 mutants
delayed conidial germination and increased AM sensitivity
to killing in immunocompetent mice; however, no significant
virulence differences were recorded in immunocompromised
murine aspergillosis models when compared with wild-type
strains (Lambou et al. 2010). A. fumigatus oxidative stress
response genes (ppoA, ppoB, and ppoC), non-ribosomal
peptide synthetase (pesl), and transcription factors con-
trolling responses to external reactive oxidants (yap! and
skn7) have also been reported for the resisting to the host
ROS reaction so as to protect the mold from the host defense
(Lamarre et al. 2007; Reeves et al. 2006; Schlam et al. 2016;
Tsitsigiannis et al. 2005). Furthermore, human and murine
neutrophils release neutrophil extracellular traps (NETs),
which eliminate extracellular A. fumigatus; however, this
only decreases polar A. fumigatus germ tubes rather than
killing the fungi (McCormick et al. 2010). Hence, NET
evasion appears to be a strategy permitting pathogen sur-
vival and dissemination. Currently, precise A. fumigatus
evasion mechanisms from NETSs are unclear. However, it is
reported that degradation of NETs with the DNases, inhibi-
tion of NETs release by down-regulating host inflammatory
responses, or withstanding the NETSs encapsulation are the
main escape strategy for respiratory pathogens, including
Bordetella pertussis, Haemophilus influenzae, and group
A Streptococcus (Storisteanu et al. 2017). In interactions
between A. fumigatus and neutrophils, interacting hyphae
may generate new hyphal branches at de novo tips to avoid
neutrophil interactions; therefore, increased branch induc-
tion may result in the more aggressive of A. fumigatus for the
limited number of neutrophils (Ellett et al. 2017).
Monocytes, dendritic cells (DCs), and natural killer (NK)
cells are required to control A. fumigatus infections. Conidia
germination and hyphal growth may be inhibited by mono-
cytes (Schiefermeier-Mach and Haller 2020). Also, NK cells
are directly activated against A. fumigatus hyphae rather
than resting conidia, and if NK cells prestimulated by inter-
leukin (1L)-2, high levels of interferon-y and granulocyte
macrophage colony-stimulating factor were produced, so A.
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fumigatus significantly reduced (Schmidt et al. 2011). NK
cells also secrete numerous tumor necrosis factor-o, 1L.-18,
and galectin-9 molecules to induce macrophage polarization
to M1 phenotypes after stimulation by A. fumigatus (Zhang
et al. 2019). DCs can phagocytose A. fumigatus conidia and
hyphae to stimulate Thl cytokine (IL-1A, IL-1B, IL-12B,
and TNF-a) and Th2 cytokine production (IL-6 and IL-10)
(Bozza et al. 2002; Mezger et al. 2008). When frequent or
high fungal burdens occur, acquired immunity is activated.
T cells, induced by A. fumigatus, protect against invasive
aspergillosis (IA) (Hebart et al. 2002). Th2 cells predomi-
nate in response to cystic fibrosis (CF) allergic bronchopul-
monary aspergillosis (ABPA) patients infected with A.
fumigatus (Jat et al. 2021). A. fumigatus secreted proteins
may promote Th2 cell activation (Bozza et al. 2009). Cur-
rently, there was still little knowledge about immune eva-
sion for A. fumigatus, just to know that after phagocytosis,
A. fumigatus conidia rapidly escaped from DCs. And NK
cell failed to release full granule, NK cell surface activa-
tory receptors NKG2D and NKp46 were contact-dependent
down-regulation (Santiago et al. 2018). Thus, more research
is required to identify A. fumigatus escape strategies from
host immune defense systems.

Forming special structures which resist host defenses is
a common strategy in pathogenic fungi. Biofilms or asper-
gilloma are major mechanisms which inhibit host defenses
and usually contain numerous hyphae and extracellular
matrix (ECM) components which contain virulent factors,
including B-D-glucan, galactomannan, and other proteins.
Virulence factor release activates immune responses, causes
mucus plugging, and eosinophilic pneumonia by generating
intense inflammatory reactions (Agarwal et al. 2020). If the
lungs are damaged via chronic inflammatory and fibrotic
processes, A. fumigatus mycelia can successfully grow in
abnormal lung mucus, which increases fungal colonization,
stimulates Th2-based responses, and favors ABPA develop-
ment (Kraemer et al. 2006). Fungal biofilms and aspergil-
loma have significant roles in antifungal resistance (Borghi
et al. 2016; Kashyap et al. 2023), while the ECM adsorbs
antifungal drugs and prevents their diffusion (Wei et al.
2022). Therefore, fungal cells cannot contact the high con-
centrations of drugs so they can survive (Wuyts et al. 2018).

Typically, A. fumigatus invasion and host defenses are
dynamic and complex processes. The host immune system
recognizes distinct A. fumigatus morphological forms to
control growth and prevent tissue invasion, whereas fungi
require nutrients and must adapt to hostile environments
by escaping immune recognition and counteracting host
responses. Understanding these highly dynamic interac-
tions is essential to fully understand aspergillosis pathogen-
esis and facilitate new therapeutic drug design to overcome
morbidity and mortality caused by A. fumigatus (Schweer
et al. 2014).

Microecological relationships
between symbiotic microorganisms
in the lung

As the lungs are an open, interconnective environmen-
tal system, A. fumigatus and complex microbial mixtures
contribute to dynamic microecological homeostasis and
are undoubtedly reciprocal in nature (Liu et al. 2021). If a
mixed infection, rather than a single infection, occurs, tis-
sue inflammation and damage may be more serious (Neu-
pane et al. 2020). Polymicrobial biofilms are simultane-
ously formed in the lung, increase antifungal resistance,
and are difficult to eradicate using therapeutics (Wang
et al. 2020).

Viruses

Aspergillus and viruses are common pathogens, and
their inter-microbial interactions occur naturally in clini-
cal settings. Viruses damaging the immune system and
infecting the respiratory tract are commonly reported
in co-infections with Aspergillus. COVID-19 is a novel
virus and induces severe acute respiratory syndrome. A.
fumigatus co-infection rates with COVID-19 in intensive
care unit patients in the UK, Netherlands, Germany, Italy,
and France were 14.1%, 19.4%, 26.0%, 27.7%, and 33.3%,
respectively (Arastehfar et al. 2021; White et al. 2021).
When treating COVID-19, the long-term and continual
administration of high corticosteroid doses probably
limited phosphoinositide 3-kinase/Akt signaling, which
upregulated proinflammatory cytokines and promoted
FleA signaling activation, thereby facilitating Aspergil-
lus spore entry into cells (Banerjee et al. 2021; Steenwyk
et al. 2021). Moreover, epithelial lung damage stemming
from COVID-19 immunopathology may have facilitated
Aspergillus superinfections (Marr et al. 2021). Addition-
ally, post-respiratory viral Th-2 immune responses, medi-
ated by increased IL-10 levels, followed by temporary
Thl immune depression and down-regulated macrophage
responses, may have facilitated aspergillosis invasion
(Lai and Yu 2021; Tavakoli et al. 2020). However, no sig-
nificant differences were identified between COVID-19
patients and healthy controls in terms of immune response
(Moser et al. 2021).

HIV (human immunodeficiency virus) may cause abnor-
malities that affect immune system components. IA often
occurs in advanced AIDS (acquired immune deficiency
syndrome) conditions and mainly affects the respiratory
tract (Singh et al. 1991). In the lung, radiological data have
shown vascular invasion, pulmonary abscesses, bilateral
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nodular infiltrates, and cavitary lesions in the upper lobes
(Hakkouni and Mansouri 2018). Also, chronic A. fumiga-
tus colonization in CF is accompanied by CXCR4 (HIV
coreceptor) accumulation in airway granulocytes (Carevic
et al. 2015). The A. fumigatus Asp fl protein possesses an
amino acid domain that resembles the HIV-1 gp41 heptad
repeat 2 (Becker 2007). Additionally, influenza is a com-
mon respiratory virus, and mice post-influenza PR/8/34
HINT and challenged with A. fumigatus had increased fun-
gal and viral burdens, inflammation, and mortality rates.
The influenza A-induced signal transducer and activator
of transcription 1 molecule inhibited neutrophil recruit-
ment and increased susceptibility to post-influenza IPA
(Tobin and Nickolich 2020). Moreover, some viruses occur
in co-infections, including Cetacean morbillivirus, parain-
fluenza virus type 3, cytomegalovirus, and respiratory syn-
cytial virus (Cassle et al. 2016; Hassantoufighi et al. 2007,
Lee et al. 2010), and which are summarized in Table 2.

Bacteria

Concomitant colonization by A. fumigatus and bacteria is
reportedly widespread in immunocompromised or respiratory
disease patients. Co-infection pathogens usually exert syner-
gistic effects and mutual interference which depend on airway
microenvironmental factors. Interactions between A. fumigatus
and Pseudomonas aeruginosa represent major fungal-bacterial
co-operation between pulmonary microbiota (Ostapska et al.
2022). High levels of pyochelin (P. aeruginosa metabolite)
can transfer iron to the fungal siderophore triacetylfusarinine
C for fungal growth (Briard et al. 2019). Pyochelin and phena-
zines may also kill A. fumigatus by inducing oxidative and
nitrosative stress and iron starvation; however, sub-inhibitory
phenazine, pyocyanin, phenazine-1-carboxamide, and phen-
azine-1-carboxylic acid concentrations can stimulate fungal
growth via iron acquisition (Briard et al. 2015, 2019). When
iron levels are high, 2-heptyl-3-hydroxy-4-quinolone enhances
fungal metabolism and growth. Furthermore, volatile meta-
bolic by-products containing sulfur groups and released by P.
aeruginosa benefit fungal growth via interactions with hyphal
cell walls (Briard et al. 2016). A. fumigatus and P. aeruginosa
biofilms share a similar chemical composition such that both
organisms can generate partially cationic de-N-acetylated
exopolysaccharides which are important in biofilm formation.
Similarly, cationic exopolysaccharide Pel-containing bacte-
rial culture supernatants may augment A. fumigatus biofilm
adherence. Similarly, P. aeruginosa adhered to A. fumigatus
hyphae in a cationic exopolysaccharide galactosaminogalactan
(GAG)-dependent manner on GAG-coated A. fumigatus bio-
film coverslips (Ostapska et al. 2022). P. aeruginosa also pos-
sesses multiple mechanisms that attenuate NET production
and resist NET-mediated killing (Block and Zarbock 2021).
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Further analyses of P. aeruginosa strains, isolated from CF
patients at early and late disease stages, showed that resistance
to NET-mediated killing evolved over time. Thus, A. fumigatus
and P. aeruginosa co-operation is favorable for fungal eva-
sion. Nevertheless, competition between P. aeruginosa and
A. fumigatus has also been reported. Indeed, P. aeruginosa
was shown to generate siderophore pyoverdine to induce
iron starvation and inhibit A. fumigatus biofilm metabolism;
however, A. fumigatus may be self-protected by siderophore
production (Sass et al. 2019). In CF, invasive aspergillosis, or
chronic obstructive pulmonary disease patients, A. fumigatus
co-localization with other pathogens (Streptococcus pneumo-
nia, Staphylococcus aureus, Klebsiella pneumonia, Mycobac-
terium tuberculosis, and Mycoplasma pneumoniae) has been
reported (Iwahashi et al. 2020; Moodley et al. 2014; Nogueira
et al. 2019; Peccini et al. 2019; Ramirez Granillo et al. 2015).
Most of these pathogens also produce biofilms, and inhibi-
tory interactions have been reported depending on the residing
microenvironment. S. pneumoniae and S. aureus are known
to disrupt preformed A. fumigatus biofilms. Scanning elec-
tron microscopy data have shown that A. fumigatus mycelial
networks are fragmented, hypha are markedly reduced, and
short and thin abortive hyphae are formed. Moreover, conidia
are scarce, and their surfaces and presented lyses have modi-
fied, and finally preformed fungal biofilm ECM had disap-
peared (Iwahashi et al. 2020; Ramirez Granillo et al. 2015). K.
pneumoniae renders A. fumigatus sensitive to cell wall stress
and upregulates cell wall-related genes (Nogueira et al. 2019).
Overall, interactions between pulmonary microbiota are com-
plicated, and more studies are required to explore this phe-
nomenon. Other important pathogens are outlined (Table 2).

Currently, there is limited information on the relation-
ships between A. fumigatus and other fungi or parasites
in the lung. Mixed A. fumigatus and Candida albicans
infections have been identified from the histopathological
examination of patient’s lungs (Nasri and Fakhim 2019).
A combined infection with A. fumigatus and the parasite
Pneumocystis carinii was also found in a disease case, but no
further information about their coinfection (Lee et al. 2010).
Detailed A. fumigatus co-infections with other pathogens are
described (Table 2). Future studies are required to examine
co-operative interactions between A. fumigatus and microbes
and show how their interactions facilitate escape from host
immune systems in in vitro and in vivo models.

Drug therapy resistance

In immunodeficient or immunocompromised individuals,
opportunistic fungal pathogen infections are now primary
factors associated with mortality (Jenks et al. 2020). There-
fore, new drug therapies must be explored to treat these
pathogens. Currently, echinocandins, azoles, and polyenes
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Table 2 Examples of pathogen co-infection with Aspergillus fumigatus

Organism

The relationship with A. fumigatus

Reaction mode

Reference

Cetacean morbillivirus

Parainfluenza virus type 3

Respiratory syncytial virus

Pneumonia virus

Human cytomegalovirus

Human immunodeficiency virus

COVID-19

Influenza HINT1 virus

Mycobacterium abscessus

Pseudomonas aeruginosa

Streptococcus pneumoniae

Staphylococcus aureus

Klebsiella pneumonia

Mycobacterium tuberculosis

Mycoplasma pneumoniae

Stenotropho monas maltophilia

Co-infection

Co-infection

Promote infection

Co-infection

Mix infection

A. fumigatus infection is occurring
after HIV infection

Co-infection

Co-infection

Co-infection

Synergistic effects

Competition effects

Competition effects

Competition effects

Synergistic effects

Co-infection

Co-infection

They were co-detection in lung and
identified pneumonia at autopsy

It can be co-infected with cytomeg-
alovirus, A. fumigatus and P. cari-
nii to caused severe pneumonia

The co-infection of them showed
the exacerbation of the inflam-
matory response and increased
airway responsiveness to metha-
choline

The co-infection of them showed
the asthmatic inflammatory
response for mice

It can be mixed infection with
pathogens including A. fumigatus,
Nocardia nova, and Mycobacte-
rium tuberculosis in pulmonary

The mix infection of them could
cause respiratory tract, vascular
invasion, pulmonary abscesses,
bilateral nodular infiltrates, and
cavitary lesions in the upper lobes

The patients with COVID-19 could
be infected with A. fumigatus to
caused IPA

The patients challenged with
influenza could subsequently chal-
lenge with A. fumigatus to cause
postinfluenza invasive pulmonary
aspergillosis

The mix infection of them could
increase the lung inflammation
and decreased mycobacterial
burden in mice

P. aeruginosa could stimulate the
growth and biofilm formation of
A. fumigatus

S. pneumoniae could suppressed the
development of A. fumigatus bio-
film and disrupted the preformed
A. fumigatus biofilm

S. aureus could inhibit the develop-
ment of biofilm formed by A.
fumigatus

The spore germination, hyphal
development and biofilm forma-
tion of Aspergillus species could
be inhibited at the presence of K.
pneumonia

Aspergilloma formed by A. fumiga-
tus is usually located in the cavity
of old tuberculosis

M. pneumoniae was coinfected with
A. fumigatus to cause ABPA

The concomitant lung colonization
of A. fumigatus and S. maltophilia
was mainly in patients with cystic
fibrosis

(Cassle et al. 2016)

(Lee et al. 2010)

(Hassantoufighi et al. 2007)

(Percopo et al. 2014)

(Yan et al. 2022)

(Singh 2021)

(Lai and Yu 2021)

(Tobin and Nickolich 2020)

(Monin et al. 2018)

(Briard et al. 2016; Ostapska et al.
2022)

(Iwahashi et al. 2020)

(Ramirez Granillo et al. 2015)

(Nogueira et al. 2019)

(Moodley et al. 2014)

(Peccini et al. 2019)

(Cabaret et al. 2016)
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Table 2 (continued)

Organism The relationship with A. fumigatus

Reaction mode

Reference

Nocardia nova Mix infection

Co-infection

Candida albicans

Pneumocystis jiroveci Co-infection

Mixed pulmonary infection with

The mixed C. albicans and A.

The mixed infection of P. jiroveci

(Yan et al. 2022)
pathogens including Nocardia

nova, M. tuberculosis, A. fumiga-

tus, and human cytomegalovirus

(Chen et al. 2021)
fumigatus lung infection in the

patient on prolonged steroid

therapy

(Vipparti 2014)
and A. fumigatus could cause lung
inflammation

are the main conventional therapies used to clinically treat
A. fumigatus. In contrast, and thanks to widespread clinical-
drug use, fungi have evolved several escape mechanisms to
withstand antifungal drug damage. For example, Candida
auris is a multidrug-resistant fungus and resistant to almost
all antifungal agents (Chowdhary et al. 2020).

Antifungal drug use against A. fumigatus
in clinical settings

The fungal cell wall provides structural integrity, protec-
tion, and physical defenses against adverse environments.
More importantly, cell wall is absent in human cells and
has been successively targeted using innovative drug design
(Zhou et al. 2022). f-1,3-D-glucan synthase is encoded by
fksl, is required for cell wall assembly, and has been used
as a target for antifungal agents for antifungal agent echino-
candins (Satish et al. 2019), Caspofungin, anidulafungin,
and micafungin are the representatives of this group (Revie
et al. 2018). Caspofungin is fungistatic against A. fumigatus
and reduces the increase growth of mold by caspofungin
paradoxical effect (CPE) means. The proteins involved in
CPE responses contain the basal modulation of the RNA
polymerase II initiation sites, calcium metabolism, and cell
wall remodeling (Mattos et al. 2020; Valero et al. 2020).
Micafungin is an effective prophylactic antifungal agent
and has been used in patients with hematological diseases
(e.g., acute leukemia) who are at high risk of invasive mold
infections (Park et al. 2019; Siopi et al. 2021). The drug
significantly up-regulates the conidiophore brIA gene and
alters Aspergillus nidulans morphology (Reese et al. 2021).
Importantly, antifungal prophylaxis success rates are up to
80% in hematopoietic stem cell transplant recipients when
administered micafungin (50 mg/day) (Jarvis et al. 2004).
Additionally, anidulafungin therapy increases survival and
improves pulmonary infarct scores for pulmonary or dis-
seminated aspergillosis in animal models (Pfaller 2004).
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The cell membrane is also an important drug target for
protecting the cell interior. Specifically, ergosterol is the
most important membrane sterol in fungal cells, but is not
found in human cell membranes. Two agents related to
ergosterol are widely used in clinical practice: azoles and
amphotericin B (AMB) (representative polyene agent).
Azoles have excellent antifungal activity and are the only
oral drugs with anti-Aspergillus activity. Azoles inhibit
the cytochrome P450-dependent enzyme 14 demethylase
(Cyp51) to block the channel of lanosterol conversion into
ergosterol (Emami et al. 2017). A. fumigatus demonstrated
intrinsic resistance to fluconazole, while the triazole anti-
fungals itraconazole, voriconazole, isavuconazole, and
posaconazole are favored treatment options against asper-
gillosis. In an immunosuppressed IPA rabbit model, 40 mg/
kg itraconazole had in vivo antifungal activity; however,
near-peak itraconazole plasma concentrations varied from
0.5 to 16.8 pg/mL. And the antifungal activity in an inhibi-
tory sigmoid maximum-effect model was strongly corre-
lated with itraconazole plasma concentrations (Berenguer
et al. 1994). Previous studies also reported that itracona-
zole effectively treated ABPA by decreasing immunologi-
cal severity (Pasqualotto et al. 2009). Voriconazole and
posaconazole are effective therapies for asthma in ABPA
and severe asthma (Agarwal 2012). AMB binds to sterols in
lipid bilayers to form large, extra-membranous aggregates
which cause membrane leakage and fungal death (Agarwal
2012). When treated with 0.5 mg/mL AMB, approximately
90% of A. fumigatus protoplast permeability was lost and
fungal death ensued (Mousavi and Robson 2004). In clini-
cal settings, AMB administration exhibited dose-limiting
toxicity, nephrotoxicity, and infusion-related reactions;
therefore, several AMB formulations have been generated:
amphotericin B deoxycholate (DAMB), liposomal ampho-
tericin B (LAmB), AmpB lipid complex, and AmpB colloid
dispersions (Monk and Goffeau 2008). In 2008, Infectious
Diseases Society of America aspergillosis guidelines rec-
ommended that LAmB could be used for patients with IA,
where voriconazole was not appropriate; thus, a 3 mg/kg/
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day LAmB dose was advocated (Lanternier and Lorthol-
ary 2008). Moreover, monocytes, exposed to a combination
of A. fumigatus and DAMB, expressed decreased cytokine
(IL-10, IL-2, and IL-3) and up-regulated IL-1f levels (Sim-
itsopoulou et al. 2011). Furthermore, polyene and azole
combinations increased survival and demonstrated a signifi-
cantly greater reduction in tissue burden when compared
with monotherapies (Martin-Vicente et al. 2016).

Drug resistance in A. fumigatus

Azole resistance is the most common phenomenon in A.
fumigatus. It is reported that patients with chronic pulmo-
nary aspergillosis, when treated with voriconazole, show
5% resistance rates (Bongomin et al. 2018). Also, 11% of
itraconazole-treated patients were resistant to A. fumigatus,
and PCR data identified A. fumigatus resistance rates of up
to 55%, suggesting that increased azole-resistance burdens
were limiting factors in aspergillosis treatment (Bongomin
et al. 2018; Singh et al. 2020). Mechanistically, cyp51- and
non-cyp51-mediated azole resistance actions are implicated
in these phenomena. Underlying cypS1-mediated resistance
mechanisms are primarily linked to structural changes or
the up-regulated azole target lanosterol 14-a-demethylase,
especially the cyp51A gene with various of tandem repeat
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(TR) fragments in the promoter region, causing significant
overexpression of the cyp51A. The cyp51-mediated resist-
ance mechanisms mainly contain TR integrations alone or
combined with amino acid substitution in the coding gene:
TR34/L98H, TR34/L98H/S297T/F4951, TR46/Y121F/
T289A, TR53, and TR120 (Garcia-Rubio et al. 2017;
Snelders et al. 2008). Another important mechanism under-
pinning azole resistance is efflux pump gene overexpres-
sion which increases multidrug resistance, whereas deletion
shows multidrug sensitivity (Meneau et al. 2016). Currently,
approximately 49 putative ATP-binding cassette transport-
ers and 278 major facilitator superfamily members have
been identified in A. fumigatus genomic sequences. Efflux
pumps genes, including abcD, abcE, atrB, atrC, atrF, atrl,
cdriB, mdrl, mdr2, mdr3, and mdr4, are related to azole
resistance (Pérez-Cantero et al. 2020; Rivero-Menendez and
Alastruey-Izquierdo 2016). Additionally, cell membrane
homeostasis, calcium signaling, cell wall integrity, Hsp90-
calcineurin pathway, HOG-MAPK signaling, and iron bal-
ance are reportedly involved in azole stress responses (Chen
et al. 2020).

AMB has broad activity against pathogenic fungi and
is associated with lower antifungal resistance rates. AMB-
resistant Aspergillus spp. are related to cell wall composi-
tion rather than ergosterol content and possess a-1,3-glucan
and protein complex alterations in the outermost wall layer
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Fig.1 The negative threats encountered by A. fumigatus and puta-
tive molecules/pathways required for fungal escape. The orange boxes
represent the negative threats encountered by A. fumigatus, and the
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demonstrated in rectangle box text in gray area
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(Seo et al. 1999). However, protoplasts and conidia in AMB-
resistant A. ferreus have no impact on cell walls (Posch et al.
2018). Currently, echinocandin resistance mechanisms in
Aspergillus remain under-characterized. For A. fumigatus,
the target of echinocandin, glucan synthetase encoding gene
fks1 site-directed mutation increased 16-fold resistance to
caspofungin. Interestingly, the spontaneous mutants digested
cell wall were sensitive to low levels of drug but displayed
nearly normal growth above 0.5 pg/ml, and those mutations
without significant differences in the chitin and p-1,3-glucan
distributions for the mutant and wild-type strains (Gardiner
et al. 2005). Together, target gene mutations or alterations
in cell wall components are important reasons for the emer-
gence of increased drug resistance to Aspergillus.

Conclusions

In summary, A. fumigatus escape strategies from adverse
living conditions are varied and complex. To survive natural
environmental factors, including temperature and nutritional
stress, and after entering the host for the growing challenge
from the immune response, A. fumigatus has evolved several
signal receptors, transmitters, effectors, and mutant target
proteins to respond to these pressures. Moreover, A. fumiga-
tus hyphae can penetrate lung epithelial tissue, invade blood
vessels, and spread through the circulation to other organs
(Latgé and Chamilos 2019). Although several therapies have
been developed to treat this mold, new drugs are required
against drug-resistant strains (Zhang et al. 2021b).

Apart from A. fumigatus, other Aspergillus species,
including A. flavus, A. terreus, and A. niger, are common
mold infections in humans and cause several serious dis-
eases in both immunocompetent and immunocompromised
patients (Stemler et al. 2023). Thus, are there differences
between other Aspergillus spp. infections and A. fumigatus
processes? How about the negative threats that other Asper-
gillus spp. encountered in the natural environment and the
immune response in host? To answer these questions, future
research on fungal epidemiology or secondary infections
caused by Aspergillus, especially A. fumigatus, are required
(Fig. 1).

Identifying more effective antifungal drug targets and
drug repurposing strategies is required to combat A. fumiga-
tus infections. However, antifungal studies have only focused
on in vitro outcomes. More in vivo animal model and clini-
cal studies are required to evaluate antifungal effectiveness
in vivo (Zhou et al. 2023).
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