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Abstract 
Penicillium fungi, including Penicillium oxalicum, can secrete a range of efficient plant-polysaccharide-degrading enzymes 
(PPDEs) that is very useful for sustainable bioproduction, using renewable plant biomass as feedstock. However, the low 
efficiency and high cost of PPDE production seriously hamper the industrialization of processes based on PPDEs. In 
Penicillium, the expression of PPDE genes is strictly regulated by a complex regulatory system and molecular breeding 
to modify this system is a promising way to improve fungal PPDE yields. In this mini-review, we present an update on 
recent research progress concerning PPDE distribution and function, the regulatory mechanism of PPDE biosynthesis, and 
molecular breeding to produce PPDE-hyperproducing Penicillium strains. This review will facilitate future development 
of fungal PPDE production through metabolic engineering and synthetic biology, thereby promoting PPDE industrial 
biorefinery applications.

Key points
• This mini review summarizes PPDE distribution and function in Penicillium.
• It updates progress on the regulatory mechanism of PPDE biosynthesis in Penicillium.
• It updates progress on breeding of PPDE-hyperproducing Penicillium strains.
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Introduction

Plant polysaccharides are the most abundant renewable 
resource on earth, with cellulose, hemicellulose, and starch 
being the major types. All three can be converted into high-
value-added sustainable bioproducts by industrial biorefin-
eries. During biorefining, plant-polysaccharide-degrading 
enzymes (PPDEs), as sustainable biocatalysts, are indispen-
sable and environmentally friendly (Hemati et al. 2022; Li 
et al. 2022a; Ning et al. 2021). PPDEs are a class of enzymes 

that can hydrolyze plant polysaccharides into monosaccha-
rides or oligosaccharides under mild conditions; cellulase, 
xylanase, and amylase account for the majority of the indus-
trial enzyme market (Dharma Patria et al. 2022).

Cellulase and xylanase are widely used for degrada-
tion of cellulose and xylan, which are the main structural 
materials in plant cell walls, to release mono- or oligo-
saccharides, such as glucose, xylooligosaccharides, and 
xylose. Cellulases are classified into three types, based 
on their modes of action, i.e., endo-β-1,4-glucanase (EG, 
EC 3.2.1.4), cellobiohydrolase (CBH, EC 3.2.1.91), and 
β-glucosidase (BGL, EC 3.2.1.21). EG randomly breaks 
internal β-1,4-glycosidic bonds in amorphous regions of 
cellulose chains, providing more chain termini that can 
then be hydrolyzed by CBH (Fig. 1). CBH is an exo-act-
ing enzyme that hydrolyzes cellulose chains at the ends, 
releasing cellobiose. BGL, another exo-acting enzyme, 
hydrolyzes cellobiose and cello-oligosaccharides into glu-
cose (Sukumaran et al. 2021; Wang et al. 2020a).

There are two classes of xylanase, endo-β-1,4-xylanase 
(XYN, EC 3.2.1.8) and β-xylosidase (XYL, EC 3.2.1.37). 
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XYN hydrolyzes β-1,4-glycosyl bonds in xylan, generating 
xylo-oligosaccharides, whereas β-xylosidase hydrolyzes 
the nonreducing ends of xylo-oligosaccharides into xylose 
(Fig. 1) (Wang et al. 2020a; Mendonça et al. 2023).

Raw-starch-degrading enzyme (RSDE) is capable of 
degrading raw starch granules into glucose, below the 
gelatinization temperature of starch. RSDEs include 
raw-starch-degrading α-amylase (RSDA; EC 3.2.1.1), 
raw-starch-degrading β-amylase (EC 3.2.1.2), and raw-
starch-degrading glucoamylase (RSDG; EC 3.2.1.3) 
(Sun et al. 2008, 2010; Fang et al. 2019a; Xu et al. 2016). 
RSDEs generally contain starch-binding domains. RSDA 

randomly cleaves internal α-1,4-glycosidic linkages in 
starch granules whereas exo-acting RSDG breaks α-1,4- 
and α-1,6-glycosidic bonds to release glucose (Fig. 1) 
(Zhao et al. 2022a).

In addition, lytic polysaccharide monooxygenases 
(LPMOs), a class of copper ion-dependent oxidases, have 
the auxiliary function of degrading polysaccharides that 
are resistant to hydrolytic enzymes, by oxidative cleavage 
of glycosidic bonds. Indeed, the LPMOs, auxiliary activity 
family (AA) 9, AA14, and AA13 have catalytic activity 
against cellulose, xylan, and starch, respectively (Fig. 1) 
(Guo et al. 2022).

Fig. 1   Modes of action of plant polysaccharide-degrading enzymes from Penicillium on cellulose, xylan, and starch. Scheme shows the bond-
cleavage specificity of each enzyme
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Notably, efficient hydrolysis of plant polysaccharides 
requires the synergistic action of various PPDEs in a suitable 
ratio, which is a complex process, depending on the types 
and proportions of the different substrates and enzymes, and 
their interactions (Monclaro et al. 2022; Wang et al. 2020a).

To date, many microorganisms that can secrete PPDEs 
have been reported, including bacteria, archaea, and fila-
mentous fungi (Behera et al. 2017). Filamentous fungi, 
such as Penicillium and Trichoderma, have evolved rela-
tively efficient protein expression and secretion systems, 
and are preferable for PPDE production (Wang et al. 2020b; 
Passos et al. 2018; Liu et al. 2012). The superior cellulase 
producer, Trichoderma reesei RUT-C30, secretes a rela-
tively large amount of protein. Nevertheless, the cellulase 
mixture produced by RUT-C30 degrades cellulose inef-
ficiently, as a result of insufficient β-glucosidase activity 
(Fang et al. 2019b). Unlike T. reesei, Penicillium strains, 
specifically Penicillium oxalicum, secrete an extraordinary 
cellulase mixture with a high β-glucosidase activity, which 
is recognized as superior to that of T. reesei (Li et al. 2017; 
Wang et al. 2021; Vaishnav et al. 2018). In addition, accu-
mulated evidence indicates that P. oxalicum also produces 
high RSDE activity during induction by starch (Zhao et al. 
2022b; Gu et al. 2020). Notably, the PPDEs produced by 
P. oxalicum have high degradation efficiency against plant 
polysaccharides, including cellulose from sugarcane bagasse 
and raw starch from cassava and corn (Zhao et al. 2021; 
Zhao et al. 2023a; Gu et al. 2020; Zhao et al. 2022a).

In this review, we summarize and analyze recent research 
advances on PPDE production in Penicillium (specifically P. 
oxalicum), regulation of PPDE biosynthesis, and molecular 
breeding for enhancing PPDE production.

PPDEs in P. oxalicum and other Penicillium 
species

Penicillium is a very large and ecologically diverse fungal 
genus, including more than 483 species (Petersen et al. 
2023). Some of them can secrete complete and highly active 
PPDEs. However, because of a lack of genetic background 
information, understanding and exploration of these spe-
cies and their enzyme systems still face many challenges. 
In the GenBank database (https://​www.​ncbi.​nlm.​nih.​gov/​
genome), approximately 25% of the entries have been 
genome-sequenced, including P. oxalicum (Zhao et al. 2016; 
Li et al. 2022b; Liu et al. 2013a; Pham et al. 2023), Penicil-
lium echinulatum (Lenz et al. 2022a), Penicillium ucsense 
(Lenz et al. 2022b), Penicillium expansum (Wu et al. 2019), 
Penicillium solitum (Wu et al. 2019), and Pencillium parvum 
(Long et al. 2023).

Annotation of protein functions indicates that Penicil-
lium genomes contain many carbohydrate-active enzymes 

(CAZymes), but the number of enzymes varies between 
strains. For example, P. oxalicum strain HP7-1 annotates 
712 CAZymes, including 271 glycoside hydrolases (GHs), 
178 glycosyl transferases (GTs), 131 AAs, 80 carbohydrate-
binding modules (CBMs), 106 carbohydrate esterases (CEs), 
and 25 polysaccharide lyases (Li et al. 2022b). In compari-
son, the P. oxalicum strain I1R1 genome annotates 653 
CAZymes, including 312 GHs, 170 GTs, 72 AAs, 44 CBMs, 
44 CEs, and 11 PLs (Pham et al. 2023). P. parvum strain 
4-14 annotates 404 CAZymes, including 221 GHs, 94 GTs, 
44 AA, 28 CBMs, 14 CEs, and three PLs (Long et al. 2023). 
Notably, statistical analysis indicates no significant differ-
ence in the frequency of CAZymes among the species in 
genus Penicillium, whereas the frequency of CAZymes var-
ies greatly among species in phylum Ascomycota. Overall, 
the predicted number of CAZymes in Penicillium is higher 
than in Trichoderma, suggesting that Penicillium is a better 
source of enzymes for plant biomass saccharification (Lenz 
et al. 2022a). Nevertheless, the number of CAZymes in a 
fungal species does not necessarily reflect the efficiency of 
plant biomass breakdown; efficiency depends on the com-
position of the enzyme mixture and the relative proportion 
of each enzyme.

Some reports on genome annotation concern the major 
PPDEs, specifically cellulase, xylanase, and amylase, and 
their applications. Most reports focus on P. oxalicum, for 
example, P. oxalicum strain HP7-1 has genes for 25 cel-
lulases (three CBHs, 10 EGs and 12 BGLs), 10 XYNs, and 
12 amylolytic genes (three α-amylases, three glucoamyl-
ases, five α-glucosidases, and one 1,4-α-glucan branching 
enzyme) (Li et al. 2022b). P. parvum strain 4-14 has genes 
for 24 cellulases (three CBHs, six EGs and 15 BGLs), six 
XYNs, and 18 amylolytic genes (three α-amylases, five 
glucoamylases, and 10 α-glucosidases) (Long et al. 2023). 
Remarkably, the major PPDEs (cellulases CBH1, EG1, EG2, 
BGL1; XYNs Xyn11A, and Xyn10A and amylases Amy15A 
and Amy13A) are relatively highly conserved and are pre-
sent in all the annotated Penicillium genomes.

To sum up, Penicillium has more abundant PPDE genes, 
its enzyme system is more diversified, and it can adapt to 
more abundant induced carbon sources and produce cellu-
lase when induced by a variety of different carbon sources.

Diverse regulatory mechanisms of PPDE 
gene expression in P. oxalicum and other 
Penicillium species

The expression of PPDE genes in Penicillium is known to be 
strictly regulated by a complex regulatory network. PPDE 
biosynthesis depends on induction by nonpreferred carbon 
sources, for example, Avicel for cellulase, xylan for xyla-
nase, and starch for RSDE. Regulation of PPDE biosynthesis 

https://www.ncbi.nlm.nih.gov/genome
https://www.ncbi.nlm.nih.gov/genome
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is very complex, with multiple levels and influencing fac-
tors, including carbon source, culture conditions, as well 
as transcriptional and (post-)translational regulation. Most 
reports refer to regulation by transcription factors (TFs) in 
Penicillium, specifically P. oxalicum.

Different types of PPDE, including cellulase, xylanase, 
and RSDE, are regulated by co-shared, or specific TFs, 
with diverse regulatory mechanisms at the transcriptional 
level. These TFs and their targets form a web-like network 
that dynamically modulates gene expression and respond 
to induction by different polysaccharide substrates. Numer-
ous TFs that regulate PPDE expression in P. oxalicum have 
been identified (Fig. 2). Overall, TFs are classified into two 
types, repressor and activator. For example, two master 
transcriptional repressors, CreA (Li et al. 2015) and CxrC 
(Zhang et al. 2021), function through both direct and indi-
rect mechanisms. Both can inhibit the expression of major 
PPDE genes, including cellulase genes (e.g., cbh1, eg1, eg2, 
and bgl1), xylanase genes (e.g., xyn11A and xyn10A), and 
amylase genes (PoxGA15A/amy15A and amy13A), as well 
as their regulatory genes such as clrB, xlnR, and amyR, in 
the presence of specific carbon sources (Li et al. 2015; Zhao 
et al. 2022c). In addition, CreA mediates carbon catabolite 
repression (CCR), whereas CxrC is not involved in CCR.

CreA contains a C2H2-type zinc finger domain and recog-
nizes a conserved DNA motif (5′-SYGGRG-3′) (Cupertino 
et al. 2015), whereas the recently developed MEME-ChIP 
assay (https://​meme-​suite.​org/​meme/​doc/​meme-​chip.​html?​
man_​type=​web) found that CreA binds to DNA with a core 
sequence of CGGG in A. nidulans. However, further research 
will be needed to elucidate whether DNA binding involves 
direct action by CreA, or indirect interaction of CreA with 

other regulators (Chen et al. 2021). CreA is known to recruit 
the co-repressor complex, Tup1-Cyc8, which interacts with 
the major RNA Pol II subunit, thereby preventing transcrip-
tion initiation. A histone methyltransferase, Set2, methylates 
H3K36, which involves CreA repression via interaction with 
Cyc8 in P. oxalicum (Hu et al. 2021a). In addition, the action 
of CreA is also controlled by post-translational modifica-
tions, such as phosphorylation (Alam et al. 2017; Ribeiro 
et al. 2019; Chen et al. 2021).

CxrC contains a Zn(II)2Cys6 binuclear cluster DNA-
binding domain, which recognizes a core DNA sequence, 
TSSGTYR (S: C and G; Y: T and C; R: G and A), deter-
mined by in  vitro electrophoretic mobility shift assay 
(EMSA) combined with a MEME assay. Homodimerization 
of CxrC was demonstrated in vitro, requiring both N- and 
C-termini and phosphorylation. Furthermore, a conserved 
oligopeptide LPSVRSLLTP (65–74) is essential for CxrC 
action (Zhang et al. 2021).

Recently, a novel transcriptional repressor, CxrD was 
found to downregulate cellulase and xylanase production in 
P. oxalicum, when solid-state fermented on a medium con-
taining wheat bran and rice straw as carbon sources. CxrD 
does not participate in CCR, but dynamically regulates the 
expression of major cellulase and xylanase genes, such as 
cbh1, eg1, bgl1, and xyn11A, by binding to a core DNA 
sequence, 5′-CYGTSW-3′ (Zhao et al. 2023b).

In addition to transcriptional repressors, many transcrip-
tional activators have been identified, which correspond to 
different types of PPDEs. For example, ClrB, which contains 
a Zn2Cys6-type DNA binding domain, is considered to be 
the master activator of cellulolytic gene expression, but is 
not required for xylanase gene expression in P. oxalicum 

Fig. 2   Gene expression regula-
tory network of genes encoding 
major plant polysaccharide-
degrading enzymes in Penicil-
lium oxalicum. Regulatory 
proteins shaded orange, purple, 
and aqua green indicate involve-
ment in regulation of cellulase 
and/or xylanase genes, raw-
starch-degrading enzyme genes, 
or both, respectively. Lines 
with arrows indicate activation, 
whereas barred lines indicate 
inhibition. This regulatory net-
work is time-dependent. “+P” 
shows phosphorylation

https://meme-suite.org/meme/doc/meme-chip.html?man_type=web
https://meme-suite.org/meme/doc/meme-chip.html?man_type=web
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(Li et al. 2015). The C-terminal residues 685–780 are con-
sidered as the transcriptional activation domain of ClrB, 
whereas the middle region (residues 173–684) represses 
cellulase gene expression (Gao et al. 2019). In addition, 
ClrB directly interacts with Tup1, thereby recruiting the 
co-activator complex Tup1-Cyc8. Tup1 then recruits the 
histone methyltransferase, LaeA, to modify the chromatin 
structure, thereby facilitating cellulolytic gene transcription 
(Zhang et al. 2022). Notably, expression of clrB is directly 
stimulated by another activator, CxrA; conversely, cxrA tran-
scription is repressed by ClrB in the later stages of Avicel 
induction in P. oxalicum (Liao et al. 2019).

CxrA is considered to be a broad-spectrum activator, 
which, in the presence of Avicel, not only promotes the 
expression of major cellulase and xylanase genes, includ-
ing cbh1, eg1, eg2, bgl1, and xyn11A, but also regulates 
the transcription of many regulatory genes, including clrB, 
cxrB, cxrC, nsdD, cbh, and cxrD, as well as cellodextrin 
transporter-encoding genes, cdtC and cdtD. Furthermore, 
in vitro EMSA demonstrated that CxrA can bind to the pro-
moter regions of its target genes (Zhao et al. 2016; Yan et al. 
2017; He et al. 2018; Li et al. 2021; Liao et al. 2019; Zhao 
et al. 2023b). Remarkably, the N-terminal region, CxrA1–206, 
containing a DNA-binding domain (CxrA17–58) and a meth-
ylated arginine (R) at position 94, exhibits most of the regu-
latory functions of the full-length CxrA. Methylated R94 is 
essential for cellulase and xylanase production in P. oxali-
cum (Zhao et al. 2023c).

Regulation of xylanase gene expression involves the 
Zn2Cys6-type promoter, XlnR, also called Xyr1, or Xlr-1 
in T. reesei and Neurospora crassa, respectively. In P. oxali-
cum, knockout of xlnR abolishes the expression of major 
xylanase genes, but only slightly reduces cellulase gene 
transcription (Li et al. 2015). The regulatory functions of 
XlnR are affected by the hydrophobicity of the alanine resi-
due at position 871. The residues 351–694 function as the 
transcriptional activation domain of XlnR (Xia et al. 2022).

The main activator of amylase gene expression, AmyR, a 
homologous protein with COL26 in N. crassa, represses the 
expression of major cellulase genes in the presence of cel-
lulose. AmyR can bind to the promoters of amylase genes, 
including PoxGA15A and amy13A, recruiting the histone 
acetyltransferase complex, Hat1-Hat2, through interaction 
with Hat2. Individual deletion of hat1 and hat2 upregulates 
amylase expression, thereby enhancing amylase produc-
tion. Moreover, the complex Hat1-Hat2 can interact with 
corepressor Tup1-Cyc8, leading to downregulation of gene 
expression (Hu et al. 2023).

The TF, RsrA (formerly POX01907) specifically controls 
the transcription of primary amylase genes in the presence of 
starch, but does not influence cellulase and xylanase produc-
tion under cellulose induction (Zhang et al. 2019). RsrA con-
tains two SANT (SWI3, ADA2, N-CoR, and TFIIIB)-like 

domains, but with low sequence homology and different 
functions. SANT1 (residues 833-881) binds to a core DNA 
sequence, 5′-RHCDDGGD-3′ in the promoter regions of 
major amylase genes; the arginine (R) residue at position 
866 is essential for DNA binding. SANT2 (residues 1086-
1134) interacts with a putative 3-hydroxyisobutyryl-CoA 
hydrolase (POX_g08550) to block the phosphorylation of 
tyrosines Y1127 and Y1170, thereby downregulating RSDE 
and SSDE production. RsrA upregulates RSDE and SSDE 
biosynthesis by interacting with mediator subunit Med31. 
Moreover, the residues 1434-1730 have a transcriptional 
activation function, with D1508, W1509, and M1510 being 
essential for this interaction (Ning et al. 2023).

In addition, CAZyme biosynthesis is also regulated 
by other specific TFs, under induction by various carbon 
sources. For example, the HMG-box protein HmbB pro-
motes cellulase and xylanase production in the presence of 
cellulose, but inhibits RSDE production in the presence of 
soluble corn starch (Xiong et al. 2018). The CENPB-type 
HTH domain protein, Cbh, regulates the expression of cel-
lulase and xylanase on cellulose during submerged-state 
fermentation, but is inactive during solid-state fermentation 
(Li et al. 2021).

In addition to the TFs described above, many non-TFs 
have recently been discovered to be involved in PPDE bio-
synthesis by P. oxalicum. The translational elongation factor, 
eEF1A, interacts with CxrC to activate cellulase, xylanase, 
and amylase gene expression (Zhao et al. 2022c). G pro-
tein γ-subunit GNG-1 (Pang et al. 2021), MAPK PoxMK1 
(Ma et al. 2021), PoxMKK1 (Ma et al. 2023), and glycogen 
synthase kinase-3β (GSK-3β) (Zhang et al. 2023) mediate 
cellulase, xylanase, and amylase gene expression, as well 
as that of known regulatory genes, such as cxrB and clrB. 
The AdoMet synthetase, PoSasA, upregulates cellulase gene 
expression (Hu et al. 2021b). The putative protein methyl-
transferase, Mtr23B, upregulates cellulase and amylase gene 
expression (Zhang et al. 2020).

In other Penicillium species, there is only one report, 
that Mig1, a protein homologous to CreA, represses 
cellulase gene expression in Penicillium funiculosum 
(Randhawa et al. 2018).

Breeding of Penicillium 
PPDE‑hyperproducing strains

Despite great efforts to improve it, the production of PPDEs 
by Penicillium sp., specifically P. oxalicum, is still insuf-
ficient for large-scale biorefinery application. Rationally 
designed molecular breeding of Penicillium is therefore 
indispensable to improve PPDE production. Common 
breeding methods include screening for natural hyper-
producing strains, physical and/or chemical mutagenesis, 
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and molecular breeding (Peterson and Nevalainen 2012). 
To date, many Penicillium sp. capable of PPDE secretion 
have been obtained, for example, Penicillium polonicum 
strain CCDCA10747, which secretes CMCase, avicelase, 
pectinase, mannanase, and xylanase during growth in liq-
uid medium containing sugarcane bagasse as the carbon 
source. The highest production of endo-β-1,4-xylanase was 
obtained after 4 days of growth, reaching 2.24 U/mL, as 
well as CMCase and pectinase, each at 0.1 U/mL (De Cama-
rgo et al. 2022). Xylanase production by Penicillium chry-
sogenum was 1.08 U/mL and 0.94 U/mL in the presence of 
sugarcane straw and sugarcane bagasse, respectively (Ullah 
et al. 2019). Penicillium pulvillorum secretes cellulase, for 
example, 0.9 U/mL of FPase, in liquid medium containing 
Avicel as the carbon source (Marjamaa et al. 2013). Peni-
cillium citrinum yielded maximum amylase production of 
121.84 U/mg and FPase of 46.94 U/mg, from solid-state fer-
mentation with wheat bran as substrate (Shyama and Shilpi 
2014; Shruthi et al. 2020). Penicillium subrubescens pro-
duces an enzyme mixture with a similar composition and 
relative enzyme activities to A. niger with plant biomass as 
substrate. The P. subrubescens enzyme mixture has been 
applied to saccharify complex plant biomass, such as wheat 
bran and sugar beet pulp (Mäkelä et al. 2016). CMCase 
and endo-xylanase production by Penicillium ochrochloron 
RLS11 were 4.0 and 40.0 U/mg, respectively, when grown 
on steam-exploded sugarcane straw (Morgan et al. 2022). 
PPDE production by P. oxalicum strains HP7-1 (Zhang et al. 
2014; Lin et al. 2011), Z1-3 (Jing et al. 2015), 114-2 (Liu 
et al. 2013a), and GXU20 (Lin et al. 2011) ranged from 0.5 
to 55.1 U/mL (Table 1).

To obtain Penicillium strains with higher PPDE produc-
tion, physical and chemical mutagenic methods have been 
employed. For example, Penicillium janthinellum NCIM 
1171 was subjected to mutation by treatment with ethyl 
methyl sulfonate (EMS) for 24 h, followed by UV irradiation 
for 3 min, to obtain mutant NCIM1366, which could produce 
0.83 U/mL of FPase, an increase of 28% as compared with 
the start strain (Sreeja-Raju et al. 2020). Using P. oxalicum 
HP7-1 as the starting strain, three rounds of Co60-γ ray irra-
diation, combined with two rounds of EMS/ultraviolet (UV) 
treatment, produced mutant EU2106, with FPase production 
of 2.78 U/mL, 55% higher than that of HP7-1, when cultured 
on medium containing wheat bran plus Avicel (Zhao et al. 
2016). Moreover, mutant JU-A10-T, with FPase produc-
tion of 4.5 U/mL, eight times that of the starting strain, was 
derived from P. oxalicum strain 114-2 after multiple rounds 
of physical-chemical mutagenesis, including UV irradiation 
and nitrosoguanidine, and adaptation in medium contain-
ing spent ammonium sulfite liquor (Liu et al. 2013b). Simi-
larly, mutant TE4-10 was obtained from P. oxalicum strain 
OXPoxGA15A (Wang et al. 2018) through multiple rounds 
of EMS, atmospheric and room-temperature plasma, and 

Co60-γ ray irradiation mutagenesis, and produced 218.6 U/
mL of RSDE, when cultured in medium containing Avicel 
plus wheat bran for 8 days, a 2.2-fold increase relative to the 
starting strain (Gu et al. 2020).

The fast development of genome sequencing and molecu-
lar manipulation techniques has promoted molecular breed-
ing for improving PPDE production. PPDE biosynthesis is 
tightly regulated by many regulatory proteins, including TFs, 
that are potential targets for molecular breeding. For exam-
ple, simultaneous knockout of two transcriptional repres-
sor genes, atf1 (Zhao et al. 2019) and cxrC, in P. oxalicum 
strain ΔPoxKu70 (Zhao et al. 2016) significantly increased 
cellulase and xylanase production by 2.4–29.1-fold and 
78.9–130.8%, respectively (Lin et al. 2021). In addition, the 
engineered strain GXUR001 was obtained by deletion of 
transcription suppressor, cxrC, and overexpression of activa-
tor gene, amyR, in the mutant TE4-10; its RSDE production 
reached 252.6 U/mL when cultured on medium containing 
Avicel plus wheat bran for 8 days, an increase of 15.6% 
relative to that of TE4-10 (Zhao et al. 2022a). A quadruple 
mutant, RE-27, was produced from P. oxalicum strain 114-2 
by simultaneous deletion of transcriptional repressors, bgl2 
and creA, and overexpression of transcriptional activator 
gene, clrB; cellulase and xylanase production by the mutant 
RE-27 was 34.8%, 62.3% and 288.5% higher than that of the 
starting strain, respectively (Li et al. 2015). Another mutant, 
RE-8, generated by deletion of creA and overexpression of 
clrB, and cellulase genes, cbh1 and eg1, increased cellulase 
and xylanase production by 3.9–30.6-fold (Gao et al. 2017).

In addition to transcription factor engineering, regula-
tory elements including promoters and signal peptides can 
also be modified to improve PPDE production. Screening the 
transcriptome and secretome of P. oxalicum strain HP7-1, 
combined with the use of a green fluorescent protein (GFP) 
reporter, found a strong promoter, pPoxEgCel5B, from the 
EG gene POX01166, and a strong signal peptide, spPox-
GA15A from RSDE PoxGA15A, suitable for amylase pro-
duction. The resulting engineered strain, OXPoxGA15A, had 
3.4-fold higher RSDE production compared with the starting 
strain ΔPoxKu70, reaching 241.6 U/mL with raw cassava 
flour as substrate (Wang et al. 2018).

Strong synergy between gene transcription and translation 
is essential for highly efficient protein expression. A geneti-
cally engineered strain, ΔcxrC::eEF1A, in which the tran-
scriptional repressor gene, cxrC, and the translation elonga-
tion factor gene, eEF1A, were deleted and overexpressed in 
the background strain ΔPoxKu70, respectively, had mark-
edly increased cellulase, xylanase, and RSDE production. 
Notably, an in vitro GST-pulldown assay indicated that CxrC 
interacts with eEF1A (Zhao et al. 2022c).

Although the above reports indicate that PPDE pro-
duction by P. oxalicum can be effectively increased by 
random mutagenesis and molecular breeding, the cost of 
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PPDEs still does not meet the requirements for industrial 
application. However, it should be noted that the choice 
of breeding methods has been very limited, mainly using 
conventional mutagens, such as UV, Co60, and EMS, and 
transcription factor engineering, compared with other 
industrial filamentous fungi, such as T. reesei and Asper-
gillus niger. In addition, the previously adopted genetic 
manipulation systems and screening strategies are time-
consuming, specifically homologous recombination and 
hydrolysis zone-based high-throughput plating. There-
fore, more modern breeding methods specifically suited to 
Penicillium, especially P. oxalicum, should be explored as 
soon as possible, such as CRISPR-Cas-mediated in vivo 
mutagenesis (Zimmermann et al. 2023), machine learning-
guided protein engineering (Xu et al. 2023), and multiple 
omic-based molecular breeding. In addition, the popular 
screening methods such as droplet-based microfluidic high-
throughput screening (He et al. 2019) and flow cytometry-
based ultra-high throughput screening (Yang et al. 2022) 
should be considered.

A major challenge to the development of novel breed-
ing methods for Penicillium is the limited knowledge of the 
regulatory mechanism of PPDE biosynthesis, which limits 
the applicable gene manipulation techniques and targets. 
Future research should focus on improving understanding 
of the regulatory mechanism of PPDE biosynthesis.

Summary and future prospects

The development and application of PPDEs will help to 
promote large-scale production and application of environ-
mentally friendly and sustainable biological manufactur-
ing. Penicillium has great potential for PPDE production 
because of its abundant PPDE gene resource and the high 
efficiency of PPDEs for plant polysaccharide hydrolysis. 
Many Penicillium regulatory factors involved in regula-
tion of PPDE gene expression have been identified and 
several engineered hyperproducing PPDE strains have 
been obtained by manipulating these regulatory targets, 
in combination with random mutagenesis. Although some 
progress has been made towards understanding the biosyn-
thetic mechanisms involved, as well as development and 
utilization of PPDEs in Penicillium, there is still some way 
to go, to achieve the ultimate aim of large-scale industrial 
application. Therefore, future studies should focus on (1) 
understanding the global regulatory mechanism of PPDE 
biosynthesis; (2) screening and identification of more regu-
latory elements at the genetic level; and (3) exploring and 
constructing highly efficient and practical breeding tech-
niques and platforms.
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