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Abstract 
There is a huge quantity of microorganisms in the gut of fish, which exert pivotal roles in maintaining host intestinal and 
general health. The fish immunity can sense and shape the intestinal microbiota and maintain the intestinal homeostasis. In 
the meantime, the intestinal commensal microbes regulate the fish immunity, control the extravagant proliferation of patho-
genic microorganisms, and ensure the intestinal health of the host. This review summarizes developments and progress on 
the known interactions between host immunity and intestinal microorganisms in fish, focusing on the recent advances in 
zebrafish (Danio rerio) showing the host immunity senses and shapes intestinal microbiota, and intestinal microorganisms 
tune host immunity. This review will offer theoretical references for the development, application, and commercialization 
of intestinal functional microorganisms in fish.
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Introduction

In recent years, the world aquaculture is facing the chal-
lenge of increasing production, reducing emissions, and sav-
ing energy. Therefore, the aquaculture industry has gradu-
ally embarked on the road of intensive development. The 
problems that come with it are environmental deterioration 
and frequent outbreaks of diseases, causing huge economic 
losses every year (Assefa and Abunna 2018). In order to 
control the occurrence of bacterial diseases in fish, large 
amounts of antibiotics are used, but the effect is not satisfac-
tory due to increasing antibiotic resistance problems (Liu 
et al. 2021b). At the same time, high stocking density will 
greatly decrease water quality, reduce function of intestinal 
barrier, and impair the intestinal health of aquatic animals 

(Sundha et al. 2019). Intestinal health has developed into 
one of the bottleneck constraints, restricting the healthy and 
sustainable development of world aquaculture. It is urgent to 
improve the fish intestinal health through nutritional inter-
vention measures in intensive culture mode.

In the intestine, there exists a large number of commen-
sal microbes (Xue et al. 2020), which provide an excellent 
microecological environment for fish (Liu et al. 2021a). 
The gut microbes play an important role in gut develop-
ment, metabolism, immunity, and host health (Ou et al. 
2021; Filardy et al. 2023). Recently, growing numbers of 
studies have begun to focus on the association of intestinal 
microorganisms with fish immunity and disease resistance 
(Xiong et al. 2019; Amenyogbe et al. 2022). Interactions 
between host and intestinal microbiota are the bases for 
the development of the immunity (Ruff et al. 2020). The 
host immune system coevolves with host microorganisms, 
which are very important to host physiology (Kogut et al. 
2020), and mucosal and systemic immunity (Gutierrez et al. 
2022). The host immune system monitors intestinal micro-
organisms, maintains the balance of intestinal microbiota 
and the health of intestinal mucosa, and thus strengthens 
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the resistance to potential pathogens (Kinnebrew and Pamer 
2012). The host and microorganisms interact with each other 
and gradually form a dynamic and stable microecological 
homeostasis in the gut of fish (Diwan et al. 2023). Therefore, 
understanding the interactions between the host immunity 
and intestinal microorganisms is very meaningful for main-
taining the fish health.

The field on the interactions between the host immunity 
and microorganisms in fish is interesting and developing 
so quickly, and several review papers related to this topic 
have been published in recent years (Langlois et al. 2021; 
Yu et al. 2021; Diwan et al. 2023; Wang et al. 2023). In 
2021, Yu et al. summarized the microbiome composition 
of teleost mucosa, commensal bacterial dysbiosis in tel-
eost mucosa, crosstalk between commensals and mucosal 
innate and adaptive immunity, and probiotics contribute 
to fish immune response (Yu et al. 2021). In 2021, Lan-
glois et al. summarized the host–microbe interactions and 
the functions of probiotics in salmonid, including salmo-
nid intestinal microbiome, probiotic-mediated regulation of 
host health, methods of probiotic encapsulation, and delivery 
(Langlois et al. 2021). In 2023, Wang et al. reviewed the tel-
eost skin microbiome-host immunity focused on the teleost 
external surface microbiome, including teleost skin micro-
biome, its modulation of host physiology and immunity, 
host immune modulation of skin microbiome, and models 
of skin microbiome-host interaction (Wang et al. 2023). In 
2023, Diwan et al. summarized host-microbiome interaction 
in fish and shellfish, including host-microbiome interaction 
in fish and shellfish, manipulation of the gut microbiome, 
and host-microbiome interaction and aquatic environment 
(Diwan et al. 2023). However, there still exist huge gaps in 
knowledge of commensal microorganisms and their func-
tions in fish immunity, the molecular mechanisms of the host 
immunity that can sense and shape intestinal microbiota. 
Furthermore, the zebrafish has many advantages to explore 
host-microbe interactions in fish, but previous reviews have 
lacked a systematic summary of it. Therefore, to comple-
ment previous reviews, we summarize developments and 
progress on the known of interactions between host immu-
nity and intestinal microorganisms in fish, paying specific 
attention to recent findings in zebrafish. This review will 
supply theoretical support for the exploitation and applica-
tion of intestinal functional microorganisms in aquaculture.

The interactions between the host immunity 
and intestinal microorganisms in zebrafish 
(Danio rerio)

Zebrafish larvae have an innate immune system, while the 
functional adaptive immune system is not completed until 
4 weeks age (Lam et al. 2004), and the adult zebrafish 

possess the adaptive immune system (Stream and Madigan 
2022). The body of zebrafish is transparent at the stage of 
embryonic development, the fish gut and morphology can 
be easily observed with a microscope (Teame et al. 2019). 
It is feasible to study the innate and adaptive immunity 
of zebrafish by using different developmental periods of 
zebrafish. Furthermore, zebrafish has several other unique 
advantages, the ability to image the intestinal microorgan-
isms colonization in vivo for a long time, and the ability to 
present different phenotype individuals (Ganz 2018). There-
fore, zebrafish have become an ideal model for revealing the 
interactions between the host immunity and intestinal micro-
organisms (Teame et al. 2019; Zhang et al. 2020b; Nadal 
et al. 2020; Jia et al. 2021). The summary of interactions 
between the host immunity and intestinal microorganisms 
in zebrafish is shown in Table 1.

In zebrafish, the host immunity can effectively sense 
intestinal microorganisms, for example, the innate immune 
system mediates toll-like receptor 2 (TLR2) sensing the 
intestinal colonization of Exiguobacterium and Chryseobac-
terium through negative control of myeloid differentiation 
factor 88 (MyD88) (Koch et al. 2018). Similarly, MyD88 
mutant zebrafish are more sensitive to be infected with path-
ogenic Edwardsiella tarda and Mycobacterium marinum, 
and its pro-inflammatory cytokines interleukin-1 beta (IL-
1β), activator protein-1 (AP-1), and nuclear factor kappa-B 
(NF-κB) are dependent on MyD88 during infections (Vaart 
et al. 2013). Nucleotide-binding oligomerization domain 2 
(NOD2) in zebrafish embryonic fibroblasts can sense the 
muramyl dipeptide of Gram-negative and Gram-positive 
bacteria, activate NF-κB signaling, and induce antiviral 
defense response in spring viremia of carp virus infection 
(Zou et al. 2016).

The host immunity has a close relationship with the 
gut microbiota in zebrafish, when zebrafish are infected 
by Aeromonas hydrophila, the innate immune response 
is activated and correspondingly, the intestinal microbial 
structure is changed, i.e., the proportions of beneficial 
microorganisms such as Nitratireductor, Enterococcus, and 
Brevundimonas decrease, while the proportions of harm-
ful microorganisms such as Halomonas, Pelagibacterium, 
and Aeromonas increase (Yang et al. 2017). When the early 
adaptive immunity in wild-type zebrafish has not been 
established, pathogenic Vibrio overgrows in the gut. For 
example, recombination activating gene 1 (Rag1)-deficient 
zebrafish lack adaptive immunity and have high abundance 
of Vibrio in the intestine, but transferring T lymphocytes 
rather than B lymphocytes to Rag1-deficient zebrafish can 
inhibit the growth of intestinal Vibrio (Brugman et al. 2014). 
The intestinal microbiota of 61  rag1− zebrafish (adaptive 
immunity deficiency, lacking B and T cell receptors) and 
68 wild-type zebrafish (functional adaptive immunity) were 
surveyed to analyze the function of adaptive immunity on 
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Table 1  The summary of interactions between the host immunity and intestinal microorganisms in zebrafish

Item Interactions Source

Host immunity senses gut microbiota
  1 Innate immune system mediated TLR2 sensing Exig-

uobacterium and Chryseobacterium through negative 
control of MyD88

Koch et al. 2018

  2 MyD88 mutant zebrafish are more sensitive to pathogenic 
Edwardsiella tarda and Mycobacterium marinum, and 
its pro-inflammatory cytokines expressions are depend-
ent on MyD88 during infections

Vaart et al. 2013

  3 NOD2 can sense the MDP of Gram-negative and Gram-
positive bacteria, activate NF-κB signaling, and induce 
antiviral defense response in spring viremia of carp 
virus (SVCV) infection

Zou et al. 2016

Host immunity shapes the intestinal microbiota
  1 Rag1-deficient zebrafish lack adaptive immunity and have 

high abundance of intestinal Vibrio, but transferring 
T lymphocytes rather than B lymphocytes to fish can 
inhibit the growth of intestinal Vibrio

Brugman et al. 2014

  2 The intestinal microbiota is shaped by intestinal mac-
rophages through IRF8. A reduced number of mac-
rophages was showed with the decreased amounts of 
Fusobacteria, α-Proteobacteria, γ-Proteobacteria, and 
the increased amount of δ-Proteobacteria

Earley et al. 2018

  3 The adaptive immunity makes the intestinal microbiota 
more personalized

Stagaman et al. 2017

  4 When zebrafish are infected by Aeromonas hydrophila, 
the innate immune response is activated and cor-
respondingly, the proportions of beneficial microor-
ganisms such as Nitratireductor, Enterococcus, and 
Brevundimonas decrease, while the proportions of 
harmful microorganisms such as Halomonas, Pelagi-
bacterium, and Aeromonas increase

Yang et al. 2017

Intestinal microbes tune host immunity
  1 Intestinal symbiotic microorganisms launch innate immu-

nity through TLRs and MyD88 signaling
Galindo-Villegas et al. 2012

  2 Lactobacillus rhamnosus could upregulate the expres-
sions of TNF-α, IL-1β, and Becn-1

Gioacchini et al. 2014

  3 Pseudomonas aeruginosa can induce NF-κB and attenu-
ate the expressions of both SAA and CFB

Kanther et al. 2011

  4 Exiguobacterium and Chryseobacterium regulated the 
intestinal immune system, decreased the amounts of 
macrophages, and increased the amounts of neutrophils

Koch et al. 2018

  5 Streptomyces sp. SH5 could enhance the immune 
responses and increase the expressions of TLR3, LZM, 
and NOS2α

Liang et al. 2022

  6 Bacillus amyloliquefaciens R8 increased the expressions 
of IL-1β, IL-6, IL-21, TLR1, TLR3, TLR4, and TNF-α, 
and enhanced the innate immunity

Lin et al. 2018

  7 Intestinal microbiota can reduce the expression of sup-
pressor of cytokine signaling-3 and increase the expres-
sions of innate immune-related genes, such as SAA1, 
CRP, C3, A4, MPO, and GSH-Px

Rawls et al. 2004; Rawls et al. 2007

  8 Bacillus subtilis WB800N can promote the expressions of 
TNF-α, IL-10, BF, IL-1β, SAA, and MyD88

Tan et al. 2019a

  9 Lactobacillus plantarum ST-III enhanced the expressions 
of immune genes TNF-α, IL-1β, NF-κB, TLR4α, LZM, 
and IL-10

Zang et al. 2019
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the intestinal microbiota. It was found that the existence of 
adaptive immunity makes the intestinal microbiota of the 
zebrafish more personalized, but this may be influenced by 
other conditions, including transmission of microorganisms 
among hosts (Stagaman et al. 2017). The intestinal micro-
biota is shaped by intestinal macrophages through interferon 
regulatory factor 8 (IRF8) in zebrafish. A reduced number 
of macrophages was showed with reduced expressions of 
complement genes c1ql, c1qa, c1qb, and c1qc, and severely 
dysfunctional intestinal symbiotic microbes, Fusobacteria, 
α-Proteobacteria, and γ-Proteobacteria, decreased, while 
δ-Proteobacteria increased in IRF8-deficient adult zebrafish 
(Earley et al. 2018).

Studies using specific microorganisms to colonize gnoto-
biotic zebrafish have shown that symbiotic microorganisms 
are important for the activation and development of immu-
nity (Murdoch and Rawls 2019; Rawls et al. 2004, 2007). 
In zebrafish, the intestinal immune system was regulated by 
Exiguobacterium and Chryseobacterium, with the amounts 
of macrophages decreased and the amounts of neutrophils 
increased (Koch et al. 2018). In transparent gnotobiotic 
zebrafish, the colonization of Pseudomonas aeruginosa 
was enough to induce NF-κB and attenuate the expressions 
of both serum amyloid A (SAA) and complement factor B 
(CFB) (Kanther et al. 2011). Gnotobiotic zebrafish studies 
show that intestinal microbiota can downregulate the expres-
sion of suppressor of cytokine signaling-3 (Rawls et al. 
2004) and upregulate the expressions of innate immune-
related genes, such as SAA1, C-reactive protein, comple-
ment component 3 (C3), angiogenesis 4, myeloperoxidase, 
and glutathione peroxidase (Rawls et al. 2004, 2007). Intes-
tinal symbiotic microorganisms colonize the gut of newly 
hatched zebrafish, then launch innate immunity through 
TLRs and MyD88 signaling (Galindo-Villegas et al. 2012). 
Bacillus subtilis WB800N can promote the expressions of 
tumor necrosis factor-α (TNF-α), IL-10, CFB, IL-1β, SAA, 
and MyD88 in gnotobiotic zebrafish (Tan et al. 2019a). 
Probiotic Lactobacillus rhamnosus could upregulate the 
expressions of TNF-α, IL-1β, and Beclin-1 in the gut of 
adult zebrafish (Gioacchini et al. 2014). Probiotic Lactoba-
cillus plantarum ST-III enhanced the expressions of immune 
genes TNF-α, IL-1β, NF-κB, TLR4α, lysozyme, and IL-10, 
increased the diversity of gut microbiota, and attenuated the 
toxic impacts of triclosan through intestinal microbiota mod-
ulation in zebrafish (Zang et al. 2019). Bacillus amylolique-
faciens R8 increased the expressions of IL-1β, IL-6, IL-21, 
TLR1, TLR3, TLR4, and TNF-α and enhanced the innate 
immunity of zebrafish (Lin et al. 2018). Streptomyces sp. 
SH5 could enhance the immune responses and increase the 
expressions of TLR3, lysozyme, and nitric oxide synthase 2α 
in zebrafish (Liang et al. 2022). Through the above studies 
in zebrafish, we can initially obtain some basic informa-
tion about the complex interactions of host immunity and 

intestinal microorganisms, which give us some reference in 
commercial fish species.

Host immunity senses gut microbiota

Under evolutionary selective forces, fish have formed innate 
immunity and an adaptive immune system consisting of B 
cells and T cells to distinguish opportunistic and commensal 
microorganisms (Yu et al. 2021). The host immune system 
exerts a vital function in the recognition and resistance to the 
invasion of pathogenic microorganisms (Liu et al. 2020b; Lv 
et al. 2020). The immune mucus layers of intestine, skin, and 
gill are rich in a large number of immune cells (including 
lymphocytes, plasma cells, goblet cells, granulocytes, mac-
rophages, and antibody secretory cells) and immune effec-
tors (including lectins, mucins, antimicrobial peptides, and 
immunoglobulin (Ig)), all of which jointly resist the invasion 
of pathogenic bacteria (Shephard 1994).

Except for extracellular metabolites, the structural com-
ponents of microbial cells, especially the cell wall compo-
nents, are the top layer positions that host immune cells first 
get in touch with and modulate immune activities (Chapot-
Chartier et al. 2010). Host immune cells sense gut micro-
organisms through pattern recognition receptors (PRRs), 
which can recognize several microbe-associated molecular 
patterns (MAMPs), including lipopolysaccharide (LPS), 
microbial nucleic acid, peptidoglycan (PGN), and flagel-
lin (Lazado and Caipang 2014), and differentially regulate 
downstream expression of immune molecules and maintain 
intestinal homeostasis. The host PRRs are microbial sensing 
elements that have evolved in company with symbiotic com-
mensal microbiota and pathogens, so a similar mechanism 
might exist in the host immune system sensing gut beneficial 
microorganisms and pathogens (Murdoch and Rawls 2019). 
Currently, TLRs, NOD-like receptors (NLRs), C-type lectin 
receptors (CLRs), and peptidoglycan recognition proteins 
(PGRPs) are the four PRRs which were found in fish (Bol-
tana et al. 2011).

TLRs are the most largely researched PRRs in fish, which 
play an important role in identifying the unique molecular 
patterns of microbes and modulating the innate and adap-
tive immune system. Fish TLRs can identify pathogen-
associated molecular patterns (PAMPs), such as PGN, 
lipophosphoric acid (LTA), flagellin components, and 
LPS, activating the downstream expressions of cytokines 
and immune effector molecules (Ribeiro et al. 2010). For 
example, Staphylococcus aureus-derived PGN activates 
the expressions of MyD88, TLR2, TNF receptor-associated 
factor 6, IL-8, and NF-κB in heart cells of Labeo rohita, 
suggesting that TLR2-mediated microbial recognition may 
depend on MyD88 (Samanta et al. 2012). Recent research-
ers have found that fish TLRs can mediate immune system 
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recognizing commensal microbes (Sun et al. 2014). Our pre-
vious research showed that live autochthonous Psychrobac-
ter sp. SE6 could increase intestinal TLR2, TLR5, MyD88, 
transforming growth factor-β1 (TGF-β1), IL-1β, and IL-8 
expressions in Epinephelus coioides, while heat-inactived 
SE6 only increased the TLR2 expression but did not sig-
nificantly change the expressions of cytokines and MyD88. 
This suggests that the intestinal TLR2 signaling pathway is 
associated with the recognition of Psychrobacter sp. SE6, as 
a probiotic recognition mechanism might be independent of 
MyD88 (Sun et al. 2014). Hence, there may be some differ-
ences in the recognition mechanism of different symbiotic 
microorganisms based on TLRs in different fish species.

NLRs have crucial functions in identifying fish pathogens 
and activating innate immune signaling pathways. Studies 
have demonstrated that fish NLRs can recognize microbial 
ligands and perceive PAMPs or G-D-glutimyl-meso-diami-
nopimelic acid (iE-DAP) to activate downstream molecular 
pathways (Bi et al. 2017). The in vivo and in vitro studies 
have showed that bacteria or viruses can induce the expres-
sion of multiple NLR subfamily receptors in teleost, includ-
ing NLR-X1, NLR-C3, NLR-C5, NOD1, and NOD2 (Zhang 
et al. 2018). When Indian major carp (Cirrhinus mrigala) 
were infected with pathogenic Streptococcus uberis and 
A. hydrophila, the NOD1 and NOD2 signaling were acti-
vated, and the downstream effector molecules IL-1β, IL-8, 
and interferon-γ (IFN-γ) were induced (Swain et al. 2013). 
The above studies suggest that NLRs may also play impor-
tant functions in fish intestinal microbial recognition and 
immune regulation.

CLRs are produced by dendritic cells, which can recog-
nize microbial antigens and deliver antigen information to 
T and B lymphocytes, thereby triggering multiple immune 
responses. It is found that the CLR of tilapia (Oreochromis 
niloticus) is homologous to mammalian natural killer cell 
receptor (Kikuno et al. 2004). The expression of C-type lec-
tin (Ctl) molecules in gills, spleen, liver, and head kidney 
was increased significantly after Poly (I: C) and A. hydroph-
ila challenge in Qihe crucian carp (Carassius auratus) 
(Wang et al. 2017). In carp (Cyprinus carpio) macrophages, 
CLR receptors can recognize β-dextran and mediate immu-
nomodulatory effects (Petit et al. 2019). However, as far as 
we know, there are no reports about gut microbes sensed by 
fish CLRs, which needs further investigation.

PGRPs are the PRRs of the innate immune system and 
can particularly sense PGN, a peculiar component of the 
microbial cell wall (Hu et al. 2020). On the basis of the 
length of the amino acid sequence, PGRPs could be clas-
sified into short-PGRPs, intermediate-PGRPs, and long-
PGRPs. PGN is an important molecule of the microbial cell 
wall, including Lys type (L-lysine) and Dap type (diami-
noheptanedioic acid), with the PGN in Lys type mainly 
existing in the cell wall of Gram-positive microbes, while 

PGN in Dap type being the main cell wall element of Gram-
negative bacteria (Royet and Dziarski 2007). In grass carp 
(Ctenopharyngodon idella), PGRPs can recognize patho-
genic Edwardsiella tarda by combining bacterial PGN in 
Lys and Dap types (Li et al. 2014). In rainbow trout (Onco-
rhynchus mykiss), the PGRP negatively regulates the NODs-
mediated antimicrobial immune response (Jang et al. 2016), 
which suggests that, in sensing microbes, different PRRs 
families also interact with each other.

The sensing of gut microorganisms by the fish intestinal 
immune system is summarized in Fig. 1. The immune cells 
sense gut microorganisms through PRRs (TLRs, NLRs, 
CLRs, and PGRPs), which can recognize MAMPs of micro-
organisms. Fish TLRs are able to recognize PAMPs, such 
as LTA, PGN, LPS, and flagellin components. Fish NLRs 
can recognize PAMPs or iE-DAP, CLRs can recognize 
microbial antigens, and PGRPs can specifically recognize 
PGN. The recognition of microorganisms by immune sys-
tem would further regulate downstream signaling pathways, 
like mitogen-activated protein kinase (MAPK) or the NF-κB 
signaling pathway, and activate the downstream expression 
of cytokines and immune effector molecules.

Host immunity shapes the intestinal 
microbiota

The immunity of fish consists of innate and adaptive immu-
nity, which are interconnected to clear harmful substances 
and pathogens, and maintain host health (Fadel et al. 2018). 
Studies indicate that innate immunity can regulate microbial 
composition (Cao et al. 2021), i.e., improving the abundance 
of beneficial microbes and controlling harmful microbes in 
the intestine of fish (Thaiss et al. 2016). The immunity and 
intestinal microbes are intimately connected in fish, and 
in the first part of this review, we have summarized the 
zebrafish immunity in shaping the intestinal microbiota. 
Except for zebrafish, the relationships between immunity 
and gut microbes are also very close in other fish species. 
Immune responses were closely associated with intesti-
nal microbes in sea cucumber (Apostichopus japonicus), 
the activities of alkaline phosphatase and lysozyme were 
strongly correlated with Shewanella, while the lectin expres-
sion levels were significantly negatively associated with 
Flavirhabdus (Song et al. 2019). The increased expression 
levels of intestinal IFN-induced helicase C domain contain-
ing protein 1, TNF-α, IL-1β, and major histocompatibility 
complex-1 were accompanied by the reduced relative abun-
dances of Sphingomonas and Listonella and the enhanced 
relative abundances of Akkermansia, Faecalibacterium, 
and Bifidobacteium in turbot (Scophthalmus maximus) 
(Guo et al. 2022). In golden pompano (Trachinotus ovatus), 
the enhanced immunity (decreasing epithelial lymphocyte 
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numbers and increasing intestinal goblet cells numbers) was 
accompanied by the improved diversity and richness of gut 
microbiota, with the relative abundance of harmful micro-
bial taxa decreased, and the abundance of Firmicutes and 
Actinobacteria increased (Tan and Sun 2020).

The host immune system exerts key functions in the 
intestinal homeostasis of homoiothermic animals, and it can 
shape the microbial structure through the IgA (Petersen et al. 
2019). Secretory immunoglobulin A (sIgA), an element of 
the adaptive immune system, is a vital protector of intestinal 
epithelial health, and an important factor of intestinal micro-
biological regulation (Dollé et al. 2016). The host secretes 
large amounts of IgA into the intestinal cavity, which either 
react extensively with microorganisms in low affinity or rela-
tively react specifically with microorganism in high affin-
ity, and in some cases binds to several common motifs of 
bacteria (Lynch and Hsiao 2019). Teleost fish has mucosal 
IgT, which can recognize mucosal symbiotic microorgan-
isms and bind to their surfaces, playing a similar function 
as mammalian sIgA in the anti-infection process of parasitic 
and bacterial pathogens (Xu et al. 2016). Fish lacking IgT 
are highly sensitive to mucosal parasites and cannot pro-
duce compensatory IgM responses in rainbow trout. After 
the mucosal microbiota was disturbed, the amounts of condi-
tional pathogenic microbes (such as Bacteroidetes) increased 
significantly, the surface microbes translocated, and eventu-
ally caused tissue lesions and inflammatory reactions. With 

the recovery level of secretory IgT, the proportion and type 
of IgT-coated microorganisms returned to normal level in 
mucosal tissue (Xu et al. 2020). This study reveals for the 
first time that like sIgA in mammalian, fish IgT plays an 
important role in maintaining intestinal mucosa immunity 
and microbial homeostasis.

Intestinal microbes tune host immunity

Although zebrafish is recognized as an ideal model for 
studying host immunity and microbial interaction, most of 
the current information about intestinal microbes regulat-
ing host immunity in fish are from the studies using host-
derived intestinal microbes (Table 2). In common carp 
(Cyprinus carpio), commensal Enterococcus casselifla-
vus (EC-001) could significantly improve the immunity, with 
increased serum total protein (TP), Ig and C3 contents, and 
skin mucus protease activity (Akbari et al. 2021). In Afri-
can catfish (Clarias gariepinus), host-derived Lactobicillus 
plantarum promoted the immune system, with improved lev-
els of blood parameters, such as hemoglobin and pack cell 
volume, and white blood cells (Nwanna and Tope-Jegede 
2017). In Nile tilapia (Oreochromis niloticus), host-derived 
Lactobacillus plantarum N11 and Bacillus velezensis H3.1 
could promote mucosal and serum immunities, and enhance 
the serum  lysozyme activity (Doan et  al. 2018). Three 

Fig. 1  The fish intestinal immune system senses gut microorganisms. 
The immune cells sense gut microorganisms through PRRs (TLRs, 
NLRs, CLRs, and PGRPs), which can recognize MAMPs of micro-
organisms. Fish TLRs are able to recognize PAMPs (LTA, PG, LPS, 
and flagellin). Fish NLRs can recognize PAMPs or iE-DAP, CLRs 

can recognize microbial antigens, and PGRPs can specifically rec-
ognize PG. The recognition of microorganisms by immune system 
would further induce downstream signaling pathways, like MAPK or 
the NF-κB signaling pathway, then activate the downstream expres-
sions of cytokines and immune effector molecules
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host-associated Bacillus species, Bacillus velezensis TPS3N, 
Bacillus amyloliquefaciens TPS17, and Bacillus subtilis 
TPS4, were proved to significantly promote the intestinal 
and skin mucosal immunities of Nile tilapia (O. niloticus), 
with higher lysozyme, alkaline phosphatase activities, and 
nitric oxide and IgM contents (Kuebutornye et al. 2020). 
The host-derived Lactococcus lactis MM1 and Enterococcus 
faecium MM4 were proved to regulate the immune function 
and increase serum C3 levels in grouper E. coioides (Sun 
et al. 2012). Isolated from the intestinal tract of the healthy 
rainbow trout (O. mykiss), Bacillus subtilis AB1 can acti-
vate both humoral and cellular immune responses, increase 
the number of leucocytes, and enhance serum phagocytic 
activity and lysozyme activity (Newaj-Fyzul et al. 2007). 
Isolated from the intestine of Trachinotus ovatus, B. pumilus 
A97 could improve the host immune function, promote non-
specific immune responses and intestinal TLR8 and TLR9 
expressions in the kidney, and enhance the disease resistance 
(Liu et al. 2020a). Isolated from the intestine of grass carp 
(Ctenopharyngodon idellus), Citrobacter freundii GC01 
triggers the natural mucosal immune system, induces the 
increasing expressions of immune system genes, such as c1s, 
c3, c4, c5, c7, c8a, and c8b, significantly reduces the α- and 
β-diversity of intestinal microbiota, and improves the rela-
tive abundance of Pasteurellales, Enterobacteriales, Citro-
bacter, and Neisseriales in grass carp (Xiong et al. 2020). L. 
lactis CLFP100 and Leuconostoc mesenteroides CLFP196 
were isolated from the intestinal tract of brown trout (Bal-
cázar et al. 2006), and they could enhance fish serum com-
plement content and lysozyme activity (Balcázar et al. 2007) 
and activate head-kidney phagocytes (Balcázar et al. 2009). 
Our research group isolated B. clausii DE5 and B. pumi-
lus SE5 from the gut of juvenile grouper (E. coioides) (Sun 
et al. 2013). The two probiotics can promote the immune 
function of grouper, with serum lysozyme activity, leuco-
cyte phagocytic activity, and serum complement C3 and C4 
levels increased significantly (Sun et al. 2010). The function 
of Bacillus pumilus SE5 is independent to its viability, as 
both heat-inactivated B. pumilus SE5 (Yan et al. 2016) and 
live B. pumilus SE5 (Yang et al. 2014) could improve the 
immunity of grouper (E. coioides). Our study group also 
demonstrated that commensal Psychrobacter sp. SE6 can 
regulate intestinal immunity and maintain the balance of 
intestinal microbiota in grouper (Sun et al. 2014), and com-
mensal Lactococcus petauri LF3 and Bacillus siamensis LF4 
can significantly increase the activity of serum lysozyme 
(Yang et al. 2021) and regulate the intestinal immunity and 
microbial structure in Japanese seabass (Lateolabrax japoni-
cus) (Yang et al. 2022a, 2022b). It can be concluded that the 
host-derived beneficial microbes can regulate fish intesti-
nal immune function, control the excessive proliferation of 
intestinal pathogens, and maintain the intestinal microbial 
homeostasis.

Cytokines are key signaling molecules for information 
transmission between cells and are important molecules 
regulating the immune cascades after the fish intestinal tract 
has been exposed to different microorganisms. Host-derived 
beneficial microbes can regulate the expression of gut pro-
inflammatory cytokines, such as IL, IFN, and TNF, and 
anti-inflammatory cytokines, such as TGFs. Isolated from 
the gut of healthy Atlantic cod, live and heat-inactivated 
Pseudomonas sp. GP21 and Psychrobacter sp. GP12 could 
promote the expressions of IL-1β and IL-8 in the head kid-
ney leukocytes of Atlantic cod (Lazado et al. 2010). Car-
nobacterium divergens B33 and C. maltaromaticum B26 
are isolated from the intestinal tract of rainbow trout, and 
they can regulate the expressions of TNF-α, TGF-β, IL-1β, 
and IL-8 in the head kidney of rainbow trout (Kim and 
Austin 2006). Isolated from the gut of cobia (Rachycen-
tron canadum), Pantoea agglomerans RCS2 could upregu-
late the expressions of IL-1β, TNF-α, and IL-8 in the gut 
of juvenile cobia (Amenyogbe et al. 2022). Isolated from 
the intestinal tract of Nile tilapia (O. niloticus), Rummelii-
bacillus stabekisii could significantly elevate expressions 
of the cytokine genes, like heat shock protein 70, TNF-α, 
IL-1β, and TGF-β in the head kidney of Nile tilapia (Tan 
et al. 2019b). Isolated from the intestinal tract of olive 
founder (Paralichthys olivaceus), Lactobacillus plantarum 
FGL0001 could significantly upregulate the expressions 
of TNF-α, IL-6, and IL-8 in the intestinal tract of olive 
founder (Beck et al. 2015). Isolated from the intestinal tract 
of Japanese seabass, L. petauri LF3 and B. siamensis LF4 
could significantly reduce the expressions of TNF-α, IL-8, 
and IL-1β and increase the expression of TGF-β1 in the 
intestine of Japanese seabass (Yang et al. 2022b).

The intestinal microbes can sense fish PRRs and regulate 
the expressions of cytokines, then modulate the expressions 
of key molecules in downstream signaling pathways. Iso-
lated from clinically healthy European seabass (Dicentrar-
chus labrax) larvae, probiotic candidate Vibrio lentus can 
modulate NF-κB pathway and upregulate the downstream 
molecules NF-κB inhibitor zeta and tyrosine-protein phos-
phatase non-receptor type 22 in sea bass (Schaeck et al. 
2017). Isolated from the gut of rockfish (Sebastes schlegelii), 
Bacillus sp. KRF-7 was found to increase the expressions 
of NF-κB, IL-10, and B cell activating factors in both the 
kidney and spleen in rockfish (Jang et al. 2021). Our group 
demonstrated that B. pumilus SE5 originated LTA and PGN 
could enhance the intestinal imunity of grouper (E. coioides) 
by regulating the TLRs/MyD88 signaling (Yang et al. 2019). 
Based on the above studies, we postulate that fish intesti-
nal microbes may modulate host immunity through TLRs/
MyD88/NF-κB and MAPK signaling pathways, but more 
data are needed to clarify this.

Intestinal commensal bacteria could secrete many 
metabolites and nutrients, which can be involved in the 
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development, maturation, function, and homeostasis of the 
immune system (Brestoff and Artis 2013). In rainbow trout 
(O. mykiss), administration of the shingolipids produced by 
Flectobacillus major can change the percentage of  IgT+ to 
 IgM+ B cells in the head kidney and regulate the mucosal 
homeostasis (Sepahi et al. 2016). Microorganisms within 
the Firmicutes phylum can generate short-chain fatty acids 
(SCFAs) that can offer energy for the intestinal mucosal cells 
(Koh et al. 2016). Adding SCFAs to the diets has benefi-
cial functions by improving the immune systems in aquatic 
animals (Tran et al. 2020). SCFAs can increase intracel-
lular bactericidal activity of head kidney macrophages 
via hypoxia inducible factor-1α in turbot (Scophthalmus 
maximus L.) (Zhang et al. 2020a). It is demonstrated that 
butyrate (0.2%) activated the expressions of IL-1β, IL-6, 
IL-8, IL-10, and TNF-α in European seabass (Dicentrar-
chus labrax L.) (Rimoldi et al. 2016). Besides secretory 
metabolites and nutrients, bacterial cell components such 
as bacterial DNA, LPS, PGN, and LTA have been confirmed 
as promising immunostimulants in fish (Giri et al. 2018). 
LPS could activate the innate immune system (O’Hagan 
et al. 2001), enhance the antibody level (Ackerman et al. 
2000; Selvaraj et al. 2006), and induce the expressions of 
pro-inflammatory cytokines and acute-phase proteins in fish 
(Swain et al. 2008). Our group demonstrated that commensal 
Bacillus pumilus SE5-derived LTA and PGN could increase 
the expressions of MyD88, TLR1, TLR2, and TLR5, upreg-
ulate the expressions of antimicrobial effectors, and modu-
late the microbial composition in the intestine of grouper (E. 
coioides) (Yang et al. 2019).

Crosstalk between probiotics, intestinal 
immunity, and microbiota

Probiotics can improve the activities of the cytokines and 
innate immune cells on the surface of fish intestinal mucosa, 
control the proliferation of conditioned pathogens, and effec-
tively prevent disease onset (Fazle Rohani et al. 2022). Also, 
probiotics can regulate the innate and adaptive immunity of 
fish, and then establish the correlation between intestinal and 
systemic immunity of fish by shaping microbial structure. 
Probiotics can regulate the fish microbiota in the three major 
mucosal tissues, namely, intestinal-associated lymphoid tis-
sue, gill-associated lymphoid tissue, and skin-associated 
lymphoid tissue, thus exerting local immune effects (e.g., 
intestinal immunity) and systemic immune effects (e.g., cel-
lular and humoral immunity) (Lazado and Caipang 2014).

By supplying significant signals for the development 
and maintenance of the immune system, a healthy microbi-
ota has an important function in host immunophysiologic 
regulation (Salminen et al. 2005). The intestinal microbial 
composition in healthy fish is in a dynamic balance, and 

the pathogens are surveilled and their amounts are being 
controlled at an appropriate level. However, the intestinal 
microbial dysbiosis may disrupt immunomodulatory net-
works, which are closely related with gut inflammation and 
other immune-mediated diseases (Maynard et al. 2012). 
For example, Vibrio harveyi colonized in the liver led to a 
gut-liver immune response and substantially disrupted the 
intestinal microbiota balance of the pearl gentian grouper 
(Epinephelus lanceolatus ♂ × E. fuscoguttatus ♀), with 
the amounts of Photobacterium and Vibrio increased and 
the amounts of Lactobacillus, Blautia, Bradyrhizobium, 
and Faecalibaculum reduced, and causing the death of 
fish (Deng et al. 2020). In sea cucumbers (Apostichopus 
japonicus Selenka), benzo[a]pyrene exposure decreased 
the abundance of Firmicutes and increased the abun-
dances of Bacteroidete and Proteobacteria, and caused 
the immune suppression, i.e., significantly downregulated 
the relative expressions of lysozyme, Ctl, and NF-κB1, 
and negatively impacted the gut health (Zhao et al. 2019). 
Therefore, the dysbiosis of intestinal microbiota could lead 
to the disorders of intestinal immune system and cause the 
diseases occurrence in fish (Pérez et al. 2010).

Probiotics are perhaps the most feasible therapeutic strat-
egy to promote the healthy fish physiology by regulating 
gut microbiota and immunity (Langlois et al. 2021; Vargas-
Albores et al. 2021). As one of the crucial regulators in fish 
immune responses, cytokines are also found to be positively 
regulated by probiotics (Kim and Austin 2006; He et al. 
2013). Probiotic Clostridium butyricum could significantly 
improve the expressions of intestinal immune-related genes 
(MyD88, TLR2, and IL-10) and improve the diversity of the 
intestinal microbiota, with the abundance of Fusobacteria 
and Proteobacteria decreased and the abundance of Bac-
teroidetes increased in common carp (Cyprinus carpio L.) 
(Meng et al. 2021). Bacillus subtilis H2 could upregulate 
the expressions of IFN-α, colony stimulating factor, FOSB, 
IL-4, IL-11, IGHV3-11, MAPK12b, and  IGHV3-21 in 
the intestinal tract of grass carp (Shi et al. 2020). Dietary 
Lactobacillus rhamnosus JCM1136 and L. lactis subsp. 
lactis JCM5805 could enhance the expressions of IL-1β, 
C-type lysozyme (lyzc), and IFN-γ, and shape the intestinal 
microbiota, with the abundances of Fusobacteria, Bacte-
roidetes, and Actinobacteria reduced and the abundance of 
Proteobacteria increased in Nile tilapia (Xia et al. 2018). 
Besides, our previous research discovered that two cell wall 
components of B. pumilus SE5, LTA, and PGN can enhance 
the expressions TLR1, TLR2, TLR5, and MyD88, activate 
the expression of immune effector molecules, and modulate 
the intestinal microbiota, i.e., increase the abundance of Lac-
tobacillus and decrease the abundance of Vibrio significantly 
(Yang et al. 2019). Therefore, it is clear that probiotics/com-
mensals can regulate fish intestinal immunity and intestinal 
microbiota and improve the overall health of host fish.
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Summary and outlook

Intestinal microbes can improve the development and 
response of fish mucosal immune system, and the host 
immune system monitors and modulates the intestinal 
microbial balance. This complex interaction is very impor-
tant to maintain intestinal health of fish. However, it is 
unclear how the intestinal immune system of fish accu-
rately monitors and regulates the intestinal microbiota and 
maintains intestinal homeostasis. Existing studies have 
shown that both TLR and NLRs signaling may play impor-
tant functions in this process, but more supporting data 
are needed. Commensals can regulate the immune sys-
tem and intestinal microbiota of fish, improve the disease 
resistance, and then promote the feed utilization efficiency 
and growth performance. However, the molecular mecha-
nisms of the interactions among commensals with host 
immunity and gut microbiota are still poorly understood. 
Future studies can use gnotobiotic zebrafish technology, 
in vitro intestinal epithelial cell culture technology, com-
bined with RNA interference, multi-omics analysis, gene 
editing, and other biological techniques to further explore 
these issues. The elucidation of these issues will greatly 
promote the exploitation and application of intestinal func-
tional microbes in fish.
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