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Abstract 
Infection and invasion are the prerequisites for developing the disease symptoms in a host. While the probable mechanism 
of host invasion and pathogenesis is known in many pathogens, very little information is available on Leptospira invasion/
pathogenesis. For causing systemic infection Leptospira must transmigrate across epithelial barriers, which is the most 
critical and challenging step. Extracellular and membrane-bound proteases play a crucial role in the invasion process. An 
extensive search for the proteins experimentally proven to be involved in the invasion process through cell junction cleavage 
in other pathogens has resulted in identifying 26 proteins. The similarity searches on the Leptospira genome for counterparts 
of these 26 pathogenesis-related proteins identified at least 12 probable coding sequences. The proteins were either extra-
cellular or membrane-bound with a proteolytic domain to cleave the cell junction proteins. This review will emphasize our 
current understanding of the pathogenic aspects of host cell junction-pathogenic protein interactions involved in the invasion 
process. Further, potential candidate proteins with cell junction cleavage properties that may be exploited in the diagnostic/
therapeutic aspects of leptospirosis will also be discussed.

Key points
• The review focussed on the cell junction cleavage proteins in bacterial pathogenesis
• Cell junction disruptors from Leptospira genome are identified using bioinformatics
• The review provides insights into the therapeutic/diagnostic interventions possible
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Introduction

Leptospirosis is an infectious zoonotic disease caused by bac-
teria belonging to the genus Leptospira. These Gram-negative 
aerobic organisms are either free-living non-pathogenic forms 
or pathogenic forms. The pathogenic forms are grouped into 17 
species and represent > 250 serovars (Picardeau 2017). Lepto-
spirosis mainly occurs in tropical and subtropical areas where 
heavy rainfall and poor sanitation facilities are common. The 
disease is significantly underreported due to inept diagnostic 
methods and the symptoms match with many other bacterial 
and viral infections. At the global level, 1.03 million new cases 
of leptospirosis are reported annually with a mortality rate of 

more than 58,900 (Costa et al. 2015). Findings also suggest that 
patients with leptospirosis are prone to coinfection with many 
other pathogens and may pose a serious threat to the treatment 
options and well-being of these patients (Suppiah et al. 2017).

Leptospira infects a spectrum of both wild and domestic 
mammals, and once infected, these animals act as reservoir 
hosts, contaminating the environment, particularly water 
through their excreta. The pathogens may remain viable 
for days to weeks in soil and water with a neutral pH and 
are easily transmitted from infected soil or water to their 
host organisms (Russell et al. 2018). These spiral-shaped, 
highly motile organisms can cross through skin abrasions, 
conjunctiva, or intact mucous membranes (Wunder et al. 
2016). Once the pathogen enters the body, it comes into the 
bloodstream by damaging the endothelial linings of blood 
vessels and disseminating all over the tissues and organs. 
Humans are infected with Leptospira through occupational 
exposure and living in rodent-infested, flood-prone urban 
slums. The transmission cycle can be seen in Fig. 1.
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Chronic leptospirosis affects multiple organs including 
the liver, brain, eyes, kidneys, and lungs, causing jaundice, 
kidney failure, pulmonary hemorrhage, meningitis, uveitis, 
and conjunctivitis (Levett 2001). To enter the host body, the 
pathogen must cross epithelial and endothelial barriers. Dur-
ing the invasion, pathogenic leptospires adhere to the extra-
cellular matrix (ECM) and degrade it. Pathogenic leptospires 
express extracellular proteases, most likely metalloproteases 
for the degradation of host proteins and proteoglycans while 
those were not produced by non-pathogenic strains (Da Silva 
et al.2018). Proteases released by the pathogenic strains dur-
ing the initial phases of infection may play a crucial role in 
the invasion process and also in defending and averting the 
immune reaction of the host (Fraga et al. 2014).

To date, very few studies have been conducted experi-
mentally to identify and characterize Leptospiral proteases 
(Dhandapani et al. 2018; Thoduvayil et al. 2020; Amamura 
et al. 2017; Kumar et al. 2022; Anu et al. 2018; Sato and 
Coburn 2017; Martinez-Lopez et  al. 2010). To under-
stand Leptospiral pathogenesis, it is mandatory to iden-
tify and characterize proteins mediating interactions with 
host components. As the whole-genome sequence data of 
many pathogenic and non-pathogenic strains of Leptospira 

is available, it is easy to compare these sequences with 
bio-informatics tools to predict proteins with a role in 
pathogenesis.

The review explores the pathogenesis mechanism, espe-
cially the cleavage of cell junction proteins as a critical 
step in the invasion process by Leptospira. While reports 
are plenty on many intracellular pathogens and their inva-
sion mechanism, very little is known about Leptospira. 
Even though the role of many proteins in the ECM com-
ponent interaction as part of the invasion process is known 
(reviewed by Daroz et al. 2021; Vieira et al. 2014; Fernandes 
et al. 2016), studies on the latter stage, which involves the 
cleavage of cell junction proteins to gain entry to the circula-
tory system are not available. In this review, along with the 
compilation of cell junction proteins and their functional 
aspects reported from Leptospira, a comprehensive genome 
analysis to identify the orthologs of the pathogenesis-related 
proteins reported from common intracellular bacterial patho-
gens was also performed. The computational analysis identi-
fied more than 10 pathogenic proteins based on the sequence 
similarity between the pathogenesis-related proteins and it 
will pave the way to study their role in invasion and patho-
genesis in leptospirosis.

Fig. 1   Transmission cycle of leptospirosis. The diagram shows the 
transmission dynamics in leptospirosis between rodents, wild and 
domestic animal reservoirs, and the environment. Pathogens infect 

humans by contact with an infected host or by contaminated water 
or soil. Leptospira invades through skin lesions and/or mucous mem-
branes (Levet, 2015). This picture is created by BioRender.com
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Disrupters of epithelial junction 
during infection

Epithelial cells serve as the first barrier to prevent the entry 
of pathogens (excellently reviewed by Rogers et al. 2023; 
Backert et al. 2017; Zheng et al. 2021, and many more) such 
as Pseudomonas aeruginosa (Curran et al. 2018), Helico-
bacter pylori (Chmiela and Kupcinskas 2019), Enteropatho-
genic E. coli (Singh and Aijaz 2015), Clostridium difficile 
(Czepiel et al. 2019), and Clostridium perfringens (McClane 
2001) into the circulatory system and internal organs. The 
epithelial cell layers on one side form a barrier between 
internal organs and external invading pathogens but on the 
other side, it also serves as an infectious foothold for the 
pathogens as an entry port to disseminate into deeper tis-
sues (Ashida et al. 2011). They not only serve as a physical 
barrier rather they also serve as a physiological barrier by 
secreting some chemicals such as lysozymes in saliva and 
tears, hydrochloric acid in the stomach, and many antimi-
crobial peptides (reviewed by Johnstone and Herzberg 2022; 
Brzoza et al. 2021; Kim et al. 2023; Wang et al. 2019) to 
prevent the entry of pathogens. Infection can happen when 
these barriers have been disrupted as in wounds and burns. 
In the absence of wounding and disruption, pathogens cross 
epithelial barriers by establishing a link through adhesion or 
colonization on these surfaces (Bonsor and Sundberg 2019; 
Ansari and Yamaoka 2019). The epithelial cell layers also 
serve as barriers to the free passage of foreign molecules 
(Zheng et al. 2021).

The epithelium is a highly organized structure maintained 
by cell junctions. Cell junctions are complex multi-protein 
structures that provide contact among and between cells 
and ECM in animals. Thus, cell junctions help in holding 
animal cells together, maintain the paracellular barrier of 
epithelial cells, and control paracellular permeability (Gar-
cia et al. 2018). There are mainly three types of cell junc-
tions: adherens or anchoring junctions, tight or occluding 
junctions, and gap or communicating junctions. Different 
types of proteins are involved to form cell junctions such as 
cadherins, integrins, connexions, occludins, and claudins. 
Epithelial cell junctions show selective permeability and 
thus maintain polarity across the epithelium (Horowitz et al. 
2023; Adil et al. 2021). Disruption of this barrier leads to 
the paracellular movement of molecules along with bacteria, 
viruses, toxins, etc. into the systemic circulation. Bacterial 
pathogens produce proteins to disrupt epithelial cell junc-
tions by targeting these junctional proteins to get access to 
blood circulation (Al-Obaidi and Desa 2018; Zheng et al. 
2021). A general representation of cell junction disruption 
by the bacterium is shown in Fig. 2.

The pathogens developed various mechanisms to circum-
vent the epithelial cell barrier by expressing several kinds of 

virulence factors, toxins, proteases, etc. during the course of 
invasion. Enteric Pathogens like enterohaemorrhagic E. coli, 
Shigella species, and enteropathogenic Yersinia employ the 
secretion systems type 3, 4 and 5 (type 3/4/5 secretion sys-
tem—T3SS/T4SS/T5SS) to inject toxic proteins into the host 
cells, leading to the disarray of the host cell cytoskeleton, 
facilitating the invasion of the pathogen (reviewed by Whelan 
et al.2020; Viana et al. 2021). Pseudomonas aeruginosa uses 
a biofilm-like matrix for the transmigration process and uses 
multiple approaches to gain entry into the host cells, such as 
T2SS, quorum sensing, T3SS, and chemicals like N-(3-ox-
ododecanoyl) L-homoserine lactone. The combined use of 
toxin and protease hamper the cell junction integrity allowing 
pathogen entry into the host cells (reviewed by Golovkine 
et al.2018; Qin et al.2022; Pont et al.2022). To cross the host 
blood barrier, Neisseria meningitides disrupt the endothe-
lial permeability and it was proposed that N. meningitides 
recruit proteins involved in the formation and stabilization of 
adherens and tight junction into the cortical plaques, which 
is a molecular complex formed under the bacterial colonies, 
leading to the opening of intercellular cell junction (Coureuil 
et al. 2012). Helicobacter pylori use a complex virulence 
mechanism that supports the attachment, colonization, eva-
sion, and modulation of the host immune system, activation 
of many virulence pathways, and disruption of the cell junc-
tions to gain entry into the host cells (Baj et al. 2020). Down-
regulation of the expression of cell junction proteins is one 
of the effects of intracellular pathogen infection. Spontane-
ous bacterial peritonitis (SBP) is a severe condition of liver 
cirrhosis caused by E. coli and Proteus mirabilis (P. mira-
bilis). Haderer and co-workers found that the mucus layer 
of the intestine was thin in patients suffering from SBP. It is 
because, in SBP, E-cadherin and occludin proteins are down-
regulated in adherens and tight junctions respectively and 
for this reduction, bacterial-host direct interaction is required 
(Haderer et al. 2022).

Extracellular and membrane-bound proteases of patho-
genic bacteria play a crucial role in the invasion process 
(Linz et al. 2023; Singh and Phukan 2019). One of the 
widely studied serine proteases, HtrA are expressed by sev-
eral pathogenic bacteria such as C. jejuni, Salmonella enter-
ica, EPEC, Proteus mirabilis, and Yersinia enterocolitica 
target E-cadherin during infection (Hoy et al. 2010; Back-
ert et al. 2018; Song et al. 2021). Almost every bacterium 
causing infectious disease expresses at least one homolog 
of the HtrA family (Rawlings et al. 2008). In the case of E. 
coli, DegP, DegQ, and DegS show structural similarity with 
HtrA proteins of other Gram-negative bacteria (Waller and 
Sauer 1996). Other than E-cadherins, tight junction proteins 
such as claudins also act as a target for HtrA in C. jejuni 
(Sharafutdinov et al. 2020). In the animal models, knock-
ing out of E-cadherin from the host or deletion of the HtrA 
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gene from the pathogen prevented the pathogen’s entry into 
the host (Cao et al. 2021) evidencing that HtrA or HtrA 
homologs alone can control the pathogenesis in intracellular 
pathogens. A trypsin-like serine protease domain containing 
Ssp1 protease from Aeromonas hydrophila is responsible 
for the downregulation of a tight junction protein occludin 
(Feng et al.2022). InlA secreted by Listeria monocytogenes 
(Nikitas et al. 2011) is used by the pathogen to cross the 
intestinal barrier by interacting with E-cadherin. Some path-
ogens also activate the host’s protease that disrupts the epi-
thelial barrier as in the case of periodontitis. In periodontitis, 
neutrophils of the host’s immune system get activated and 
these neutrophils start producing neutrophil elastase (NE) 
which further damages the E-cadherin, occludins, and des-
moglein-1 of the oral epithelial tissue (Hiyoshi et al. 2022). 
Pseudomonas aeruginosa and Serratia marcescens secrete 
toxins ExlA (Exolysin) and ShlA (Serratia hemolysin A) 
respectively. These pore-forming toxins bind with host 
cell receptors and cause an increase in cytosolic Ca2+ that 
further triggers a host cell transmembrane metalloprotease 
ADAM10 activation leading to E-cadherin and VE-cadherin 
cleavage (Reboud et al. 2017). Bacterial proteases target cell 

junction proteins for the adhesion and invasion process are 
listed in Table 1.

Leptospira and cell junction proteins

Cell junction proteins act as targets for proteases expressed 
by pathogenic Leptospira for their attachment and invasion. 
It was reported that the pathogenic form of L. interrogans 
infected cells loosens its adherens junction proteins, VE-
cadherin (vasculo-endothelial-cadherin), p120-, alpha and 
beta-catenins, and tight junction proteins, actin, and ZO-1 
from the original site at intercellular junctions (Sato and 
Coburn 2017). De Brito and co-workers observed a loss 
of expression of E-cadherin protein on the membrane of 
hepatocytes in the case of human leptospirosis. Also, the 
expression of E-cadherin in liver cells was absent in areas of 
the lobule; thus, a stable intercellular adhesion was missing 
(De Brito et al. 2006). According to the study of Martinez-
Lopez and co-workers, the binding changes membrane per-
meability and allowed the free passage of molecules and the 
pathogen itself across the endothelial cell layers. Pathogenic 

Fig. 2   Schematic representation of the disruption of epithelial cell 
junctions by Leptospira. The barrier is composed of tight junctions, 
adherens junctions, desmosomes, and gap junctions. The infection 
affects the cell junction protein in two ways. Changes in the expres-
sion and location of these proteins (lead to changes in the epithelial 

barrier function) and the direct action of secreted and membrane-
bound proteases disrupt the cell junction structures. Pathogens like 
Leptospira, using proteases target these cell junction proteins to cross 
themselves from the apical to basal side thus disrupting epithelial 
barrier function
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strains dislocate the endothelial cell layers by targeting cell 
junction proteins and creating gaps in between to increase 
vascular permeability leading to swelling in lung alveoli and 
hemorrhage (Martinez-Lopez et al. 2010). Evangelista et al. 
(2014a, b) found that pathogenic Leptospira binds with VE-
cadherin of endothelial cells through adhesin proteins and 
lipoproteins.

The tripeptide RGD (Arg-Gly-Asp) motif present on many 
proteins binds to integrins and is the most common peptide 
motif responsible for cell adhesion to the ECM (Makowski 
et al. 2021). RGD motif is present in several other pathogenic 
microorganisms like Helicobacter pylori (Bub et al.2019), 
B. pertussis (Leininger et  al.1991), and Mycobacterium 
tuberculosis (Dubey et al.2021). Cavenague and co-workers 
characterized an RGD motif-containing protein LIC12254 
expressed by pathogenic species of Leptospira but not by 
intermediate or saprotrophic species through in silico analy-
sis. They showed that recombinant LIC12254 interacts with 
human αVβ8 integrin and the α8 integrin chain via the RGD 
motif, while in the recombinant protein lacking RGD motif, 
binding was abolished (Cavenague et al. 2023). These results 
suggest that LIC12254 is an outer membrane protein that 
shows adhesion with human integrins via the RGD domain 
and has a role in leptospirosis. Recombinant LIC10831 (LRR 
containing protein) and recombinant dermal human micro-
vascular endothelial cell line (HMEC-1) were generated by 
Eshghi et al. (2019) and using techniques like SPR (surface 
plasmon resonance) and ELISA (enzyme-linked immu-
nosorbent assay); it was shown that rLIC10831 bind with 
endothelial cells. The binding was enhanced by Zn2+.

Kochi and co-workers cloned, expressed, and purified 
two novel putative surface-exposed hypothetical lipopro-
teins LIC11711 and LIC12587. Both proteins are conserved 
among pathogenic strains of Leptospira interrogans. Both 
recombinant proteins show binding affinity to E-cadherin 
and laminin, so provide initial adhesion to host epithelial 
cells and both interact with E-cadherin in a dose-dependent 
manner (Kochi et al. 2019). Pinne et al. (2010) identified 
OmpL37 (LIC12263) to determine the binding affinity of 
protein to host tissue by ELISA. OmpL37 is shown to bind 
with aortic as well as human skin elastin protein. It also 
binds with other ECM proteins like laminin, fibrinogen, and 
fibronectin. The binding of human skin elastin to recombi-
nant OmpL37 as well as Leptospira interrogans indicates 
that OmpL37 helps pathogenic Leptospira to bind with 
host tissues via elastin. Moreover, it has been shown that 
OmpL37 is present only in pathogenic sp. of Leptospira 
but not in saprotrophic ones. Pereira et al. (2017) identified 
two surface protein-encoding genes Lsa25.6 (LIC13059) 
and Lsa16 (LIC10879), cloned them, and expressed them 
in the E. coli system and reported that both the recombi-
nant proteins were adhesins, interacting with laminin in 
a dose-dependent manner. But when it comes to binding Fa
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with epithelial cells, only Lsa16 shows binding with E-cad-
herin. Leptospira genome contain many genes showing 
sequence similarity with pathogenic proteases (Table 2).

Cell junction disrupter orthologs 
in Leptospira genome

During the last decade, research work targeting the patho-
genesis mechanism of leptospirosis has seen an upsurge in 
the identification of components involved in the adhesion, 
colonization, immune evasion, and establishment of patho-
gens in the host system. Even though the complete genome 
is available for many pathogenic and non-pathogenic strains 
(Ramli et al. 2021; Vincent et al. 2019; Thibeaux et al. 2018) 
and many studies comparing the genomes are published, a 
clear picture of the pathogenesis mechanism is not available. 
In Leptospira, as per the current data, nearly 10 proteins 

were found to act on the cell junction proteins of the host 
system and play a role in the invasion/colonization process 
(Evangelista et al. 2014a, b; Eshghi et al. 2019; Pinne et al. 
2010 and many more). Many of these reports were estab-
lished using the recombinant proteins (Table 3), and few 
of them were using the protein purified from the culture 
medium.

The similarities that exist in the invasion and pathogen-
esis machinery among different pathogenic, intracellular 
bacteria prompted us to look for the presence of some of the 
most widely reported and critical components of the patho-
genesis machinery in the Leptospira genome. The patho-
gen-related gene sequences mainly involved in cell junction 
cleavage obtained from other pathogens were used as bait 
to look for similar sequences in the Leptospira genome. In 
some cases, instead of nucleotide sequence, the amino acid 
sequence was used for the search due to very low similar-
ity results with the nucleotides. To explore more about the 

Table 2   Bacterial protease targeting cell junction showing sequence similarity in the genome of different Leptospira species (for the gene names 
please refer to Table 1)

Gene Source organism Binding with Homologous with gene Gene ID (NCBI/Uni-
prot)

Present in Leptospira 
species

PsaA Streptococcus  
pnemoniae

E-cadherin TroA-like (manganese 
ABC transporter 
substrate-binding 
protein)

WP_193819214.1 Leptospira  
borgpetersenii

HtrA Helicobacter pylori E-cadherin, occludin, 
claudin

periplasmic serine 
protease

WP_010679781.1 Leptospira interogans

Invasin Yersinia  
pseudotuberculosis

Integrin Immunoglobulin-like 
protein A

C8CS17 Leptospira interrogans

Internalin Listeria monocytogenes E-cadherin FVE87_07955 
(Internalin)

A0A6G9EJ20 Leptospira interrogans

FadA Fusobacterium  
nucleatum

E-cadherin fadA A0A2H1XHX8 Leptospira interrogans

LasB (Elastase) Pseudomonas  
aeruginosa

E-cadherin GluZincin
(M4 family metallo-

peptidase)

WP_194490215.1 Leptospira  
borgpetersenii

Peptidase M 4_C (M4 
family metallopepti-
dase)

WP_000319896.1 Leptospira interrogans

BFT Bacteroides fragilis E-cadherin ZnMc (matrix domain 
protein)

TGK01715.1 Leptospira  
semungkisensis

HtrA Campylobacter jejuni Occludins and claudins Trypsin-like peptidase 
domain-containing 
protein

MCC5814724.1 Leptospira sp.

ureB Helicobacter pylori Occludins Urease subunit alpha MBE8362490.1 Leptospira  
borgpetersenii

LAP Listeria monocytogenes Claudins-1, occludin, 
and E-cadherin, ZO-1

Internalin_H
(InlB B-repeat-contain-

ing protein)

WP_193823337.1 Leptospira  
borgpetersenii

HA/P Vibrio cholerae Occludin and ZO-1 GluZincin (M4 family 
metallopeptidase)

WP_194490215.1 Leptospira  
borgpetersenii

HA/P1 Q79B72 Leptospira interrogans
CagA Helicobacter pylori ZO-1 cagA Q72PV3 Leptospira interrogans
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Table 3   Pathogenic proteins expressed in various heterologous systems (for the gene names please refer to Table 1)

Gene Source Heterologous system Biological activity Reference

FadA Fusobacterium nucleatum E. coli BL21(DE3) Adhesion to vascular 
endothelial (VE)-cadherin

Xu et al. 2007

HtrA Helicobacter pylori E. coli BL21(DE3) Cleaves E-cadherin to disrupt 
intercellular adhesion

Tegtmeyer et al. 2017

PsaA Streptococcus pneumoniae S. aureus Interact with nasopharyngeal 
epithelial cells

Hu et al. 2021

SpeB Group A Streptococcus E. coli rosetta Shows proteolytic activity 
against human occludin and 
E-cadherin

Deng et al. 2022

BoNTHA Clostridium botulinum E. coli rosetta Binds to E-cadherin and 
inhibits E-cadherin-medi-
ated cell-cell adhesion

Amatsu et al.2023

Als3/Sap5p Candida albicans Escherichia coli strain XL-1 
Blue

Invades and damages epi-
thelial cells via Als3-E-
cadherin interactions

Laforce-Nesbitt et al. 2008

GelE Enterococcus faecalis E. coli BL21 (DE3) E-cadherin degradation Kazemian et al. 2019
Delta toxin Clostridium perfringens E. coli BL21 (DE3) Reduces the cellular levels of 

adherence junction protein 
E-cadherin via increasing 
the level of ADAM10

Manich et al. 2008

Aerolysin Aeromonas hydrophila BL21(DE3)/pLysS Impairs epithelial integrity 
by promoting TJ protein 
redistribution

Diep et al. 1999

tcdA and tcdB Clostridium difficile B. megaterium Dissociates occludin, ZO-1, 
and ZO-2

Yang et al. 2008

ureB Helicobacter pylori E. coli BL21(DE3) Involves in occludin internali-
zation and barrier dysfunc-
tion in gastric epithelial cells

Mao and Yan 2004

LAP Listeria monocytogenes Lactobacillus paracasei Opens epithelial barrier via 
cellular redistribution of 
the epithelial junctional pro-
teins claudin-1, occludin, 
and E-cadherin

Koo et al. 2012

ZOT Campylobacter concisus E. coli BL21 (DE3) pLacI Damages intestinal epithelial 
barrier

Mahendran et al. 2016

Mce (LIC11859) Leptospira interrogans serovar 
Copenhageni M-20

E. coli BL21 (DE3) Binds with ECM, plasma 
components, and beta 2 
integrins

Cosate et al. 2016

LIC13059 and L. interrogans serovar  
Copenhageni

E. coli BL21 (DE3) Interacts with E-cadherin Pereira et al. 2017
LIC10879
LipL21 and L. interrogans serovar  

Copenhageni strain M20
E. coli BL21 (DE3) Interacts with a variety of 

endothelial and epithelial 
cell lines

Takahashi et al. 2021
LipL41

LIC11711 and L. interrogans serovar  
Copenhageni M20

E. coli BL21 (DE3) Binds with E-cadherin and 
laminin

Kochi et al. 2019
LIC12587
OmpL1 (LIC11574) L. interrogans sv. Copenhageni 

st. Fiocruz F1–130
E. coli expression strain 

KS330
Binding of pathogenic Lepto-

spira to cadherin, damages 
the vascular system

Evangelista et al. 2014a, b

LIC12254 L. interrogans serovar  
Copenhageni

E. coli BL21 Star (DE3) interacts with human αVβ8 
integrin and the and α8 
integrin

Cavenague et al. 2023

LIC10831 L. interrogans sv. Copenhageni 
strain Fiocruz L1-130

L. interrogans serovar 
Manilae strain L495

Binds to E- cadherin and VE-
cadherin

Eshghi et al.2019

LIC10091 (LipL40) L. interrogans serovar 
Copenhageni strain Fiocruz 
L1-130

E. coli BL21 Star (DE3) Shows adhesion to the human 
aorta, and skin elastin 
protein

Pinne et al. 2010
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pathogenicity-related genes in the genome of Leptospira, 
seven proteins, proven experimentally to be involved in the 
invasion process of different intracellular pathogens were 
selected. The sequences collected from different strains of 
Leptospira including the pathogenic, non-pathogenic, and 
intermediate forms were used to check for the presence of 
domains making them active proteases/peptidases. Locali-
zation onto the outer membrane or to the secretome was 
another criterion for the selection of sequences. Depend-
ing on the number of domains and sequence similarities the 
sequences were grouped into three major clades delimiting 
the strains as per their pathogenicity. Pathogenic strains 
showed the presence of pathogenic proteins reported from 
other species (more than 80% similarity indicated by red-
colored blocks in the heatmap). Among the strains, L. inter-
rogans showed the presence of 7 out of 9 proteins in the 
genome with high sequence similarity (Fig. 3). HtrA and 
FadA were present in the intermediate forms indicating that 
these two pathogenic proteins may have a widespread dis-
tribution among the genomes of pathogenic and intermedi-
ate forms of Leptospira. Two proteins PsaA and HAP were 
present only in the pathogenic strain L. borgpeterseni. The 
genome of two non-pathogenic strains (L. vantheilii and L. 
meyeri) selected for the study lacks any of the pathogenesis-
related protein sequences used in the study.

Potential inhibitors of cell junction 
disrupters

Seven types of proteases are available on the MEROPS data-
base, i.e., serine-, threonine, glutamate-, aspartate-, aspara-
gine-, cysteine- and metalloprotease (Rawlings et al. 2018) 
which is the most common protease expressed by pathogenic 
bacteria. Protease inhibitors play a major role in the contain-
ment of many bacterial/viral diseases. So, it is a worthwhile 
practice to look for inhibitors and their applications in thera-
peutics. Out of 26 selected proteins from different pathogenic 
bacteria involved in invasion, nine were metalloproteases and 
five out of 12 selected proteases from Leptospira were also 
metalloproteases. The inhibitors of metalloproteases are 
mainly chenodeoxycholic acid, phosphinic acid-based pseu-
dopeptide inhibitor, Raxibacumab, and phosphonamidate 
dipeptides (Sundar et al. 2023). The Zn2+ metalloprotease 
involved in the invasion/pathogenesis is represented by PsaA, 
LasB, BFT, and HA/P and can be inhibited by chenodeoxy-
cholic acid, dithiothreitol, dithioerythreitol, and phosphinic 
acid-based pseudo peptides (Yang et al. 2011; Metz et al. 
2019; Migone et al. 2009). UreB is a Ni2+-dependent pro-
tease found in many pathogenic bacteria. There are many 
natural and synthetic inhibitors of UreB reported in the lit-
erature (Loharch and Berlicki 2022).

Fig. 3   Comparative amino acid sequence analysis of nine pathogenic 
proteins in different species of Leptospira. Nine proteins involved in 
the invasion/pathogenesis caused by different human pathogens were 
used to search for similar sequences in Leptospira. The heat map 
compares the percent identity of a particular protein sequence from 
19 species of Leptospira (9 pathogenic, 4 intermediate, and 6 sapro-

phytic). Sequence similarity is shown by red (80% and above), yellow 
with 40–60% similarity, and shades of blue from 30% to no similar-
ity. Pathogenic species show more expression of proteins involved in 
pathogenesis over intermediate or non-pathogenic forms of Lepto-
spira. Species of pathogenic, intermediate, and non-pathogenic forms 
of Leptospira are mentioned on the right side of the figure
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HtrA is a serine protease expressed by a wide variety of 
pathogenic bacteria and contributes to pathogenesis directly 
(Zarzecka et al. 2019). It not only enables pathogens to sur-
vive in stressful conditions but also cleaves multiple host 
proteins such as E-cadherin and other extracellular matrix 
proteins (Wessler et al. 2017). Some of the HtrA inhibitors 
like camostat, gabexate, nafamostat mesylates (Amrutha 
et al. 2023), ecimicin (Choules et al. 2019), and rufomy-
cin (Gao et al. 2015) have been developed against different 
pathogenic bacteria but show a harmful effect on human 
health. Hwang and co-workers (2021) designed and syn-
thesized a peptide-based inhibitor JO146 using nanotech-
nology, which was not toxic to humans as well as other 
model organisms and effective only against Chlamydia 
(Hwang et al. 2021) and H. pylori (Hwang et al. 2022), but 
not effective against other pathogens like Staphylococcus 
sp., Pseudomonas sp., and pathogenic E. coli. Exploring 
the invasion mechanism in Leptospirosis further opens up 
new avenues for the identification and implementation of 
proteases against the disease.

Conclusion

Leptospirosis shows an increased occurrence worldwide 
in the last few decades, mainly due to changes in climatic 
conditions. This made the environment more conducive for 
the survival and multiplication of reservoir hosts and the 
zoonotic epidemics will be a serious threat to the health-
care system of developing countries in the coming years 
(Limaye 2021; Prillaman 2022). Unlike many intracellular 
pathogens, which makes their presence ubiquitous, Lept-
ospires are common in tropical and subtropical regions, 
affecting mainly the population of developing countries. 
The complex interaction predicted with climate change 
and disease occurrence by several studies indicates the 
necessity of having a thorough understanding of zoonosis 
to prevent it efficiently. Mining the genome and proteome 
data to identify novel genes and proteins which play crucial 
roles in pathogenesis is important in this process. Even 
though in the last few years, there were many publications 
on Leptospiral protein interaction with ECM, epithelial cell 
junction, and the immune components of the host, many 
questions are still unanswered. The major queries about the 
components involved in the attachment, invasion, and colo-
nization process are only partly answered. Further, a mech-
anism of transmigration to different organs and circulatory 
system needs to be identified. There were very few studies 
on the biological characterization of pathogenic proteins in 
the model pathogenic strains of Leptospira making it dif-
ficult to conclude anything with the information available 
at present. The new orthologous reported in this review 
may help us to fill some gaps.
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