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Abstract 
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such 
as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of 
forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in for-
est ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic 
methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared 
to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree 
species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, 
and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These 
techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing 
environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for 
field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms 
and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi.

Key points
• Current knowledge of genetic methods applied to forest trees and associated fungi.
• Genomic methods are essential in conservation, breeding, management, and research.
• Important role of phytobiomes for trees and their ecosystems.
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Introduction

Forests cover approximately 31% of the global land area and pro-
vide invaluable economic, ecological, and social services, such as 
the provision of food, timber, income, habitat for a variety of spe-
cies of all organismal kingdoms, carbon sequestration, nutrient 
cycling or the prevention of soil erosion (FAO and UNEP 2020). 

In the face of global change, forests are exposed to several threats, 
such as fragmentation and deforestation, changing climatic con-
ditions, increasing demand for forest products, and increasingly 
destructive autochthonous and alien-introduced pests and patho-
gens. Research on the adaptation of forests to these challenges 
needs a multifaceted approach, in which genomic analyses play 
an important role (Plomion et al. 2016). A better understanding of 
tree genetics and genomics could help to increase the success of 
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conservation initiatives, inform about the capacity of tree popula-
tions to adapt to changing climatic conditions, and facilitate new 
breeding methods that accelerate breeding cycles and improve 
the accuracy of breeding values (Grattapaglia et al. 2018; Isa-
bel et al. 2020). Despite the importance of trees, knowledge of 
their genetic system and constitution is still much more restricted 
compared to e.g. agricultural plants. Trees are mostly undomes-
ticated, non-model species with a long lifespan and a wide range 
of genome sizes for which genomic resources have only recently 
been developed. The first tree genome, of black cottonwood (Pop-
ulus trichocarpa), was published in 2006 (Tuskan et al. 2006). 
Since then, the rapid development of high-throughput sequencing 
(HTS) and of new approaches to analyze the genetic properties 
of species has also led to a better understanding of tree genetics. 
New genetic methods are used in several forest genetic fields, 
such as conservation genetics, tree breeding, phylogenetics, or 
the analysis of tree-associated microbial communities (Table 1).

Trees cannot be considered as isolated organisms in environ-
ments. Accordingly, the phytobiome encompasses the plant, its 
environment, and all organisms living in, on, and around the 
plant. Environments are not static and trees are thus confronted 
manifold with changing biotic and abiotic influences (e.g., 
Adnan et al. 2022; Fortier et al. 2019; Frei et al. 2018; Teshome 
et al. 2020; Fig. 1). In an ecological and evolutionary context, 
the plant holobiont as functional entity comprises the plant and 
its associated microbes and also viruses that affect host growth 
and survival (Fig. 1), with poplars being used as holobiont 
models for trees (Cregger et al. 2021). Major environmental 
players in plant fitness are the diverse microbiomes (microbial 
communities) that associate e.g. with the rhizospheres (narrow 
soil regions around roots) or the phyllospheres (aboveground 
surfaces) of the trees, that live biotrophically or necrotrophi-
cally within distinct plant tissues, or that connect to plant lit-
ter and to wood degradation and will influence soil properties 
and nutrition in the stands of trees (Adnan et al. 2022; Langer 
et al. 2021; Nilsson et al. 2019; Terhonen et al. 2019; Fig. 1). 
Tree-associated microorganisms may largely consist of bacteria 
and fungi, and there can be archaea and various single-celled 
eukaryotic protists. Among them, fungi are likely to have the 
greatest impact on the life of trees (Baldrian 2017; Prescott and 
Grayston 2013; Zanne et al. 2020).

The variety of molecular methods and the rapid develop-
ment of new bioinformatic tools make it difficult for research-
ers to keep up-to-date and to choose appropriate approaches 
for a given study (Balkenhol et al. 2019). Therefore, studies 
investigating the suitability and potential limitations of differ-
ent genetic methods are needed, as well as reviews summariz-
ing the current understanding of the topic. Recently, excel-
lent reviews have been published on genomic approaches 
applied in forest genetic and fungal research as well as the 
analysis of genetic and genomic data to investigate the evo-
lutionary history and adaptive genetic patterns of tree spe-
cies or taxonomic profiles of fungal communities and their Ta
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functional and ecological attributes (e.g., Adnan et al. 2022; 
Genre et al. 2020; Holliday et al. 2019; Isabel et al. 2020; 
Lind et al. 2018; Nilsson et al. 2019; Plomion et al. 2016). 
Here, we focus on summarizing the application of differ-
ent molecular and genetic methods to forest tree species and 
their associated fungal communities (i.e., their mycobiomes). 
We first give an overview of different methods mainly focus-
ing on examples of their use in forest tree species. We start 
with classical genetic methods, which still play an important 
role in forest genetics research, followed by a description 
of applications based on whole genome and transcriptome 
data (Box 1). Subsequently, we describe how these methods 

can be (complementarily) used in forest conservation genet-
ics, tree breeding, and association genetics (Fig. 2). Finally, 
we present how genetic and genomic approaches are used to 
investigate associated fungal communities and their influ-
ences on tree growth and ecology. Given the extensive ongo-
ing research in the field of mycology, this overview here is 
mainly limited to fungi with life styles being in direct contact 
with tree hosts. The immense input of saprotrophs as another 
central part of the complete forest phytobiome ecology can-
not be overlooked, which is why additional aspects of plant 
litter and wood decay are differentiated in a complementary 
article (Kües et al. in prep.).

Fig. 1  A  tree phytobiome consists of the tree, its environment, 
and all organisms living in, on and around the plant. Growth of 
a photosynthetic tree is directly and indirectly influenced by abiotic 
climatic conditions (rain, light, temperature, wind), by abiotic soil 
chemistry in its different horizons (O: organic horizon; A: surface 
horizon; B: subsoil) and by biological interactions with multiple other 
organisms (bacteria, fungi, animals, possibly other plants) and pos-
sibly viromes that may affect the quality of their growth substrate 
by participating in chemical turnovers and influence the tree perfor-
mance via the growth substrate and in manifold other ways. The term 
phytobiome overlaps  with the ecological concept of the holobiont 
as a functional entity of the plant and its associated communities of 
microbes, i.e. the phytomicrobiome, and viruses that will co-evolve 
with the tree under adaptations to changes in the environment. The 
species of the complex phytomicrobiome influence each other in 
abundance and composition and thereby also the tree, while the tree 
in turn modifies the abundance and composition of associated micro-
bial species by secreting biochemical compounds (Lyu et  al. 2021). 
Exemplified in the figure are the main roles in tree growth exerted by 
fungi: saprotrophs decay wood and other plant litter for mineraliza-

tion and humus formation; mycorrhizal fungi help uptake limiting 
nutrients, such as N and P, minerals and water in return of organic 
carbon resulting from the photosynthetic activity of the tree; patho-
gens can occur on any plant organ and harm these by removal of 
nutrients and destruction; endophytes live seemingly neutral within 
plant tissues without obvious negative or positive effects on the host, 
but may e.g. protect the tree against harmful microbial intruders or 
change in lifestyles under other environmental conditions. Further, 
fungi of functional significance for the holobiont might occur at low 
abundance as epiphytes in the phyllosphere as a yet underexploited 
habitat. Such  fungi may arrive at their places as part of aeromycota 
and may act in defeating pathogens present throughout the commu-
nity of epiphytes, or as saprotrophs in preferred positions awaiting 
e.g. leaf and needle fall for rapid substrate colonization and decompo-
sition (Bashir et al. 2022; Lindow and Brandl 2003; Zhu et al. 2021). 
Note that fungal organisms and the tree (northern red oak, Quercus 
rubra) shown in the figure were randomly chosen for demonstrations 
from a selection of photos available and do not necessarily occur 
together in a natural phytobiome

2785Applied Microbiology and Biotechnology (2023) 107:2783–2830
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Box 1 Short descriptions of the genetic markers and methods discussed in this review

Isozymes: different molecular forms of an enzyme with equal or similar catalytic function
Simple Sequence Repeats (SSRs) or microsatellites: short repeated DNA motifs typically of 1 to 6 bp length located in all regions of eukary-

otic genomes
Random Amplified Polymorphic DNAs (RAPDs): a method, in which DNA is PCR-amplified using single primers with arbitrary nucleotide 

sequences
Amplified Fragment Length Polymorphisms (AFLPs): PCR-based method where selected restriction fragments are amplified with primer 

pairs complementary to synthetic oligonucleotides adapters ligated to the ends of the DNA fragments
PCR-Restriction Fragment Length Polymorphisms (RFLPs): specific DNA regions are amplified with primers and then cut with restriction 

enzymes
Single Nucleotide Polymorphisms (SNPs): SNPs are single sites (base pair positions) with different alleles present in a population
DNA barcoding: DNA barcodes are short taxonomically informative DNA regions that can be amplified and sequenced reliably across a wide 

taxonomic range of plants using primers in conserved regions of the genome
Whole genome sequencing: determination of the order of nucleic acids in the entire genome of an organism
Genome complexity reduction: methods used to generate reduced representation sequencing libraries. Genomic DNA can be digested using 

restriction enzymes or target DNA fragments are captured with synthetic baits
RNA Sequencing (RNA-seq): a method used to determine genome-wide gene expression. Dual RNA-seq describes the simultaneous transcrip-

tomic analysis of different species based on the same sample (e.g., a mixed sample of a pathogen and its host)

Classical genetic markers and methods

Isozymes

Isozymes, different molecular forms of an enzyme with 
equal or similar catalytic function, have frequently been used 
as molecular markers for population genetic analyses in for-
est trees since the 1960s (Eriksson and Ekberg 2001). The 
use of a limited core set of isozyme loci allowed for compar-
ative analyses of genetic variation and differentiation across 
plant species and revealed high levels of within-population 
genetic diversity in outcrossing and long-lived forest trees 
(Hamrick et al. 1992). Isozyme gene loci are codominant 
markers, distinguishing homo –and heterozygotes, which 
can be developed and applied across species at compara-
tively low costs (Holliday et al. 2019). However, only a few 
enzymes in a genome can be visualized by histochemical 
staining (seldom more than 25) so that the representation 
of the total genome is quite limited (Eriksson and Ekberg 
2001). The low numbers of available markers and restric-
tions with respect to the detection of DNA-sequence and 
amino acid level substitutions led to the progressive replace-
ment of isozymes by PCR-based DNA markers.

Simple sequence repeats

Simple sequence repeats (SSRs) or microsatellites are regions 
of DNA with short segments of tandem repeats usually of 
1–6 base pair length. They occur in all regions of eukary-
otic nuclear genomes, most frequently in non-coding DNA 
(Weising et al. 2005). SSRs in non-coding regions (nuclear 

SSRs, nSSRs) are highly variable within populations making 
them useful for the identification of individuals or clones. 
The codominant mode of inheritance and high variability 
and allelic richness of nSSRs are determining factors for 
their wide use in gene flow and mating system analyses, and 
genetic diversity assessment also in tree species and popu-
lations with overall low genetic variation (Finkeldey et al. 
2020). They are species-specific markers, often showing a 
low transferability across related taxa, especially when they 
are located in non-coding variable genomic regions. nSSRs 
have been developed for a large number of tree species, for 
example by developing and sequencing SSR-enriched librar-
ies (Fischer and Bachmann 1998; Pandey et al. 2004) or by 
low-coverage genome sequencing (Staton et al. 2015). While 
predominantly occurring in intergenic regions, SSRs are also 
found in expressed genes (expressed sequence tags, ESTs), 
mostly in 5’ and 3’ untranslated regions, but also in cod-
ing regions (Ellis and Burke 2007). Especially trinucleo-
tide repeats are found in coding regions since variation in 
repeat numbers does not disrupt the reading frame but can 
be associated with protein function and phenotypic traits. For 
example, an allele of a poly(Q) repeat (glutamine tract) was 
associated with growth cessation in Populus tremula (Ma 
et al. 2010). Variation in a trinucleotide SSR encoding for 
a glutamine tract in the coding region of a CONSTANS-like 
gene showed high interspecific differentiation as a signature 
of strong divergent selection between neighboring popula-
tions of two hybridizing oak species, Quercus rubra and 
Quercus ellipsoidalis, with different adaptations to drought 
(Lind-Riehl et al. 2014). Transcriptome libraries have been 
developed for an increasing number of tree species and can 

2786 Applied Microbiology and Biotechnology (2023) 107:2783–2830
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be used as a resource for the development of EST-SSRs (e.g., 
Breidenbach et al. 2020; Durand et al. 2010). In comparison 
to nSSRs, they show a higher transferability across related 
species, especially if primers are developed in conserved 
genomic regions (e.g., in coding regions of a gene) (Ellis 
and Burke 2007). Finally, SSRs are also present in organelle 
(chloroplast (cp) and mitochondrial (mt)) genomes (Weis-
ing and Gardner 1999; Weising et al. 2005). cpSSRs are 
frequently used in phylogeographic studies, especially in 
angiosperms with maternally inherited cpDNA (Finkeldey 
and Gailing 2013; Ndiade-Bourobou et al. 2020; Pettenkofer 
et al. 2019). In summary, also in the era of genomics, SSR 
markers still have a wide range of applications in tree popula-
tion genetics.

Random amplified polymorphic DNAs

Williams et al. (1990) introduced random amplified poly-
morphic DNAs (RAPDs), a technique based on random 
PCR-amplification of DNA using only single primers of 
the arbitrary nucleotide sequence. RAPDs have been used 
for population genetic studies in several species. In trees 
for instance, they were used to infer genetic variation and 
differentiation in Sorbus torminalis, a forest tree species 

with scattered distribution in Europe (Belletti et al. 2008), 
or to investigate genetic drift in small populations of Taxus 
baccata in Switzerland (Hilfiker et al. 2004). RAPDs were 
also used on its organismal companions, for instance to 
infer hybridization between two subspecies of Ophios-
toma novo-ulmi, the ascomycetous pathogens that cause 
the Dutch elm disease (Brasier and Kirk 2010). RAPDs 
are inexpensive markers, which can be applied in unchar-
acterized genomes, but they also have some disadvantages, 
such as being dominant markers and showing issues of 
repeatability (Holliday et al. 2019).

Amplified fragment length polymorphisms

The amplified fragment length polymorphism (AFLP) 
technique is a PCR-based method where selected restric-
tion fragments are amplified with primer pairs comple-
mentary to synthetic oligonucleotides (Vos et al. 1995). 
A relatively large number of reproducible PCR fragments 
is generated in a single reaction which can be visualized 
and scored after electrophoretic separation on highly 
resolving polyacrylamide (PAA) gels or on a capillary 
sequencer. AFLPs are dominant (presence/absence) mark-
ers and their location in the genome is unknown. AFLP 
fragments can be gel-extracted, cloned, and sequenced to 

Fig. 2  Links between genetic 
methods, tools/approaches, 
and applications discussed in 
this review. For details on the 
methods and tools see also 
Table 1 and Box 1. Methods 
generate genetic data, which 
are processed and analyzed 
with different approaches/tools, 
and can be used for different 
applications

2787Applied Microbiology and Biotechnology (2023) 107:2783–2830
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develop sequence characterized amplified region (SCAR) 
markers, but the method is technically demanding and 
time-consuming (Gailing and Bachmann 2003; Nuro-
niah et al. 2010, 2017). AFLPs have been widely used 
in genetic diversity assessments and genetic mapping in 
plants, including forest trees (Cao et al. 2009; Gailing 
et al. 2008, 2013; Meudt and Clarke 2007; Wang et al. 
2014; Wehenkel et al. 2020). They are still valuable as a 
relatively low-cost genome-wide marker method for spe-
cies for which no genomic or specific marker resources are 
available (e.g., in tropical tree families with high species 
diversity). However, AFLPs are more and more replaced 
by next-generation sequencing methods, such as restric-
tion site-associated DNA sequencing (RAD-seq), which 
produces genome-wide single nucleotide polymorphism 
(SNP) markers (Kirschner et al. 2021).

PCR‑restriction fragment length polymorphisms

PCR-restriction fragment length polymorphisms (PCR-
RFLPs) have been used frequently for the characterization 
of sequence variation in uniparentally inherited chloroplast 
DNA of plants including forest trees. Specific intergenic 
regions for example between the chloroplast transfer RNA 
genes, such as trnL, trnL-trnF (Taberlet et al. 1991), trnD-
trnT, and trnC-trnD (Demesure et al. 1995) are amplified 
with conserved-gene-anchored primers (“universal prim-
ers”) and then cut with restriction enzymes. The PCR–RFLP 
technique is a cost-effective method to characterize chloro-
plast haplotype distribution across species ranges and has 
been used to reconstruct postglacial recolonization routes 
of major forest tree species in Europe and North America 
(Heuertz et al. 2004; Laricchia et al. 2015; Palme et al. 2003; 
Petit et al. 2002a, 2002b, 2003). Due to the pronounced phy-
logeographic structure generally observed at uniparentally 
inherited cpDNA markers, PCR–RFLP of cpDNA can be 
used to pinpoint the geographic origin of forest reproductive 
material or wood products (Jiao et al. 2019; Nuroniah et al. 
2017; Rachmayanti et al. 2009).

Single nucleotide polymorphisms in candidate 
genes

Single nucleotide polymorphisms (SNPs) are single sites 
(base pair positions) with different alleles present in a popu-
lation. They are the main source of genetic variation in plant 
and animal genomes (Holliday et al. 2019) and have numer-
ous applications in population and association genetics (Gib-
son and Muse 2004). SNPs in candidate genes for adaptive 
trait variation can be extracted from low coverage genome 
and transcriptome sequencing. SNP genotyping assays can 
be designed to analyze a few (ca. 20 to 200) SNPs in selected 

candidate genes or up to 700,000 SNPs in model tree species 
for which whole genome sequences and transcriptomes are 
available (Holliday et al. 2019).

DNA barcoding

DNA barcodes are short taxonomically informative DNA 
regions that can be amplified and sequenced reliably across 
a wide taxonomic range of plants using primers in conserved 
(coding) regions of the genome. A standard set of barcod-
ing regions has been used for the taxonomic identification of 
flowering plants, the chloroplast coding genes rbcL and matK, 
intergenic or intron chloroplast regions trnL, trnH-psbA and 
the internal transcribed spacer (ITS) region of ribosomal DNA 
(Hollingsworth et al. 2011; Kress et al. 2005, 2009). The Bar-
coding of Life Data System (BOLD) has been established as 
a reference database of DNA sequences linked to herbarium 
vouchers (Hollingsworth et al. 2009). The lack of sequences 
for many tropical species still limits the application of DNA 
barcoding for sample identification to the species level, while 
genus-level identification is often achieved (Moura et al. 
2019). Also, the resolution of barcoding sequences is low for 
some taxonomic groups (e.g., species of the genus Shorea of 
the important tropical tree family Dipterocarpaceae) requir-
ing genome-wide sequencing methods to better resolve spe-
cies relationships (Heckenhauer et al. 2018, 2019).

Whole genome sequencing 
and re‑sequencing

Whole genome sequencing refers to the determination of the 
order of nucleic acids in the entire genome of an organism. 
The genome comprises all coding and non-coding nuclear 
DNA in a cell and also includes the uniparentally inherited 
organelle DNA, i.e., in the plastids and mitochondria. Differ-
ent sequencing technologies and platforms are available (see 
e.g. overviews in Holliday et al. 2019; Porter and Hajibabaei 
2018). Especially Illumina sequencing platforms (Illumina, 
San Diego, CA) are widely used. Typically, the DNA of an 
individual is extracted and fragmented. Fragmentation can be 
achieved e.g. by acoustic shearing using an ultrasonicator. The 
fragments are size selected prior to adapter ligation. The adapt-
ers serve both as a connection to the Illumina sequencing flow 
cell and as primers for amplification prior to sequencing and 
during the sequencing reaction itself. The sequence reads of 
the DNA fragments are then bioinformatically processed. First, 
the reads are quality filtered and can subsequentially be aligned 
to a reference genome or are used for de novo genome assem-
bly. For de novo genome assembly, ideally, sequences with 
different lengths (long reads from more error-prone technolo-
gies and short reads) are combined to maximize coverage and 
avoid gaps. In the last years, with decreasing sequencing costs, 

2788 Applied Microbiology and Biotechnology (2023) 107:2783–2830



1 3

more and more tree species reference genomes are becoming 
available and are gathered in the TreeGenes database (https:// 
treeg enesdb. org/; Falk et al. 2018) where currently 29 genome 
and draft genome assemblies of tree species are stored, mostly 
of broadleaf trees of economic interests (by uses of wood, 
resins, or fruits, or as ornamentals), but also 6 gymnosperms 
including the evolutionary old genera Gnetum, Gingko and 
Sequioa. Also, other non-tree-specific databases like Phyto-
zome (https:// phyto zome- next. jgi. doe. gov/; Goodstein et al. 
2012) contain valuable genome information of tree species.

Comparative studies between herbaceous plants and tree 
genomes identified whole genome duplication events, major 
chromosome rearrangements, and expansions in gene fami-
lies especially involved in the expression of tree-specific 
traits, such as wood formation (reviewed in Plomion et al. 
2016). Rates of molecular evolution are typically lower in 
long-lived and outcrossing tree species compared to herba-
ceous species (Smith and Donoghue 2008). While monocot 
genomes (average genome size of 9.4 Gbp [std. dev. 12.3]; 
Pellicer and Leitch 2020) and eudicot genomes (average 
genome size of 2.4 Gbp [std. dev. 3.9]; Pellicer and Leitch 
2020) are usually small or medium-sized, gymnosperm 
genomes, particularly those of conifers (e.g., Pinaceae aver-
age genome size of 23.4 Gbp [std. dev. 5.6]; Pellicer and 
Leitch 2020), are much bigger which was most likely caused 
by long insertions of repeated elements, such as repeat-retro-
transposons and a lack or slower rate of efficient DNA repair 
mechanisms (Cossu et al. 2017; Morse et al. 2009; Nystedt 
et al. 2013; Wegrzyn et al. 2013). Predictions of gene num-
bers in sequenced tree species are around 30,000 to 40,000 
regardless of the genome size (Cao et al. 2022).

Once a reference genome is available, higher numbers of 
samples can be re-sequenced and aligned to this reference to 
determine sequence variation between individuals, such as 
SNPs, insertions, and deletions. In the same sequencing run, 
several samples can be pooled and, if necessary, later bioin-
formatically separated based on individual index sequences 
which can be added to the adapters during library prepara-
tion (Holliday et al. 2019). Especially for natural popula-
tions with low linkage disequilibrium or species with a small 
genome size for which no genome-wide genotyping assays 
have been developed, whole genome re-sequencing can now 
produce valuable data sets.

Genome complexity reduction

Due to the large genome size of some tree species, the whole 
genome sequencing methods described in the previous sec-
tion are still too expensive for many projects. Often, whole 
genome sequencing or re-sequencing is also not the best 
approach for the given research question. For instance, a 
researcher may only be interested in the coding part of a 

genome, and hence, sequencing the complete genome 
including non-genic and non-coding parts may not be effi-
cient. Therefore, different techniques for genome complex-
ity reduction, such as sequence capture or genotyping-by-
sequencing (GBS), have been developed.

Sequence capture allows the targeting and enrich-
ment of specific regions within a genome. This approach 
is based on hybridization between the DNA regions of 
interest and specifically designed oligonucleotide baits 
(Gasc et al. 2016; Holliday et al. 2019). The obtained 
libraries are afterwards sequenced using next-generation 
sequencing platforms. Thereby, different DNA regions 
can be targeted. For instance, researchers may be inter-
ested in re-sequencing specific DNA regions or they spe-
cifically target exonic regions—a technique known as 
exome capture. Exome capture has been used in recent 
years to detect and analyze genetic variation in coding 
regions of tree genomes including large and complex 
conifer genomes. Exome capture baits can be designed 
based on genome or transcriptome data. For instance, Lu 
et al. (2016) used exome capture to identify SNPs in 375 
loblolly pine trees (Pinus taeda) of a mapping population 
in the USA and to investigate population structure and 
linkage disequilibrium. The authors identified more than 
972,000 SNPs and detected two distinct subpopulations 
referring to different geographic origins of the trees. In 
cases, where no reference genome is available for the tar-
get species, also genomic resources of closely related spe-
cies can be used for bait design. For instance, Capblancq 
et al. (2020a) successfully used reference transcriptomes 
of Picea glauca to design exome capture baits for the 
related tree species Picea rubens.

However, despite the advantages of sequence capture for 
genome complexity reduction, such as the specific selection 
of target regions and the generation of data sets with less 
missing data compared to other methods, it is also more 
expensive and sequence information is necessary for probe 
design (Holliday et al. 2019). Therefore, restriction enzyme-
based methods, such as genotyping-by-sequencing (GBS) 
(Elshire et  al. 2011) or restriction site-associated DNA 
sequencing (RAD-seq) (Baird et al. 2008), are more often 
applied in forest genetics research. GBS and RAD-seq have 
been used as umbrella terms describing different methods 
that use restriction enzymes to guide genome complexity 
reduction and sequencing (Parchman et al. 2018). These 
methods might differ regarding the amount of reliably iden-
tified SNPs (Ulaszewski et al. 2021). Since no reference 
genome is necessary for these methods and they are com-
parably inexpensive, they can be used for SNP identifica-
tion in non-model tree species with large sample sizes. GBS 
and RAD-seq methods provide valuable data for a variety 
of applications, such as phylogenetics (Hipp et al. 2020), 
genetic mapping (Konar et al. 2017), or different population/
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landscape genetics research questions (Johnson et al. 2017; 
Martins et al. 2018; Sun et al. 2016).

A modification of the RAD-seq method, which combines 
bisulfite treatment of DNA with RAD-seq, makes it possible 
to analyze genome-wide epigenetic patterns (DNA methyla-
tion) in forest tree species (e.g., bsRAD-seq, Trucchi et al. 
2016). The bisulfite treatment converts non-methylated 
cytosine into uracil (Frommer et al. 1992; Henderson et al. 
2010). By comparison with untreated DNA sequences, DNA 
methylation patterns can be identified (bisulfite sequencing 
can also be applied in whole genome sequencing studies). 
Gugger et al. (2016) used reduced-representation bisulfite 
sequencing for the identification of epigenetic variants 
in Quercus lobata and association analysis of these vari-
ants with environmental variables. Recently, an alternative 
approach (enzymatic methyl-seq (EM-seq)) has been devel-
oped to investigate the methylome without bisulfite sequenc-
ing leading to a lower GC bias and longer sequencing reads 
(Williams et al. 2019). In this method, the conversion of 
non-methylated cytosine to uracil is conducted by enzymatic 
treatment of the DNA.

RNA‑Seq

RNA sequencing (RNA-seq) is used to determine genome-wide 
gene expression. It provides a direct measurement of RNA tran-
script abundance and allows a simultaneous identification and 
quantification of sequences (Weber 2015). Since this method 
does not need prior sequence information, it can be used for the 
analysis of transcriptomes (i.e., complete sets of transcripts in 
a cell (Wang et al. 2009)) of tree species without or with only 
restricted genomic resources available. In cases where no ref-
erence transcriptome is available, usually a de novo transcrip-
tome assembly is conducted (see below). After RNA extraction, 
reverse transcription is used to convert RNA into cDNA, which 
is used for library preparation and sequencing.

RNA-seq can be used to get insights into gene expres-
sion in general and in response to, for example, different 
biotic and abiotic stressors to investigate the genetic basis 
of specific traits. For instance, Harper et al. (2016) used 
RNA-seq to identify SNPs and associate them with dam-
age scores of European ash (Fraxinus excelsior) trees which 
were affected by the ash dieback disease caused by the inva-
sive fungal ascomycete pathogen Hymenoscyphus fraxineus. 
The authors found markers associated with damage levels 
and identified SNPs which were successfully used to iden-
tify trees with a low level of susceptibility to the disease. 
Other studies used RNA-seq to investigate gene expression 
in response to stressors, such as drought, frost, high salt con-
centration, or herbivory, in several tree species (e.g., Brei-
denbach et al. 2020; Chaires et al. 2017; Fox et al. 2017; 
Kersten et al. 2013; Müller et al. 2017; Wu et al. 2019). 

Thereby, trees (mostly seedlings/saplings) under controlled 
conditions (e.g. climate chambers) are often experimentally 
divided into two groups, of which one is treated and the other 
one is untreated (control samples). Based on RNA-seq data 
obtained in these groups, genes are identified, which are sig-
nificantly differentially expressed between treatment groups, 
and hence, potentially involved in stress response. Another 
attractive approach is the identification of gene expression 
networks that are conserved among species. This was done 
by Zinkgraf et al. (2020) for the trait “wood formation”. The 
authors used RNA-seq to investigate gene expression related 
to wood formation in 13 different tree species and identified 
orthologous genes whose co-expression relationships were 
maintained across species (Zinkgraf et al. 2020).

Further, transcriptome data are valuable sources for the 
development of genetic markers, such as microsatellites or 
SNPs. For species with scarce genomic information, RNA-
seq can provide valuable resources, such as the identification 
of candidate genes for specific traits or reference transcrip-
tomes. For the establishment of reference transcriptomes, 
preferably several different tree tissues should be sequenced, 
since tissues can differ regarding gene expression. For 
instance, Guerrero-Sanchez et al. (2017) established a ref-
erence transcriptome for holm oak (Quercus ilex) based 
on a sample consisting of homogenized tissue from acorn 
embryos, leaves, and roots. Transcript abundance is dramati-
cally varying within a transcriptome. This means that more 
abundant transcripts are recurrently sequenced, while rare 
transcripts may not reach the necessary sequencing depth for 
analysis. Therefore, normalization of cDNA equalizing tran-
script abundance can be meaningful prior to sequencing, for 
samples that will be used for de novo transcriptome assem-
bly, albeit it can be associated with drawbacks, such as high 
costs or erroneous removal of genes (Honaas et al. 2016). 
Normalization of cDNA, for instance, has been applied in 
transcriptome studies of European beech (Fagus sylvatica) 
and pedunculated oak (Quercus robur) and led to low redun-
dancy transcriptome assemblies (Müller et al. 2017; Tarkka 
et al. 2013).

RNA-seq has also been used to gain insights into epige-
netic mechanisms in tree species by analyzing small RNAs 
(e.g., Liu and El-Kassaby 2017; Yakovlev et al. 2016; Yako-
vlev and Fossdal 2017), which are involved in the control of 
gene expression and potentially in several epigenetic mecha-
nisms (Sow et al. 2018). For instance, Yakovlev and Fossdal 
(2017) used RNA-seq to screen embryogenic tissues of Nor-
way spruce that was produced under different temperatures 
for small RNAs. The authors found 654 microRNAs (miR-
NAs) that were differentially expressed with respect to tem-
perature levels. They concluded that fine-tuning of miRNA 
production might be involved in developmental regulation 
and epigenetic memory formation in Norway spruce (Yako-
vlev and Fossdal 2017).
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Case studies—application of genetic 
methods in tree conservation genetics, tree 
breeding, and association analysis

Conservation genetics

In conservation genetics, researchers aim at understanding 
the evolutionary dynamics affecting the genetic variation, 
particularly in rare populations and species to preserve them 
from extinction by providing guidance for conservation or 
restoration management. Genetic markers, such as isozymes 
or organelle and nuclear microsatellites, have traditionally 
been employed to determine the levels of genetic diversity, 
reveal phylogeographic patterns, study the demographic his-
tory, and assess the effect of land use changes. Genetic mark-
ers were used to define populations of conservation priority 
(“evolutionary significant units” (Moritz 1994) or “manage-
ment units” (Palsbøll et al. 2007)) mostly in threatened or 
rare species. Most European forest tree species show high 
levels of genetic variation (but see e.g. Pinus pinea (Mutke 
et al. 2010)) and are not considered threatened or rare. Nev-
ertheless, the conservation of forest genetic resources has 
a long tradition and has led to the creation of the European 
Forest Genetic Resource Program (EUFORGEN; http:// 
www. eufor gen. org/). Nowadays, global change is rapidly 
changing the environmental conditions and thereby is rais-
ing concern to develop improved sustainable conservation 
approaches to maintain high levels of genetic variation and 
the dynamics of evolutionary processes to promote range-
wide adaptation, and especially in peripheral populations 
(Fady et al. 2016). Combining knowledge obtained from 
neutral genetic markers and from relevant quantitative 
traits in shared experimental plantings (so called "common 
gardens") can improve the ability of defining evolutionary 
units for conservation, an approach e.g. employed in mari-
time pine to improve the dynamic conservation program 
(Rodríguez-Quilón et al. 2016). However, common gardens 
spanning the complete distribution range of a species are 
still lacking for most forest tree species and often periph-
eral populations are underrepresented and the common gar-
dens are seldomly sufficiently replicated (Fady et al. 2015). 
Genome-wide genetic markers and new computational tools 
are therefore promising to identify loci showing functionally 
important differentiation also in non-model species and use 
this information for improved conservation recommenda-
tions. Fitzpatrick and Keller (2015) were able to incorpo-
rate genomic markers in a niche modelling framework and 
uncovered gene-environment relationships in balsam poplar 
(Populus balsamifera) providing relevant information for the 
vulnerability of populations under a climate change scenario. 
Recently, several genomic off-set studies raised concern by 
revealing populations mal-adapted to the predicted future 

climatic conditions (reviewed in Capblancq et al. 2020b). 
Conservation genomic initiatives combining whole genome 
re-sequencing of multiple species and landscape genomic 
analyses can reveal regions with high intraspecific diversity 
and corridors connecting these regions, as well as areas of 
conservation concern (Shaffer et al. 2022).

Breeding

Several properties of forest tree species, such as long gen-
eration times, late flowering, or weak juvenile-mature cor-
relations, make forest tree breeding difficult (Grattapaglia 
et al. 2018). Conventional breeding is a slow process, in 
which several years are necessary for breeding (5–15 years) 
and progeny testing (3–15 years) (Isik 2014). Therefore, 
genetic methods are needed to shorten breeding cycles. One 
such proposed method is marker-assisted selection (MAS), 
in which genetic markers with large effects are identified 
that are associated with the trait of interest (see QTL map-
ping below) and could be used for screening seedlings for 
planting/breeding. Nevertheless, MAS was not very suc-
cessful in forest tree breeding, mainly because identified 
QTL only explained a small amount of phenotypic varia-
tion (Isik 2014). Another method called genomic selection 
(GS) has become possible due to the development of high-
throughput sequencing techniques and is very promising. 
Instead of identifying discrete marker-trait associations, in 
GS large numbers of SNPs that cover the whole genome 
are jointly analyzed to predict breeding values (Grattapaglia 
et al. 2018; Isik 2014; Meuwissen et al. 2001). Often a few 
thousand SNPs are used in GS studies with forest tree spe-
cies, albeit numbers are varying between ca. 2,500 to 69,000 
(Chen et al. 2018b). For the identification of SNPs, often 
methods for the reduction of genome complexity, such as 
exome capture or GBS (see section “Genome complexity 
reduction”), are employed. For instance, Chen et al. (2018b) 
used exome capture to identify SNPs in Norway spruce for 
GS. In total, 116,765 SNPs were used for evaluating the 
influence of different parameters, such as the relatedness 
of the trees, size of the training and validation set, or the 
number of SNPs, on the accuracy and predictive ability of 
GS for growth and wood quality traits. The study indicates 
that GS would reduce the time needed for a breeding cycle 
in breeding programs that rely on long-term progeny test-
ing. Further, Chen et al. (2018b) concluded that ca. 8,000 
SNPs would be required for GS in a full-sib (sibling) family 
of sufficient within family size (16 trees for growth and 12 
trees for wood quality traits).

The described methods can also be used in breeding pro-
grams aiming at increasing the resistance of trees against pests 
and pathogens (Naidoo et al. 2019). For instance, Nvsvrot 
et al. (2020) used QTL mapping in combination with genome 
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re-sequencing to identify variation within an R (resistance) 
gene which is associated with variation in leaf rust disease 
resistance in poplar. However, resistances sometimes break 
down as exemplified in 1994 in France by the poplar Rmlp7 
resistance against the obligate biotrophic Melampsora larici-
populina (Persoons et al. 2017). Breeding for loss of function 
S (susceptibility) genes may be even more promising, since 
it may lead to more durable and broad-spectrum resistance 
(Pavan et al. 2010; van Schie and Takken 2014). Analyses of 
S genes have been conducted for resistance to powdery mildew 
fungi in tree species, such as rubber trees (Hevea brasiliensis) 
or black cottonwood (P. trichocarpa), or related to the plant-
damaging fungal-like oomycete Phytophthora spp. and to 
Cryphonectria parasitica in sweet chestnut (Castanea sativa) 
(Filiz and Vatansever 2018; Liyanage et al. 2020; Pavese et al. 
2021). One of the most prominent examples of increasing pest 
resistance in forest tree species is the breeding of American 
chestnut (Castanea dentata) trees for tolerance against chest-
nut blight, a disease caused by the bark fungus C. parasitica 
which was accidentally introduced to the USA around 1900 
(Jacobs et al. 2013; Merkle et al. 2007) and led to the near 
extinction of American chestnut (Aucott and Parker 2021; 
Lovat and Donnelly 2019). Conventional backcross breed-
ing was used to incorporate blight resistance from Chinese 
chestnut (Castanea mollissima) into American chestnut. This 
resulted in backcrossed hybrids that have a greater blight resist-
ance than pure American chestnuts, but less than the resistance 
displayed by  F1 hybrids of Chinese and American chestnuts 
(Aucott and Parker 2021). Higher resistance of American 
chestnut was obtained using genetic engineering (Newhouse 
et al. 2014; Zhang et al. 2013). Specifically, an oxalate oxidase 
gene (OxO) from wheat was transferred into American chest-
nut via Agrobacterium-mediated transformation (Carlson et al. 
2022; Onwumelu et al. 2022; Polin et al. 2006). Oxalic acid 
is produced by the fungus C. parasitica and destroys chestnut 
tree bark tissues, among others by decreasing the intracellular 
pH and the lignin content (Lovat and Donnelly 2019; Welch 
et al. 2007). OxO catalyzes the degradation of oxalate in  H2O2 
and  CO2 and speeds up the oxidation of oxalic acid in chest-
nut which protects lignin from degradation (Aucott and Parker 
2021; Chang et al. 2018; Welch et al. 2007). Since OxO does 
not kill the fungus but only mitigates its impact on plant tissue 
and lignin loss, the tolerance of genetically modified Ameri-
can chestnuts might be quite sustainable (Chang et al. 2018). 
In 2020, a deregulation petition (Newhouse et al. 2020) for 
genetically engineered blight-tolerant American chestnut trees 
(“Darling 58”) was submitted to the United States Department 
of Agriculture (USDA).

In general, genetic engineering can be used to alter traits 
of interest in tree species, such as growth, wood properties, 
abiotic and biotic stress tolerance, or reproduction control 
(see Chang et al. (2018) for an excellent review). Nelson 
(2022) argues in his recent review that genetic engineering 

is not a shortcut to tree improvement and conventional tree 
breeding and genetic engineering should be seen as com-
plementary methods. Despite the use of genetic engineer-
ing in research, the commercial use of genetically modified 
trees is very limited (Chang et al. 2018). China was the first 
country that released genetically modified forest trees for 
commercial use. In 2002, insect-resistant Populus nigra trees 
that contained a modified Cry1Ac toxin gene from Bacillus 
thuringiensis (Bt) were used for commercial plantations in 
this country (Chang et al. 2018; Hu et al. 2014; Zheng 2010). 
In 2015, the company FuturaGene obtained permission to 
release a transgenic Eucalyptus with enhanced wood produc-
tion for commercial use in Brazil (Anonymous 2015).

Association genetics and outlier detection

Association genetics aims at identifying genotypes signifi-
cantly associated with phenotypic traits or environmental 
variables. Genome-wide association studies (GWAS) using 
dense genomic data are of course best suited to detect loci 
under selection (see below), but in many non-model species, 
genomic resources are still limited.

One of the earliest approaches in association genetics is 
Quantitative Trait Locus (QTL) mapping. QTL mapping 
requires the availability of large segregating full-sib families. 
In crop plants and herbaceous plants with short generation 
cycles,  F2 backcross families and recombinant inbred lines 
have been used for the construction of genetic linkage maps 
and QTL mapping (Tanksley 1993; Xu et al. 2017). In con-
trast, outcrossing forest trees with very long generation times 
are characterized by a high level of individual heterozygosity 
enabling the use of  F1 full-sib progenies to construct sepa-
rate male and female and joint linkage maps using a two-way 
pseudo-testcross strategy (Grattapaglia and Sederoff 1994). 
In model tree species with high economic importance, also 
intra- and interspecific backcross families have been gener-
ated and used for QTL mapping (Bdeir et al. 2017; Muchero 
et al. 2013). QTLs have been identified for a wide range of 
growth-related and potentially adaptive traits, such as drought 
tolerance, phenology, wood quality, and disease resistance 
(Brendel et al. 2008; Drost et al. 2015; Kubisiak et al. 2013; 
Scotti-Saintagne et al. 2004). Genome-wide sequencing meth-
ods including whole genome resequencing are gaining impor-
tance in QTL mapping in trees (Marinoni et al. 2020). While 
the generation of genomic data is no longer a limiting factor 
for some model tree species, additional efforts are needed in 
high precision and high throughput phenotyping to dissect 
the genetic basis of complex phenotypic traits (Sideli et al. 
2020; Virlet et al. 2015). Also, allelic variation in the cross-
ing parents and the comparatively low resolution of the QTL 
mapping approach limits the detection of genes underlying 
trait-specific QTLs, high precision mapping resulting in QTL 
regions that still contain several hundred genes (Bdeir et al. 
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2017). Complex traits, such as the timing of bud burst are 
generally controlled by many genes with individually small 
effects on the phenotype and major QTLs explaining more 
than 20% of the phenotypic variation are comparatively rare 
(Brendel et al. 2008; Marinoni et al. 2020).

Another often applied association genetics approach is the 
candidate gene approach that targets loci in coding regions of 
the genome with possible relevance for the phenotypes under 
study. Those studies revealed loci significantly associated with 
e.g. wood properties and height growth (e.g., Cabezas et al. 
2015; González-Martínez et al. 2007) or ecologically important 
traits, such as cold hardiness (e.g., Eckert et al. 2009; Holliday 
et al. 2010) or drought resistance (Cuervo-Alarcon et al. 2021). 
To avoid the confounding effects of environmental variation 
typically found in natural populations, most of these studies 
were conducted in field trials or under experimental conditions. 
However, in some cases, for example, when selection pressure 
is strong, promising candidate genes are known and highly 
heritable plant traits are targeted, association studies can also 
be conducted successfully in natural populations (Budde et al. 
2014; Caré et al. 2020). Environmental association studies also 
revealed correlations between adaptive genotypes/phenotypes or 
allele frequencies for particular loci and environmental clines, 
such as temperature or drought gradients (Bergmann 1978; Eck-
ert et al. 2010; Jaramillo-Correa et al. 2015). Another approach 
is the detection of outlier loci showing stronger divergence than 
expected under a neutral model when comparing e.g. individuals 
growing in contrasting habitats (Beaumont and Nichols 1996). 
An interesting example is the strong divergence at several can-
didate genes in Eperua falcata, a tropical forest tree growing on 
a mosaic of seasonally flooded bottomlands and seasonally dry 
terra firme soils in close vicinity (Audigeos et al. 2013).

Genome-wide association studies (GWAS) aim to identify 
associations between a panel of genome-wide genetic markers 
and phenotypes (reviewed in Korte and Farlow (2013)). Usu-
ally, a large number of individuals is used. One big advantage 
of GWAS is that no pedigree information is needed. Because 
in the first step genetic markers need to be identified, which are 
subsequently associated with the trait of interest, often several 
genetic methods discussed in this review are combined. For 
instance, Ćalić et al. (2017) used RNA-seq to identify SNPs 
related to the fatal beech bark disease, a pathosystem caused 
variously by interplays of different bark scales (Xylococculus 
betulae, Cryptococcus fagisuga), pathogenic Neonectria fungi 
and abiotic factors (Cale et al. 2017). The SNPs were subse-
quently used to genotype 514 trees from North America that 
were susceptible or resistant to the beech bark disease. After-
wards, a GWAS was conducted, in which SNPs were associ-
ated with disease scores. The authors also conducted linkage 
mapping in a full-sib family. Finally, four highly significant 
SNPs from a single gene were identified that were located on 
chromosome 5. Thus, a single locus with a major effect was 
identified that contributed to resistance against beech bark 

disease (Ćalić et al. 2017). Also, genome-wide genetic markers 
obtained by GBS can be employed in GWAS studies. Parch-
man et al. (2012) were one of the first to apply this method in 
natural populations of lodgepole pine and could identify loci 
significantly associated with fire adaptive traits. Using only 
11 loci, they could explain 50% of the phenotypic variation 
in serotiny. Pooling individuals in groups for whole genome 
sequencing can lower the sequencing costs. This approach was 
adopted by Stocks et al. (2019) to identify loci significantly 
associated with the susceptibility of common ash trees to ash 
dieback caused by the invasive pathogen H. fraxineus. They 
pooled all healthy and all diseased common ash trees from 
each population origin in separate sequencing pools, by that 
obtaining allele frequencies for genome-wide genetic mark-
ers per population and susceptibility group. Subsequently, a 
GWAS identified 3149 SNPs significantly associated with ash 
dieback susceptibility, revealing a highly polygenic trait.

New genome-editing techniques, especially the CRISPR/
Cas9 system, are promising methods to investigate and alter 
gene functions in tree species (Cao et al. 2022). CRISPR/
Cas9 has been used to knockout (KO) target genes in poplar 
and led to a better understanding of traits such as bud out-
growth, secondary cell wall formation, or sex determination 
(Bruegmann et al. 2019; Muhr et al. 2018; Müller et al. 
2020b; Takata et al. 2019). In the future, this method may 
become a valuable tool to confirm candidate gene functions 
revealed by population genetic methods such as GWAS 
(Fernandez i Marti and Dodd 2018).

Fungal communities associated with trees

Fungal guilds living in interactions with trees

Saprotrophs, symbionts, pathogens, and endophytes (Fig. 1; 
Box 2) are on a functional scale and based on resource use 
differentiated into distinct main ecological guilds, here i.e. 
groups of fungal species that exploit the same resources or 
different resources in a related manner (Adnan et al. 2022; 
Langer et al. 2021; Nguyen et al. 2016b; Talbot et al. 2015; 
Weißbecker et al. 2018; Zanne et al. 2020). Newly emerging 
as other guilds of ecological relevance are distinct spatially 
distributed communities of fungal epiphytes sitting on aerial 
surfaces of plant organs, e.g. on the phylloplane of leaves 
(Bahram et al. 2022; Ding et al. 2022a; Fonseca et al. 2022; 
Gomes et al. 2018; Howe et al. 2016; Liber et al. 2022; Sun 
et al. 2021; Vacher et al. 2016), on surfaces of flowers (antho-
sphere) and fruits (carposphere; Bill et al. 2022) or on the bark 
of stems (caulosphere; Cook et al. 2022), with potential func-
tions such as of host defense on the tree or advanced inocu-
lation of plant litter for decay directly when fallen (Box 2). 
Without these various possible microbial confrontations, trees 
will suffer in different ways.
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Box 2 Fungal lifestyles in ecological relation to trees and forests

vegetation, with soil properties and (bio)chemistry, and also 
by climate parameters (Prescott and Vesterdal 2021; Veldkamp 
et al. 2020). What is more, coarse wooden material degradation 
will prepare fermented porous-structured moisture-retaining 
nutritious grounds for better germination and rooting of seed-
lings and anchorage of developing trees (Fukasawa et al. 2017, 
2020; Stroheker et al. 2018) and provides also habitat for sap-
roxylic communities (Fukasawa 2021). Seed beds of decaying 
logs or stumps may harbor less fungal seed pathogens and they 
can provide favoring associations of  N2-fixing bacteria with 
specific selections of mycorrhiza-promoting fungi (Huusko 
et al. 2015; Izumi et al. 2006; Tedersoo et al. 2008; Willis and 
Walters 2018). Saprotrophs are mostly generalists with regard 
to substrates, although fungal species heterogeneity exists, e.g. 
in the decay of softwood and hardwood and in wood decompo-
sition efficiencies due to specialization of fungal communities, 
which are characteristically adapted through the plant commu-
nity above them (Awad et al. 2019; Chaithaisong et al. 2022; 
Kües et al. in prep.; Prescott and Grayston 2013; Purahong et al. 
2018, 2019; Tedersoo et al. 2014; Yang et al. 2021).

On the contrary, mycorrhizal fungi and pathogenic fungi are 
nutritionally dependent, to varying degrees, on the specific nar-
rower or broader ranges of their living sessile tree hosts and their 
photosynthetic products (van der Linde et al. 2018; Weißbecker 

Lifestyle Description

Saprotroph A heterotrophic organism that feeds on the extracellular (enzymatic) decomposition of dead organic matter to 
obtain energy, carbon, and nutrients for growth and development by absorbing the nutrients released from 
the decaying material

Of particular ecological significance in forest ecosystems are plant-litter-degrading fungi and wood decay 
fungi that act in nutrient cycling

Symbiont An organism that lives in a mutual relationship with another living organism for the benefit of both
Of imminent significance for trees are mycorrhizal fungi that in association with roots help the plant host in 

nutrition, may protect against abiotic and biotic stresses, and may also influence positively the host soil biol-
ogy and chemistry

Other fungal symbionts emerge from the endophyte concept living biotrophic in distinct alive plant organs, 
for instance in tree leaves, with novel supportive roles for the host, e.g. help to withstand biotic and abiotic 
stresses

Pathogen Any organism that causes a type of disease to a host
Biotroph living without killing the infested host tissue is distinguished from hemi-biotroph with an initial 

biotrophic phase followed by the killing of infested host tissue for consumption and from necrotroph where 
the pathogen kills and lives from the killed tissues of the host

Any organ of a tree may be negatively affected by a wealth of possible fungal diseases
Endophyte An organism that lives neutrally inter- or intracellularly (endobiotic) within a plant and is nourished by its 

host without causing any overt disease or reduction in the hos'´s fitness
Any organ of a tree may be populated by fungal endophytes
From an ecological perspective, an endophyte is however unlikely to be entirely neutral, but may live symbi-

otically in unrecognized mutualistic interactions with its host, or perhaps as a commensal gaining food and 
water as uncompensated service from the host, or be subtle pathogenic by weakening the host through tak-
ing energy and nutrients while environmental stress signals may render the lifestyle to obvious pathogenic 
with clear symptoms of disease

Epiphyte An organism that grows on the surface of a plant and derives its moisture and nutrients from the air
Fungi transported e.g. by insect vectors or from the aeromycota to phyllospheres shape host-, organ- and 

vertical-stratification-specific but yet little-analyzed communities on the aerial surfaces of tree organs

Saprotrophs of recalcitrant dead organic material (mostly 
kinds of above and belowground plant litter and deadwood, 
each with its own shaped sets of fungal communities; Fig. 1) 
will ensure humus generation and, of imminent importance 
for the trees, the recycling of bound organic carbon and fur-
ther elements needed for new plant growth (Adnan et al. 2022; 
Bödeker et al. 2016; Floudas et al. 2012, 2020; Kües et al. in 
prep.). Dead plant litter is complex and diverse in composition, 
context-dependent by habitat and plant source. In forests, plant 
litter comes in large parts from leaves, needles, twigs, bark, 
wood chips, fine roots, fruits, or also seeds as dying or dead 
debris of trees with different degrees of lignification, make-
up of antimicrobial compounds and water activity  (aw) values 
(Argiroff et al. 2023; Chomel et al. 2016; Freschet et al. 2013; 
Lonsdale 1988; Ochoa-Hueso et al. 2019). Aboveground litter 
decomposition and progressive humus generation on the soil 
surface (Horizon O; Fig. 1) and belowground more stable soil 
organic matter (SOM) formation with C and N in mineral soil 
(Horizon A, Horizon B; Fig. 1) involve complex interplays of 
changing microbial communities (fungi, bacteria, and others; 
Bai et al. 2021; Kües et al. in prep.) and detritivorous soil meso- 
and macrofauna with multiple pathways of turnover and accu-
mulations of intermediate microbial and faunal transformation 
products, which is further influenced in interactions with the 
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et al. 2018). Tree species in boreal, temperate, and Mediter-
ranean zones with colder and dryer climates and trees at higher 
latitudes undergo mutualistic interactions most often with ecto-
mycorrhizal (ECM) species, either ascomycetes or most often 
basidiomycetes. In warm humid aseasonal climates, arbuscular 
endomycorrhiza of Glomeromycota dominates on trees (Adnan 
et al. 2022; Soudzilovskaia et al. 2019; Steidinger et al. 2019). 
Mycorrhizal fungi will exist both in soil and in planta, with pos-
sible residual capabilities of saprotrophic decomposition of plant 
litter. They help to provide the trees with water and nutrients, 
especially N and P, through mycorrhizae formed with host roots 
and receive mutual nourishment (symbiotrophy) organic carbon 
resulting from photosynthates (Fig. 1). Forest soils show a high 
degree of stratification (Fig. 1), with C:N ratios decreasing with 
increasing litter age and soil depth (Bai et al. 2021; Lindahl et al. 
2007) and changing fungal guilds of saprotrophic (SAP) fungi 
found typically more in the upper organic layers and, more or 
less spatially separated, ECM species underneath in the min-
eral soil layers (Khokon et al. 2021; Lindahl et al. 2007; Fig. 1). 
The different decomposing strategies of the fungi in the organic 
layer have further consequences, particularly for N retention in 
and stabilization of SOM (Baskaran et al. 2019; Boberg et al. 
2011, 2014; Hasby et al. 2021; Mrnka et al. 2009, 2020). It is 
noteworthy that the mycorrhizal fine roots are relatively short-
lived. Combinations of fungal ECM and saprotrophic fungi in 
the rhizosphere control the speed of decay of senescent absorp-
tive fine roots as a primary source of SOM (Angst et al. 2021; 
Argiroff et al. 2023; Jackson et al. 2017; Kües et al. in prep.). 
Mycorrhizae mediate resistance and defense reactions against 
belowground and aboveground biotic and abiotic threats and 
confer protection against soil pollution. By hyphal growth and 
mycelial networking in the soil, the fungal symbionts moreo-
ver promote particle aggregation in soil (Adnan et al. 2022; 
Dreischhoff et al. 2020; Genre et al. 2020; Leyval et al. 1997; 
Schützendübel and Polle 2002; Sivaprakasam Padmanaban et al. 
2022; van der Heijden et al. 2015). Habitually negatively per-
ceived due to the damages and losses they cause to individual 
trees, plantations, or forests, pathogens might live biotrophic on 
alive host cells or necrotrophic on host tissues killed by them 
(Fig. 1). However, microbial pathogens can positively assist eco-
system functioning in turnover of plant communities for renewal 
and keeping species balances, and they are key drivers of eco-
system’s biodiversity, much like animal tree consumers (Adnan 
et al. 2022; Gilbert 2002; Hawkins and Henkel 2011; Kües et al. 
in prep.; Schuldt et al. 2017; Zeilinger et al. 2015).

Fungal root (mycorrhizal or endophytic), leaf, and other 
symbionts can also drive plant community biodiversity, e.g., 
by strengthening their respective hosts (Rodriguez et al. 
2009; Zanne et al. 2020). Endophytes grow symptomless in 
plant tissues (Fig. 1), most often intercellularly or possibly 
also intracellularly, and maybe organ-specific or, as recently 
evidenced, also may grow throughout a tree (Küngas et al. 

2020; Rodriguez et al. 2009). As part of multifunctional 
changing lifestyles, many exist also widely distributed in 
soils as saprotrophs. Endophytes have emerging mutualistic 
roles in planta in host protection against pests and patho-
gens, e.g., by antagonistic bioactive secondary metabolite 
production, by mycoparasitism of adverse pathogens, and by 
occupying an in planta niche that becomes then unavailable 
for invasion of pathogens. Fungal endophytes may confer 
abiotic stress tolerance and some promote plant growth by 
plant hormone production (Adnan et al. 2022; Barge et al. 
2022; Eberl et al. 2019; Jia et al. 2020; Rabiey et al. 2019; 
Rodriguez et al. 2009; Zanne et al. 2020). Others are latent 
and turn as opportunists into a pathogenic lifestyle once host 
tissues become stressed or when they senesce (Hardoim 
et al. 2015; Rabiey et al. 2019) or they are latent decompos-
ers awaiting the host death as a resource for plant material 
consumption (Parfitt et al. 2010). In a broader interpretation 
of a lifestyle that has recently been termed viaphytism (Nel-
son et al. 2020), certain decomposing fungi can use as endo-
phytes organs of the plant host as a refuge to overcome peri-
ods of own environmental stress. For example, such species 
may exist as temporary foliar endophytes to then enhance 
their own spread by leaf and needle fall to the forest floor 
providing more versatile woody substrates to them for sapro-
trophic hyphal growth (Nelson et al. 2020; Vaz et al. 2020). 
Functions of still other endophytes remain elusive (Gehring 
et al. 2020; Rodriguez et al. 2009), or may they simply be 
commensals nurtured by a host without recognizable impacts 
on their feeder (Langer et al. 2021; Terhonen et al. 2019; 
Zanne et al. 2020)? In stricter definition, a "true endophyte" 
is thus a "commensal that does not decrease the fitness of its 
host and cannot switch to a different lifestyle". Some of them 
develop an obligatory interaction with the host, for instance, 
the sapwood ascomycete Xylona heveae with the rubber tree 
H. brasiliensis. Such strict endophyte can then depend under 
circumstances on horizontal transmission through flying 
insects as vectors (horizontally transmitted endophyte, HTE; 
Gazis et al. 2016). Leaves of woody plants can be especially 
heterogenous in assembling communities of many different 
HTEs, often with broad host-ranges. Foliar HTEs of woody 
plants are typically horizontally transmitted by wind, rain, 
or also vectoring animals, maybe from senescent tissues or 
dead fallen leaves after hyphal fragmentation or any type of 
aerial spore production (aeromycota; Fig. 1; Rodriguez et al. 
2009). Tree host genotypes and specific leaf traits (content 
of cell wall polysaccharides, flavonoids, terpenoids, also leaf 
nutrients, and leaf mass per area) act as non-random filters 
on HTE colonization by fungal taxa (González-Teuber et al. 
2020; Redondo et al. 2022). According to a GWAS study in 
spruce, genotypic QTL variation influenced dormant vegeta-
tive bud fungal endophytic phyllosphere and latent pathogen 
communities (Elfstrand et al. 2020).
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Fungal genomes and transcriptomes

Genomic techniques as explained above apply to trees as to 
their associated fungi, as isolated organisms or in interac-
tions (Nilsson et al. 2019; Stewart et al. 2018). With their 
much smaller genomes (usually somewhere between 20 and 
100 Mb; Mohanta and Bae 2015), the fungal genomes are 
however easier to address, with faster-accumulating infor-
mation. In the last decade, many fungal genomes were fully 
established in large-scale sequencing projects for deeper 
functional insight (many to be found on the MycoCosm 
portal of the Joint Genome Institute, JGI in Walnut Creek, 
California; https:// mycoc osm. jgi. doe. gov/ mycoc osm/ home; 
Grigoriev et al. 2014). Larger portions of fungal genes were 
initially expert-annotated, but later, under the support of also 
sequenced transcriptomes and with machine learning, the 
about 10,000 to > 20,000 protein-encoding genes per species 
became more and more reliably automatically annotated by 
gene prediction programs. With regards to trees, sequenced 
genomes were mostly of basidiomycetous wood decay fungi 
(e.g., Fernandez-Fueyo et al. 2012; Floudas et al. 2012; Hori 
et al. 2014; Levasseur et al. 2014; Martinez et al. 2004, 
2009), including some root and stem rotting pathogens 
(Akulova et al. 2020; Kües et al. 2015; Ohm et al. 2010; 
Olson et al. 2012). Genomes of some other types of asco- 
and basidiomycetous pathogens, such as some on leaves 
(Dhillon et al. 2015; Duplessis et al. 2011a; Zhu et al. 2012) 
and of wilt-, blight- and cancer-pathogens in bark and xylem 
are available, including those of several insect-associated 
fungal species (Alamouti et al. 2011; Comeau et al. 2015; 
Crouch et al. 2020; Demené et al. 2022; Dhillon et al. 2015; 
Ibarra Caballero et al. 2019; Sbaraini et al. 2017; Schuelke 
et al. 2017; Stauber et al. 2020; Stenlid et al. 2017; Yin et al. 
2015). There is also a growing collection of genomes of 
symbiotic ECM species (e.g., Kohler et al. 2015; Lofgren 
et al. 2021; Looney et al. 2022; Martin et al. 2008, 2010; 
Martino et al. 2018; Miyauchi et al. 2020b; Peter et al. 2016; 
Wagner et al. 2015), some ericoid mycorrhizal ascomycet-
ous fungi (Kohler et al. 2015; Martino et al. 2018; Perotto 
et al. 2018), an arbuscular mycorrhizal fungus from the 
conifer Cryptomeria japonica (Matsuda et al. 2021), and 
of a few tree endophytes (Gazis et al. 2016; Knapp et al. 
2018; Schlegel et al. 2016) while plant litter decay fungi 
and in general saprotrophic soil fungi have so far rather been 
neglected (Barbi et al. 2020).

RNA-seq of isolated transcriptomes and determination of 
proteomes support the identification of genetic functions of 
these fungi crucial for their interactions with host trees (see 
e.g., Chaudhary et al. 2020; Daguerre et al. 2017; Doré et al. 
2017; Duplessis et al. 2011b; Lorrain et al. 2018; Marqués-
Gálvez et al. 2021; Peter et al. 2016; Plett et al. 2014; Tis-
serant et al. 2011) and in complex organic substrate degrada-
tion (e.g., Alfaro et al. 2020; Arntzen et al. 2020; Barbi et al. 

2020; Janusz et al. 2018; Kuuskeri et al. 2016; Miyauchi et al. 
2020a; Zhang et al. 2019). In some instances, it is almost only 
RNA-seq that could reveal probable relevant differences by 
specific gene expression in saprotrophic, pathogenic, and endo-
phytic lifestyles between species with very similar genomes 
and alike gene reservoirs (Stenlid et al. 2017) or the spatio-
temporal changes in functions relevant e.g. in proceeding wood 
decay (Zhang et al. 2016, 2019). In a few fungal species with 
established transformation systems, functional gene analyses 
were further assisted through molecular techniques, such as 
RNAi gene silencing in the ectomycorrhizal Laccaria bicolor 
(Kang et al. 2020; Pellegrin et al. 2019; Zhang et al. 2022), 
Agrobacterium-mediated insertional mutagenesis in the ECM 
fungus Hebeloma cylindrosporum (Doré et al. 2014), and by 
knocking-out genes in the white rot Pleurotus ostreatus, also 
in combination with transcriptome sequencing for comparison 
with wildtype transcriptomes (Wu et al. 2020, 2021).

RNA-seq of mixed transcriptomes (dual RNA-seq) from 
organismal interactions uncovers also responses by the host 
to the colonizing fungi. Q. robur for example reacts differ-
entially on the distance to the three different ECM species 
L. bicolor, Paxillus involutus and Pisolithus microcarpus, 
but with a shared core transcriptional program of DEGs 
(differentially expressed genes) when in contact in roots 
colonized by either of the three symbiotic basidiomycetes. 
It suggests the presence of a common symbiosis pathway 
(CSP) in ectomycorrhiza in this oak (Bouffaud et al. 2020). 
In other work, long non-coding RNAs (lncRNAs) and 
non-coding microRNAs (miRNAs) of plant origin were 
detected by RNA-seq in M. larici-populina–infected poplar 
leaves, implicated in RNA-mediated mechanisms of host 
defense-related post-transcriptional gene regulation includ-
ing R genes encoding plant immune receptors (Chen and 
Cao 2015; Li et al. 2016; Wang et al. 2017). Different pop-
lar R genes providing resistance against rust were identified 
in the genome with the help of QTL mapping and by com-
parative transcriptomics of resistant and susceptible poplar 
genotypes. The QTL data and R allele structures are useful 
markers in resistant tree breeding (Nvsvrot et al. 2020; Wei 
et al. 2020). Most recently, cross-kingdom transfer of fun-
gal miRNAs into host cells from the ECM fungus P. micro-
carpus to Eucalyptus grandis was evidenced by small RNA 
(sRNA)-seq and fluorescence in situ hybridization (FISH) 
assays and shown to facilitate symbiosis by silencing genes 
for immune receptors in the root cells (Wong-Bajracharya 
et al. 2022).

Comparative genomics—between fungal species

Comparative studies of many annotated fungal genomes 
from different clades made it possible to better predict what 
constitutes the ecological role and lifestyle of a fungus. 
Thereby, characteristic gene gains, gene family expansions, 
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and gene losses became evident and positive correlations of 
genes and functions to lifestyles can be found (e.g., Floudas 
et al. 2012, 2015; Gazis et al. 2016; Hage et al. 2021; Hage 
and Rosso 2021; Haridas et al. 2020; Kohler et al. 2015; 
Ruiz-Dueñas et al. 2021; Zanne et al. 2020). Accordingly, 
the significant presence and absence of particularly impor-
tant gene families involved in the degradation of plant cell 
wall polymers are recorded in the CAZy database (http:// 
www. cazy. org) of carbohydrate-active and auxiliary activ-
ity enzymes (for deeper insight into enzymatic fungal decay 
mechanisms and what is learned by comparative genom-
ics see Kües et al. in prep.). Plant cell walls protected by 
lignin incorporation are especially difficult to degrade 
which became only efficiently possible when 295–300 mil-
lion years ago basidiomycetous fungi acquired the genetic 
information for aggressive enzymes in lignin degradation 
(Floudas et al. 2012). For fungi living in mutualistic rela-
tionships with trees, such enzymes could be a functional 
burden for their particular lifestyles as plant cell walls need 
to remain functionally intact for plant cell survival, organ-
ismal contact, communication, and mutual nutrition (Bal-
estrini and Bonfante 2014). Comparative genomics indeed 
revealed substantial losses of families of genes central to 
the enzymatic wood degradation system as recurring evo-
lutionary adaptations in mycorrhizal species of different 
taxonomic lineages (Hess et al. 2018; Kohler et al. 2015; 
Looney et al. 2022; Martin et al. 2008, 2016; Miyauchi et al. 
2020b; Romero-Olivares et al. 2021). Though, the loss of 
key cell wall decomposing enzymes from saprotrophic fun-
gal ancestors may not be enough to enable symbiosis. In the 
genus Amanita, for instance, this loss is common between 
symbiotic and asymbiotic saprotrophic species. Mycorrhizal 
Amanita species however share ancestral genetic expansions 
enriched for regulatory functions and oxidative metabolism. 
These then diverged by later lineage-specific expansions 
of genes implicated in transport, sugar metabolism, terpe-
noid metabolism, and further oxidative functions probably 
employed in defense reactions (Hess et al. 2018). Changes 
in genome structure resulting from the loss of certain sets 
of genes responsible for the breakdown of plant cell walls, 
combined with lineage-specific expansions of other genes 
beneficial for establishing symbiosis, were also found in the 
evolution of Russulaceae and are considered fundamental 
processes in the development of ECM and its functional 
diversification within the ecological guild (Looney et al. 
2018, 2022).

Despite the of loss of genes for key cell wall decompos-
ing enzymes, there is still a functional fine-tuned attack of 
selective host cell wall polymers by specific enzymes in 
first host tissue colonization, which is in principle common 
with other fungal guilds of plant colonizing species, such 
as endophytes, biotrophic pathogens and hemi-biotrophic 
species in their growth phase with living plant cells before 

they enter their necrotrophic phase (Anasontzis et al. 2019; 
Bellincampi et al. 2014). Genome comparisons between 
different types of ascomycetous plant pathogens revealed 
that biotrophs have a lower number of genes for plant cell 
wall degrading than hemi-biotrophs and necrotrophs, as 
one possible adaptation to living in physiologically active 
plant tissues (Wang et al. 2022). Interactions with plant cell 
walls and plant cell wall degradation abilities of different 
fungal guilds are certainly the most important topic in the 
ecology of all kinds of tree-associated fungi. For reasons of 
space, this crucial matter is presented and discussed in more 
specific detail in the complementary article to this review 
paper (Kües et al. in prep.). In this paper, we concentrate 
predominantly on other genetic traits that determine func-
tional lifestyles in terms of ecology and biodiversity of tree-
associated fungi.

Comparative genomics for instance showed that patho-
gens may carry unique secondary metabolite (SM) biosyn-
thesis gene clusters (BGCs) for toxins potentially effective 
on their specific plant hosts, such as on infected tissues of 
trees. Dutch elm disease (DED) Ophiostoma species possess 
for example a fujikurin-like BGC with a PKS (polyketide 
synthase) core gene, in contrast to the conifer sap-staining 
Ophiostoma picea and non-pathogenic members of the 
Ophiostomataceae family, but similar to some individual 
plant pathogens from other ascomycetous clades. The dis-
tribution independent of phylogeny suggests acquisition 
of the BGC by horizontal gene transfer (HGT) (Sbaraini 
et al. 2017). Likely also obtained by HGT, the poplar canker 
pathogen Mycosphaerella populorum expresses a chaetoglo-
bosin-like BGC during growth on poplar wood (Dhillon 
et al. 2015). Wang et al. (2022) reported from comparative 
genomics a correlation with increasing numbers of gene SM 
clusters from biotrophic to hemi-biotrophic and necrotrophic 
pathogens. Typical for many ascomycetous plant pathogens, 
the North-American lethal laurel wilt Raffaelea lauricola 
and the Eucalyptus leaf blight pathogen Calonectria pseu-
doreteaudii have greatly increased numbers of distinctive 
BGCs as compared to the non-pathogenic Raffaelea agua-
cate and average levels generally found in ascomycetes (Ye 
et al. 2018; Zhang et al. 2020). On the other hand, the emerg-
ing beetle (Pityophthorus juglandis)-associated aggressive 
walnut pathogen Geosmithia morbida in the USA has a 
comparably small genome and, in contrast, less BGCs than 
non-pathogenic relatives. However, comparative bioinfor-
matics evaluation of adaptive evolution in codon use (dN/
dS = ratio of nucleotide non-synonymous substitutions per 
non-synomymous site/number of synonymous substitutions 
per synonymous site) revealed the low number of 38 genes 
with yet unclear functions being under positive selection 
in pathogenicity (Schuelke et al. 2017). Besides, increased 
numbers of BGCs can also be present in lines of ECM spe-
cies. A significantly higher abundance of terpene SM gene 
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clusters (23 ± 1.5) in the ECM genus Suillus has been con-
nected as a functional option to host-fungal communication 
and probably host specificity (Lofgren et al. 2021), because 
volatile ECM-derived sesquiterpenes are associated with 
lateral root development in mycorrhization (Ditengou et al. 
2015; Kües et al. 2018).

In the Cryphonectriaeae family, BGCs in Cryphonectria 
species are considerably lower in numbers than in different 
Chrysoporthe bark pathogens that affect Eucalyptus spp. and 
other Myrtales. BGCs with their core genes are much alike 
across pathogenic and non-pathogenic Cryphonectria sister 
species, indicating that the presence of BGCs alone makes 
the chestnut blight C. parasitica not yet an aggressive patho-
gen (Stauber et al. 2020). Coinciding, potential toxins of C. 
parasitica as much as tested (diaporthin, orthosporin, cryph-
onectric acid, anthraquinones) are not conclusively operative 
in fungal virulence against chestnut, or they may be toxins 
against other micobes (Lovat and Donnelly 2019). Compara-
tive genome analyses of the ash-dieback pathogen H. frax-
ineus and its non-pathogenic sister species Hymenoscyphus 
albidus identified a single H. fraxineus–specific BGC, which 
is the hymenosetin biosynthesis gene cluster hym (Elfstrand 
et al. 2021). Hymenosetin is a 3-decalinoyltetramic acid that 
reacted antimicrobial against Gram-positive bacteria, fila-
mentous fungi, and a few yeasts, but it was not phytotoxic 
in laboratory ash tissue bioassays, in contrast to the steroid 
viridiol (Cleary et al. 2014; Halecker et al. 2014) from a 
BGC (vir) conserved between the two fungi (Elfstrand et al. 
2021). Viridol is produced by both species but at necrotic 
sub-effective concentrations (Junker et al. 2014). Compara-
tive genome analyses detected between H. fraxineus and H. 
albidus strong genomic synteny and few genes with posi-
tive selection in H. fraxineus, mostly restricted to BGCs 
and putative vegetative incompatibility genes (vic genes, 
alternatively named het genes) for HET-homolog proteins 
mediating nonself allorecognition (heterokaryon incompat-
ibility). Antibiosis as an adaptive advantage of specific SMs 
to combat other microbes in the fungal niches is discussed 
(Elfstrand et al. 2021).

Comparative genomics—within fungal species

On smaller organismal scales within the same or closely 
related species, genomic comparisons on the whole sequence 
level and by deduced molecular markers can reveal impor-
tant effects and consequences of reproduction modes on 
gene flow, fungal lifestyle specializations, host shifts, and 
co-evolution with hosts (Coetzee et al. 2020; Gladieux et al. 
2014). Severe invasive pathogens with a change of host often 
spread clonally. This is documented e.g. with RAPD and 
PCR–RFLP markers for DEDs of North American and Eura-
sian origin (Brasier and Kirk 2010; Katanić et al. 2020), 

and with microsatellites for American and European lines 
of the chestnut blight fungus C. parasitica. The latter fungus 
originated initially from East Asia with native co-evolved 
tolerant chestnut species (e.g., Japanese Castanea crenata 
and Chinese C. mollissima) and has from there and from 
North America repeatedly been introduced into Europe as 
a severe disease on the European C. sativa (Demené et al. 
2019; Dutech et al. 2010; Kubisiak et al. 2007; Lovat and 
Donnelly 2019; Milgroom et al. 2008).

Marker analyses can furthermore detect hybridization 
events across existing genetic incompatibility and mating 
barriers between species, subspecies, and clones, with pos-
sible relevance for virulence and selection pressure on sex-
ual reproduction employing alternate mating types. Three 
invasive DED lineages (first Ophiostoma ulmi from Asia 
around 1900, then the Asian O. novo-ulmi subsp. novo-ulmi 
with a spread in Europe from East to West between 1940 to 
1970, and afterwards subsp. americana from the mid-1950s 
to the 1970s from West to East) with permeable genetic 
barriers are documented in two devastating pandemics in 
Europe, with replacements of O. ulmi more lately by the 
more aggressive O. novo-ulmi subspecies and fundamen-
tal changes in genetic population structures within invad-
ers (Brasier et al. 2021). Natural DNA introgressions from 
species O. ulmi to O. novo-ulmi and between O. novo-ulmi 
subspecies around pathogenicity and mating type (MAT) loci 
with impact on fitness have been demonstrated by whole 
genome analyses to be main drivers of genomic diversity (Et-
Touil et al. 1999, 2019; Hessenauer et al. 2020). The alter-
nate MAT-1 allele was transferred in Europe from O. ulmi 
to O. novo-ulmi which existed first only as MAT-2 (Paoletti 
et al. 2006). By now, MAT-1 allel frequencies in O. novo-
ulmi subsp. americana populations in Europe increased up 
to 32 and 43% and vic loci introgressed from resident O. 
ulmi are now nearly randomly distributed in the sexually out-
crossing hybrid populations (Brasier et al. 2021). Directional 
selection in the current post-epidemic phase in Europe is on 
higher growth rates and increased aggressiveness (Brasier 
et al. 2021; Brasier and Webber 2019).

As a second example, alternate mating type distributions 
and vegetative incompatibility tests together with SNPs 
revealed that the heterothallic ascomycete H. fraxineus 
reproduces sexually with high gene flow in its rapid spread 
across Europe, with degrees of genetic diversity on local 
spatial scales reflecting differences in the timing of arrival 
(Gross et al. 2012, 2014; McMullan et al. 2018; Nguyen 
et al. 2016a; Orton et al. 2018). A bimodal distribution of 
CEG (core eukaryotic gene) sequences into two haplotypes 
deduced from sequenced genomes support the foundation of 
the European pathogen population by only two genetically 
divergent individuals (McMullan et al. 2018). H. fraxineus is 
asymptomatic with significantly higher genetic diversity on 
Fraxinus mandshurica in its native Asian environment in Far 
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East Russia and Japan (Cleary et al. 2016; McMullan et al. 
2018; Zhao et al. 2012). By fecundant production of recom-
binant offspring under favorable environmental conditions, 
the two pathogenic haplotypes that invaded Western coun-
tries with a host change to F. excelsior can and did easily 
outcompete the native homothallic European ash endophyte 
H. albidus which is less-reproductive by the haploid selfing 
(Hietala et al. 2018). The native selfing species H. albidus is 
considered a probable evolutionary dead-end by comparably 
higher genomic DNA erosion levels, through less efficacious 
meiotic purifying selection of deleterious mutations and a 
significant influence of a genomic accumulation of transpos-
able elements (TEs). The invasive H. fraxineus is even richer 
in TEs by an additional 13 Mb of genomic DNA but appears 
to be more effective in repeat-induced point mutations (RIP) 
as a fungal defence mechanism in inactivating multiplied 
TE families (Elfstrand et al. 2021). Regarding the further 
evolution of the sexually successful H. fraxineus, there is 
the paramount danger of unforeseen migration of further 
alleles of almost all genes of the species from the large Asian 
gene pools into Europe (Cleary et al. 2016; McMullan et al. 
2018).

Whole genome sequencing of individuals of C. para-
sitica discovered signatures of restricted recent gene flow 
in main clonal lineages in France and one specific lineage 
with strong recombination, suggesting potential changes in 
the mode of reproduction from asexual to sexual (Demené 
et al. 2019). Allelic diversity of PCR-amplicons of vic loci 
and a low multilocus linkage disequilibrium suggested the 
same in Croatia (Mlinarec et al. 2018). Though, there can 
also be a fitness advantage of asexual reproduction for the 
expansion of highly adaptive lineages. The MAT-1 allele 
dominates in southeastern European populations by the 
very aggressive and successful clonal S12 line of mainly 
North American genetic origin, with a frequent and ongoing 
admixture in European populations. Deep genotype sam-
pling and sequencing revealed that the dominant S12 clone 
arose likely under loss of the MAT-2 mating type as a highly 
adapted expansive secondary bridgehead invasion from 
a mixed mating type population in southern Switzerland, 
northern Italy, or the northern Balkans. Ongoing TE activi-
ties are seen in insertion polymorphisms as a high degree 
of genetic differentiation within the invasive European S12 
lineages (Stauber et al. 2021). However, the overall TE con-
tent (ca. 10% of the genomes; mostly Gypsy family TEs) and 
RIP frequency in a North American C. parasitica reference 
strain and a native Japanese strain are comparable (Demené 
et al. 2022). Moreover, there is only poor association in this 
species between TEs and genes with possible functions in 
pathogenesis (Demené et al. 2022; Stauber et al. 2021). 
However, kingdom-wide inventories observed higher TE-
insertions in genes of plant pathogens and of animal-related 
fungi than in species of other fungal lifestyles, implying that 

TE-interlinked rapidly evolving genomic compartments may 
shape key adaptations in pathogen evolution, e.g. by mediat-
ing possible accumulation in the regions of effector genes 
for host manipulation (Muszewska et al. 2019; Torres et al. 
2020). Meanwhile, the example of C. parasitica shows that 
suchlike derived rules are not necessarily consistently uni-
form across species and situations, much like other genetic 
traits observed as more typical adaptations in particular life-
styles (for other prominent features see below). Regarding 
ECM, species of the Russulaceae for example are charac-
terized by an expansion of genome size through increased 
TE content, dense aggregations of TEs, an association of 
genes for small secreted proteins (SSPs) with TE "nests", a 
reduction in SM gene clusters, and loss of genes for plant 
cell wall-degrading enzymes (PCWDEs). Some features 
are shared with the saprotrophic sister species Gloeopeni-
ophorella convolvens, i.e., TE expansion, reduction in SM 
gene clusters, and loss of some PCWDEs (Looney et al. 
2022). As mentioned already above, typical basidiomycete 
ECM species arose polyphyletically in evolution through 
corresponding gene losses from saprotrophic white rot fungi, 
which enzymatically can decay recalcitrant lignocellulosic 
wood (Floudas et al. 2012; Kohler et al. 2015; further read-
ing in Kües et al. (in prep.)). Accelerated genome evolution 
using TEs, for example, can apparently prime an evolution-
ary switch in fungal lifestyles (Looney et al. 2022).

Comparative genomics of sufficient numbers of isolates 
allows experimental access to a breakdown of host resist-
ances as a further target, even to critical single gene muta-
tion events. To get insight into Rmlp7 resistance breakup in 
poplar, an initial GWAS thus considered the virulence of 76 
re-sequenced isolates of Melampsora poplar leaf rust as phe-
notype and the genotypes as alleles and identified SNPs sig-
nificantly associated with virulence. Several genome scans 
and selective sweep detection methods computed allele fre-
quencies and pointed to a single rust avirulence candidate 
gene for a unique Melampsora SSP of 219 amino acids of 
unknown function. A non-synonymous substitution (G81S) 
in the effective allele overcame the poplar Rmlp7 resistance 
(Persoons et al. 2022).

Small secreted proteins and their functions

An important step for all in planta-living fungi is the inva-
sion into the host tissues, regardless of whether symbi-
otic, pathogenic, or endophytic. Particular attention in 
genome comparisons is thus paid to definitions of the fun-
gal secretomes, i.e., the complete assemblies of expressed 
secreted proteins, with expected functions for infestation, 
such as host attack, fungal defense including detoxification 
of phytoalexins, communication with the specific hosts, 
and nutrition of the intruder (de Queiroz and Santana 2020; 
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Zeilinger et al. 2015). Interesting genes of large families 
of often lineage-specific and rapidly evolving SSPs (< 300 
amino acids, with an N-terminal secretion signal) were 
observed in genomes of ECM fungi localized in repeat-rich 
genome islands (de Freitas Pereira et al. 2018; Doré et al. 
2017; Hess et al. 2018; Lofgren et al. 2021; Martin et al. 
2008), as well as in genomes of endophytes (Knapp et al. 
2018) and pathogens (Denton-Giles et al. 2020; Duplessis 
et al. 2011a; Muszewska et al. 2019).

RNAi gene silencing revealed the first mycorrhiza-
induced SSPs (MiSSPs) to encode essential secreted effec-
tor proteins for the root mycorrhization process of L. bicolor 
and its interactive communication with the poplar hosts in 
their extracellular space (apoplast) or after translocation 
inside of host cells. LbMiSSP8 displays a C-terminal repeti-
tive DW[K/R]R motif containing a KEX2 protease cleav-
age site and resulting peptides have a proposed function in 
hyphal aggregation in outer ECM mantle and apoplastic 
Hartig-net formation. LbMiSSP7 interacts with intracellu-
lar host Trihelix transcription factors in the regulation of 
jasmonic acid-signaling (Daguerre et al. 2020; Kang et al. 
2020; Pellegrin et al. 2019; Plett et al. 2014). The Pisolithus 
albus PaMiSSP10b protein is secreted during root coloni-
zation and enters host cells. When expressed in transgenic 
E. grandis, it altered the host polyamine biosynthesis and 
prepared for mycorrhization via interaction with a host aden-
osyl-methionine decarboxylase (Plett et al. 2021).

From the arsenal of SSPs in Melampsora poplar leaf 
rusts, some candidate genes were cloned heterologously 
into herbal plants (Arabidopsis thaliana, Nicotiana bentha-
miana) and found to suppress plant immunity (Madina et al. 
2020; Petre et al. 2015) and to reduce callose deposition 
at host plasmodesmata with an increase in plasmodesmatal 
fluxes (Rahman et al. 2021). Several cloned SSP genes from 
different Heterobasidion conifer root and stem rot patho-
gens induced necrotic responses in transient N. benthami-
ana transformants (Raffaello and Asiegbu 2017; Wen et al. 
2019). Recombinantly produced Ciborinia camelliae-like 
SSPs (CCL-SSPs) from different necrotrophic Sclerotini-
aceae induced necrosis in tested Camellia petals when com-
ing from broad host range pathogens with only one CCL-SSP 
gene (i.e. Botryotinia fuckeliana, Sclerotium sclerotium). 
On the contrary, no or hardly any necrosis was seen for 10 
other CCL-SSP genes that originated from the specialized 
Camellia flower pathogen C. camelliae which has a unique 
high number of a total of 73 CCL-SSP genes. KO mutants 
demonstrated that, despite functioning in the induction of 
necrosis, at least in B. fuckeliana the gene is not essential 
for full virulence (Denton-Giles et al. 2020).

Plant cell death was promoted in treatments of Nicotiana 
tabacum with a recombinantly produced Heterobasidion 
cerato-platanin (CP)–like SSP (Chen et al. 2015). A CP-like 
protein was one of only two highly expressed SSPs in the 

phloem of 2-year-old F. excelsior seedlings infested by the 
invasive H. fraxineus, by which it differed from the related 
native European ash endophyte H. albidus that expressed 
none (Stenlid et al. 2017). Considered pathogen-associated 
molecular patterns (PAMPs) or microbe-associated molecu-
lar patterns (MAMPs), the fungal-specific CP-like family of 
phytotoxic proteins is a stimulator of plant defense responses 
in colonization by pathogenic and beneficial fungi. Broadly 
distributed also in other guilds in the Dikarya, CP-like pro-
teins can self-assemble into films on hydrophobic/hydro-
philic interfaces, bind to chitin and N-acetylglucosamine 
oligosaccharides and exert also functions in fungal cell walls 
in growth and development (Gaderer et al. 2014; Luti et al. 
2020), including fruiting body production (Almási et al. 
2019; Krizsán et al. 2019).

Cysteine-rich hydrophobins as another common family of 
fungal-specific SSPs have highly diverged sequences and evolved 
in two distinct classes to cover aerial hydrophilic hyphal surfaces 
as an insoluble self-assembled amphipathic amyloid monolayer, 
rendering them hydrophobic. They control surface recogni-
tion and line air channels in complex tissues for gas exchange 
(Wessels 2000; Wösten and Wessels 1997). Encoded in lineage-
increased gene families, specific gene copies were found differ-
entially expressed in ECM species during the mycorrhization 
stage in the outer fungal mantle around and in the Hartig' net in 
plant roots, and in a preferred host more than in a less favored 
one (Plett et al. 2012; Rineau et al. 2017; Sammer et al. 2016). 
Hydrophobin genes exist also in species of other fungal guilds, 
often also in high gene numbers, but not always (Mgbeahuruike 
et al. 2013; Ohm et al. 2010; Plett et al. 2012; Stajich et al. 2010). 
Class I hydrophobins expressed in mycorrhizal interactions have 
significantly higher proportions in the N-terminus of exposed 
hydrophilic amino acids for interactions with fungal polysaccha-
rides. This led to speculations about a stronger attachment of the 
amphiphilic proteins to the fungal polysaccharides in the mycor-
rhizal tissues compared to free-living mycelium (Rineau et al. 
2017). In the chestnut blight C. parasitica, a class II hydrophobin 
named cryparin is required for the eruption of stromal pustules 
from under the host periderm for spore release while it is dispen-
sable for host infection as shown by KO mutants (Kazmierczak 
et al. 2005; Lovat and Donnelly 2019; Table 2). Cryparin has a 
unique GS/T-rich N-terminus (36% hydrophilic amino acids) and 
is unusual in that it attaches to fungal hyphae in liquid presum-
ably by lectin reactions (McCabe and Van Alfen 1999). Among 
changes in hundreds of other DEGs, cryparin expression is down-
regulated by the single-stranded RNA Cryphonectria hypervirus 
1 (CHV1) infection (Chun et al. 2020) which in viral disease 
reduces the pathogenic potential (hypovirulence), concomi-
tantly with fungal yellow-orange pigmentation and sporulation 
in wounds of trees, by altering gene expression patterns of its 
fungal host. Therefore, CHV1 is used as a natural sustainable 
biocontrol agent to protect chestnuts (Eusebio-Cope et al. 2015; 
Rigling and Prospero 2018; Stauber et al. 2022).
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As another notable example, a family of three SSPs 
(Ssp1, Ssp2, Ssp3) is induced by the toxic aryl-alcohol 
5-hydroxymethylfurfural (HMF) in the saprotrophic white 
rot P. ostreatus as regulators of the ligninolytic enzymatic 
system (in particular of secreted versatile peroxidase, extra-
cellular aryl-alcohol oxidases, and intracellular aryl-alcohol 
dehydrogenases; Kües et al. in prep.). In response to envi-
ronmental cues, they define the transition of the trophophase 
(growth phase) to the idiophase (stationary phase with 
secondary metabolite production) with a change of fungal 
primary to secondary metabolism (Feldman et al. 2017, 
2019). Related SSPs occur widely distributed in litter- and 
wood-decaying and in mutualistic fungi, irrespectively of 
affiliation to specific fungal guilds (Feldman et al. 2020). 
Thaumatin-like (TLP) proteins and cupredoxins are other 
frequently observed fungal SSPs, expressed e.g. by many 
Polyporales during wood decay (Hage et al. 2021). Individu-
als of these may have β-1,3-glucanase activity as deduced 
from N-terminal sequences of the white-rot Irpex lacteus 
JGI ID1593168 from the TLP-F subfamily (Grenier et al. 
2000) with 68/80% identity/similarity to glucanase TLG1 
of the cultivated wood-inhabiting mushroom Lentinula 
edodes (Sakamoto et al. 2006). Others possibly act in cop-
per homeostasis functions in fungal cell wall remodeling 
(Almási et al. 2019; Hage et al. 2021), or may show strong 
 Fe2+ binding with  Fe3+-reducing and hydroxyl-radical pro-
ducing activities, maybe for lignin degradation (glycopro-
teins Glp1 and Glp2 of the wood degrader Phanerochaete 
chrysosporium belonging to the TLP-P subfamily; Tanaka 
et al. 2007). TLPs exist and are expressed also in plants 
as widely distributed pathogenesis-related proteins (PR-5 
family of defense proteins). In Pinus sylvestris, resistance-
related jasmonate-induced expression of its antifungal TLPs 
helps thus against infections of the root and stem pathogen 
Heterobasidion annosum (Šņepste et al. 2018). A TLP gene 
was identified in a GWAS as one hub gene of importance for 
pine tree breeding (Ding et al. 2022b). The antifungal activ-
ity of Picea TLPs is based on glucanase activity on fungal 
hyphal cell walls (Liu et al. 2021, 2022).

According to the above, the presence of genes for SSPs 
per se does not indicate effector functions in interactions 
and communication between fungi and living plants (Kim 
et al. 2016b). Indeed, also saprotrophic wood decay spe-
cies can have numerous species-unique SSP genes (Hage 
et al. 2021). An overall high number of SSP genes is also 
not pivotal for successful host interaction. The ECM fun-
gus Amanita polypyramis had the lowest number of SSP 
genes (86) compared to others (217, 282) in the genus, 
while most symbiosis-induced SSPs in Amanita muscaria 
(15/19) had no homologs in asymbiotic species (Hess et al. 
2018). The chestnut pathogen C. parasitica has signifi-
cantly less SSP genes than related saprotrophic ascomycetes 
of the same genus. When entering additional features, the 

machine-learning classifier EffectorP 2.0 software however 
discriminated among the fungi in C. parasitica the highest 
number of SSPs which were predicted to function effector-
like in planta (Stauber et al. 2020). Effector-like SSPs are 
those SSPs that are transferred from an organism into the 
apoplast, the cytoplasm, or the nucleus of a host and there 
provoke and manipulate reactions in the host, including the 
plant immune system. Some others act as host-specific tox-
ins which are usually expressed by necrotrophs (Lo Presti 
et al. 2015; see above). Overall, pathogens mostly tend to 
have a higher number and more diverse candidate effector-
like SSPs than symbionts, these more than saprotrophs, and 
biotrophic more than necrotrophic pathogens (Kim et al. 
2016b; Sperschneider et al. 2018) but, possibly depending 
on relationships of selected species, there are also reports 
with observations to the opposite (Wang et al. 2022). A 
recent software update of the machine-learning classifier 
to EffectorP 3.0 now distinguishes between apoplastic and 
cytoplasmic effectors and predicts biotrophs to have higher 
numbers of cytoplasmic effectors (Sperschneider and Dodds 
2022). Also of significance, a tree host possesses gene fami-
lies for its own effector-like SSPs which in turn can enter and 
manipulate the growth and morphology of fungal hyphae, 
such as P. trichocarpa SSPs hyphal growth and morphology 
of the symbiont L. bicolor (Plett et al. 2017).

Transitions from endophyte to pathogen

The evolution of endophytism and transitions between 
fungal lifestyles are so far not well understood but will be 
selectable functions under ecological conditions (Suzuki and 
Sasaki 2019). Like symbiotic and pathogenic lifestyles (e.g., 
see Hibbett and Matheny 2009; Kohler et al. 2015; Ruiz-
Dueñas et al. 2021; Wang et al. 2022), the origin of fungal 
endophytes is polyphyletic. A phylogenetic analysis of 241 
euascomycetes (Pezizomycotina) disclosed endophytes to 
be in a transient state to and from pathogenicity (Arnold 
et al. 2009). A concept has emerged of a functional fungal 
continuum saprotrophic-endophytic-pathogenic (“the endo-
phytic continuum”) in which hosts behave neutral or mutu-
alistic or are attacked, behaviors which are combinatorically 
determined by fungal species, host genetic background, and 
environmental conditions and changes (Kogel et al. 2006). 
Many times, borders in the fungal lifestyles are not strict. 
There are overlaps in functions between members of differ-
ent fungal guilds and individual functional switching is pro-
moted by the environment, supporting the idea of functional 
continuums, such as saprotroph-endophytic-pathogenic or, 
also, symbiotic-endophytic-pathogenic (Zanne et al. 2020). 
Derived from another phylogenetic study of 163 fungi, some 
Mucoromycota and many Ascomycetes and Basidiomycetes, 
endophytes and nectrotrophs within some clades appear to 
have evolved into the other lifestyle at equal rates of change. 
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However, ancestral character mapping suggested also that 
pathogenic biotrophs evolved from endophytes without 
regression and appear fairly stable in lifestyle (Delaye et al. 
2013), probably due to their typically strong host depend-
ency founded on a previously marked reduction in CAZyme 
(carbohydrate-active enzyme) genes associated with plant 
cell wall degradation (Zanne et al. 2020; Zhao et al. 2013). 
According to one particular study, a hemi-biotrophic patho-
gen (Harpophora oryzae, indeed of rice) on the other hand 
developed into a growth-promoting beneficial endosymbiont 
via loss of hundreds of genes (929 recognized in total) and 
expansion of families of others related to transposons (and 
genome decay) and for complex regulatory machines ben-
eficial to signaling and transport of organic and inorganic 
substances (Xu et al. 2014).

Individual genetic adaptations, fixed in lifestyles and acti-
vated as possible responses to the environment, will control 
the flexibility organisms have to change their lifestyle. Adap-
tations may be based on broader genome rearrangements 
or can be lineage-specific on a fine scale and may prob-
ably focus on changes in gene expressions (Haridas et al. 
2020). Unambiguous genomic signatures for lifestyle tran-
sitions, and also for the residing pathogenic potential, can 
thus be difficult to infer from genome comparisons alone, 
especially in clades with frequent lifestyle transitions and 
in cases of fungal generalists (Franco et al. 2022; Hill et al. 
2022). Comparing e.g. genome sizes and the toolboxes of 
functionally annotated genes may not help (per se) in larger 
sets of species to reliably differentiate between lifestyles. 
Machine learning however distinguished with > 95% accu-
racy between saprotrophic and pathogenic lifestyles in the 
filamentous ascomycete class of Dothideomycetes, through 
the identification of six clades of genes (mostly containing 
single-copy genes) without yet a functional annotation that 
was unique to genomes of saprotrophs (Haridas et al. 2020).

Nevertheless, saprotrophs in the Dothideomycetes have 
proportionally higher numbers of CAZymes than patho-
gens (Haridas et al. 2020). However, there appear to be no 
dramatic differences in gene profiles for CAZyme families 
between biotrophic, hemi-biotrophic, and necrotrophic path-
ogenic species in clades from the Dothideomycetes (Ohm 
et al. 2012). Another study suggested a similar share of con-
served CAZyme functions in the secretomes between the 
distinct lifestyles in a broader selection of endophytes and 
pathogens (necrotrophic, hemibiotrophic, and biotrophic) 
coming mostly from the ascomycete class Sordariomycetes 
(de Queiroz and Santana 2020). Particularly, many species 
of the order Xylariales (Sordariomycetes) associate as endo-
phytes, pathogens or wood-and litter-decay fungi with for-
est trees, with frequent lifestyle changes between closely 
related species. A recent genome comparison of 96 species 
revealed loss of PCWDE genes to be common in endophytic 
versus saprotrophic species of the Hypoxylariceae but not 

among endophytic, pathogenic, or saprotrophic species in 
the sister clade Xylariaceae. Endophytic Hypoxylariceae 
tend to be ecologically more specialized than endophytic 
Xylariaceae, which, as host and substrate generalists, offer 
greater saprotrophic potential. Both clades collected mul-
tiple BGSs of different origins in their individual genomes 
(on average 71.2). Especially the Xylariaceae accumulated 
many BGSs (frequently > 80 and even > 100) of hyperdiver-
sity (28.2% BGSs were unique to a single taxon and 30–41% 
of BGSs were unique to single isolates within a species), 
often obtained via HGT. Whether the higher number of 
BGSs broadens the pathogenic host ranges of Xylariaceae 
compared to the specialized Hypoxylariceae remains to be 
shown (Franco et al. 2022).

As already described above, the behavior in F. excelsior 
and the gene content of the endophytic homothallic H. albi-
dus and the pathogenic heterothallic H. fraxineus indicate 
subtle while crucial differences between an endophytic 
and a pathogenic lifestyle on European ash (Elfstrand et al. 
2021; Stenlid et al. 2017). These two fungi live harmless and 
asymptomatic as endophytes during the vegetation period 
within their native hosts and show an increase in biomass 
in senescent host leaves not until autumnal leave fall, with 
a potential to then switch to necro- and saprotrophic growth 
phases (Hietala et al. 2022; Inoue et al. 2019). H. fraxineus 
however performs this switch in European ash earlier in the 
summer season, possibly inflicted by a high infection pres-
sure forcing fungal sporulation and dispersal in nectrotropic 
lesions (Hietala et al. 2022). The unique BGS for hymeno-
setin antibiotic production in H. fraxineus (Elfstrand et al. 
2021) may influence the success of colonization and sporula-
tion via (reciprocal) antagonisms with native ash endophytes 
(Haňáčková et al. 2017; Hietala et al. 2022; Schlegel et al. 
2016). Determination of whole epi- and endophyte commu-
nities in European ash leaves in the longer run may provide 
more insight into possible regulatory interventions on inter-
active organismal levels carried out in planta (Hietala et al. 
2022) and how native endophytes may help to protect their 
hosts against pathogenic invaders (Agostinelli et al. 2021; 
Martínez-Arias et al. 2021).

The discipline of evolutionary epidemiology addresses 
the co-evolution between a pathogen and its host. Pathogens 
evolve quickly to take advantage of ecological or environ-
mental changes including shifts in hosts (Thines 2019), such 
as showcased by H. fraxineus with the jump from Asian ash 
species onto European ash. About 10% of the H. fraxineus 
proteome is estimated to participate in interaction with its 
host F. excelsior, among them many secreted cytochrome 
P450 oxidases that may contribute to the attack of the host 
(McMullan et al. 2018). What protects in contrast the same 
host against the endophyte H. albidus with a very similar 
genome? This might have been molded on both sides by the 
co-evolution of endophyte and host. As a possible example 
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of co-evolution, comparative studies on the resistant and sus-
ceptible chestnut host’s sides indicated expression of candi-
date S genes (prm4 for callose synthase; dmr6 for conversion 
of salicylic acid) in the European C. castanea susceptible to 
the introduced C. parasitica but not in the Asian tolerant C. 
crenata (Pavese et al. 2021).

Other fungal virulence factors

Virulence, which is the pathogen’s quality to overcome 
defense reactions, harm its host and cause disease, is espe-
cially broadly analyzed in C. parasitica. Well-working gene 
deletion and silencing protocols via efficient fungal trans-
formation exist, standard virulence assays on chestnut stem/
bark cuttings and also on apples as a foreign host are estab-
lished, and hypovirus test strains of different intensities for 
fungus-mycovirus interactions from the standard field isolate 
EP155 were developed, most notably the prototypic EP713 
by transfection with CHV1-EP713 (see e.g., Churchill et al. 
1990; Faruk et al. 2008; Jacob-Wilk et al. 2009; Jo et al. 
2019; Lan et al. 2008; Li et al. 2019; Rostagno et al. 2010; 
other references in Table 2).

Under mycelial fan formation, the invasive necrotrophic 
C. parasitica infects host stems through wounds and grows 
intercellularly in the bark and cambium of susceptible chest-
nuts. Mycelial fans apply pressure to split host cells, even 
lignified host cells and developing wound periderm. Toxins 
like oxalic acid excreted at the mycelial forefront kill the 
host cells in advance (Lovat and Donnelly 2019; Rigling 
and Prospero 2018). In accordance, KO of the gene for pro-
ducing oxalacetate acetylhydrolase (CpOah) reduced much 
the virulence of the pathogenic fungus (Chen et al. 2010; 
Table 2), similarly as the recombinant expression of Oxo 
in susceptible chestnut confers resistance in the host and 
was performed most recently under control a wounding- and 
pathogen-responsive promoter of gene win3.12 (Carlson 
et al. 2022; Onwumelu et al. 2022; Polin et al. 2006; see 
above).

Comparative transcriptomic and proteomic analyses iden-
tified multiple candidate genes to act in virulence which are 
repressed in response to host-protective CHV1 infestation 
of the fungus or to added tannin as a major phytoanticipin 
against pathogens present in the bark of chestnuts (e.g., in 
Barakat et al. 2012; Chun et al. 2020; Kim et al. 2012; Wang 
et al. 2016). The application of genome-wide omics tech-
niques on the raising number of targeted mutants further 
aids the identification of crucial virulence functions (Andika 
et al. 2019). Large sets of differentially regulated genes and 
genes suspected to act in activation of other genes and post-
transcriptionally on encoded proteins were in the meantime 
deleted or in some cases down-regulated by genetic manipu-
lation for functional tests in virulence (Table 2). Phenotypic 
descriptions (in part extended beyond the documentation 

in Table 2, e.g. on what is happening in relation to sexual 
reproduction) were sometimes backed up by double-KOs for 
the evaluation of hierarchical functions, also by gene over-
expression experiments, or in some instances by the produc-
tion of constitutively activated mutant genes (for respective 
details see in references given in Table 2). With regard to 
virulence, a complex picture emerges of different signaling 
pathways acting in coherent but also opposing directions, 
independent of or with parallel effects on growth traits, cell 
wall qualities, perceptions of different types of stress, and 
defense strategies against toxic plant metabolites and other 
host measures (Table 2). While variations in genotypes of 
pathogens, viruses, and chestnut hosts play a role in the 
severity of responses (Ježić et al. 2021; Krstin et al. 2017; 
Nuskern et al. 2021), and there may be no simple unifying 
rules recognizable from the mutant data (Table 2), under-
standing better the processes of fungal virulence could be 
useful to find potential novel targets and breeding strategies 
to combat the disease.

Meta‑omics

The compact overview above on functional ecological roles 
of different fungal guilds in view of tree growth and per-
formance is complex, but it is by far not complete in its 
complexity (Nilsson et al. 2019; Zanne et al. 2020). Usu-
ally, in laboratory work, culturable fungi have been exam-
ined separately under artificial conditions in terms of their 
actions, most commonly for some more or less aggressive 
decomposing species which are appreciated as good mod-
els for investigating wood decay (e.g., Alfaro et al. 2020; 
Castaño et al. 2021; Eastwood et al. 2011; Fernandez-Fueyo 
et al. 2012; Floudas et al. 2012; Hori et al. 2014; Janusz et al. 
2018; Kuuskeri et al. 2016; Levasseur et al. 2014; Martinez 
et al. 2004, 2009). Laboratory data, however, do not reflect 
throughout nature, with the ever-varying biotic and abiotic 
parameters, community interactions in promotion, exploi-
tation, or competition, and resulting biodiversity changes 
(Fig. 1) that for a complete functional system picture and 
estimations of degrees of functional redundancies need all 
to be considered.

More recently, research on model species turned more 
into laboratory analyses for the effects of combined species, 
but again, typical studies of this type concern mostly well-
growing competitors in wood rot with occasional evidence 
of additive activities as well (Hiscox et al. 2018; Presley 
et al. 2020; Sugano et al. 2021) or are sometimes used in the 
search for superior antagonists against pathogenic wood rot 
fungi (Wang et al. 2022; Wen et al. 2019, 2022). However, 
first omics studies become possible in laboratory species 
combinations to gain insights into the processes of interac-
tions. In combat zones for example, fungi strongly modify 
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their transcriptomes in order to express different defense 
strategies and possibly also to change their nutritional strat-
egies by unilaterally exploiting the other organism (Presley 
et al. 2020) or by acting in mutual synergy in nutrient turno-
ver (Sugano et al. 2021).

The priceless value of fungal cultures for understanding 
their biological processes and ecological significance must 
thus not be negated (Yasanthika et al. 2022), but culture-
independent omics-methods open completely different 
dimensions on meta-levels on communities and community 
actions in nature. Defining whole community structures with 
meta-omics techniques brings about a better understanding 
of their ecological niches, underlying modes of operations, 
interactions and environmental interferences, temporal and 
spatial biodiversity changes, and eventual disintegration. 
Meta-omics DNA and RNA techniques capture entire com-
munities with the full diversity of the many so far unknown 
taxons, including also all non-culturable and never seen spe-
cies. At the current time, the main focus on fungal meta-
omics is still on taxonomy with complete species coverage 
by meta-barcoding based on sequencing of isolated bulk 
DNA (Yasanthika et al. 2022) while studies on meta-tran-
scriptomes are gradually emerging.

Meta‑barcoding

Meta-genomics with HTS is by now well established in defi-
nitions of whole microbial communities directly from the 
total isolated DNA of environmental samples (Nilsson et al. 
2019), collected from individual ecological (micro)niches of 
relevance. In the context of trees, fungal DNA can originate 
from distinct soil horizons, plant litter, wooden substrates, 
subterranean rhizospheres, aerial phyllospheres, living and 
dead plant tissues, or also the microbial aerobiome (Fig. 1). 
Temporally, it can be collected at different seasons in the 
year. Ecological scales under consideration vary from micro-
niches over local, regional, and national plots to geographic 
and climate roles. Specific PCR-amplification and sequenc-
ing of ITS sequences (ITS1-5.8S rRNA-ITS2 region) assist 
most often through (meta-)barcoding in large-scale identi-
fication and taxonomy of entire fungal communities, i.e. of 
all cultivable as well as non-cultivable known and unknown 
species, and it gives information on individual OTU (opera-
tional taxonomic unit, used as a placeholder for any non-
identified species) abundances in the complete community of 
organisms. Alternatively, collectively sequenced genomes of 
the community obtained by meta-genomics can be scanned 
for sequenced marker barcodes (Nilsson et al. 2019; Stewart 
et al. 2018; Tedersoo et al. 2022). Meta-barcoding is increas-
ingly employed for entire fungal community identification 
in biological niches of tree and forest relevance. Curated 
expert functional annotation tools FUNGuild,  FunFun, and 
FungalTraits link molecular taxa barcodes automatically 

to fungal lifestyles and ecological functions (Nguyen et al. 
2016b; Põlme et al. 2020; Zanne et al. 2020). The latest 
tool, FungalTraits, better considers switches in lifestyles and 
shifts in trophic modes. This is information of significance 
for instance for fungal communities in senescing leaves and 
needles of individual tree species (Tanunchai et al. 2023) 
and in the succession in wood decay (Lepinay et al. 2021), 
whereby organisms exist varied as endophytes, pathogens, or 
saprotrophs depending on the viridity status of the respective 
plant substrates or when foliar endophytes as priority colo-
nizers enter saprotrophically other downed plant substrates.

All-inclusive meta-barcoding provides much better over-
all coverage of the species present in a habitat and can also 
provide information on the relative abundance of species and 
their likely contribution to community actions. With respect 
to dead wood decay in forest ecosystem functioning taken 
as an example, assessment of fungal decay communities is 
typically based on inventories in forests of sporocarps (Arn-
stadt et al. 2016; Heilmann-Clausen and Christensen 2004; 
Rieker et al. 2022; Uhl et al. 2022). Contrary to evidently 
naïve expectations, sporophores formed on deadwood turned 
however out to be poor predictors of the changing composi-
tion of entire fungal guilds captured by molecular barcoding 
and of the associated actual fungal decay activities in the 
wood over time (Müller et al. 2020a; Purahong et al. 2018; 
Rieker et al. 2022).

Significant interplays between saprotrophic and mycor-
rhizal fungi are emerging in meta-barcoding projects, with 
fungal guilds or individual species undergoing niche parti-
tioning in soil types and horizons, influenced by parameters 
such as climate and season, region, pH and humidity, nutri-
ents, predominances of generalists or specialists, and more 
(Awad et al. 2019; Chaithaisong et al. 2022; Godin et al. 
2019; Khokon et al. 2021; Peršoh et al. 2018; Žifčáková 
et al. 2016). ECM compositions are proven drivers of pine, 
beech, spruce, and oak forest tree growth, with three-fold 
differences in the growth rates based on nitrogen-acquisition 
modes of ECM specialists (defined in the study by ITSs from 
nearly 40,000 individual ectomycorrhizae collected from 
137 plots throughout Europe; van der Linde et al. 2018) in 
organic and inorganic soils with resulting lower and faster 
tree growth, respectively (Anthony et al. 2022).

Forest management measures must take into account the 
insights gained from such studies on compositions of tree-
associated mycobiomes in order to locally and globally best 
conserve the biodiversity necessary for a functioning for-
est environment (Bowd et al. 2022; Goldmann et al. 2015; 
Tomao et al. 2020). As emerging from current community 
studies, the composition/richness diversity of fine and of 
coarse deadwood in forests in different ways can positively 
relate to the richness of wood-inhabiting fungi (Baldrian 
et al. 2016; Brabcová et al. 2022). Intensive forest manage-
ment with the removal of types of deadwood and logging 

2807Applied Microbiology and Biotechnology (2023) 107:2783–2830



1 3

operations may negatively influence fungal density and 
diversity of wood-decayers (Tomao et al. 2020), while wood 
decay dynamics may inadvertently accelerate in the con-
text of global climate warming even under the reduction of 
the wood decomposer guild (Chagnon et al. 2022) because, 
among, fungal species richness can negatively correlate with 
wood decay rates (Fukasawa and Matsukura 2021). Guilds 
of ECM species may likewise deteriorate under the influ-
ences of management, such as under reductions in canopy 
cover, basal area of stands, and tree species (Tomao et al. 
2020). Increases in biodiversity of different fungal guilds 
(wood, soil, ECM) as disturbances by forest management 
are however also reported (Behnke-Borowczyk et al. 2021; 
Goldmann et al. 2015).

With respect to serious alterations in native organismal 
communities, particular attention may be paid to introduced 
and dangerous invasive neophytic trees with incalculable 
mycorrhiza, possibly co-introduced from other biographi-
cal regions, and any concomitant transmission of potential 
pathogenic neomycetes with risks for native tree species; or, 
indigenous fungi may act pathogenic on the non-native trees 
after unforeseen host jumps (Beenken 2017).

Many of the current studies on tree health in nature focus 
on emerging destructive pathogens. However, endemic path-
ogens in healthy forests have important control roles over 
the conservation of forest biodiversity (Fodor and Hâruța 
2022). Indeed, some kinds of pathogens in the fungal com-
munities may offer potential endemic solutions in severe 
pest and pathogen management as ecosystem services. 
With this idea in mind, epi- and endophytic leaf mycobi-
omes were established from ash in metagenomics for the 
identification of antagonistic fungi for potential biological 
control agents (BCAs) as barriers to H. fraxineus infection 
(Becker et al. 2020; Cross et al. 2017). The holarctic ash 
endophyte Hypoxylon rubiginosum producing the antifungal 
metabolite phomopsidin in co-culture with H. fraxineus was 
identified as one promising candidate for the development 
of a native BCA to inhibit the pathogen in planta (Becker 
et al. 2020; Halecker et al. 2020). Crucial for an application 
of a favorable native BCA is an understanding of both, the 
dynamics of the pathogen in the broader fungal community 
over the whole vegetation season as well as the behavior 
of the antagonist in the broader environment. In terms of 
ash dieback disease, starting with meiotic sporulation of H. 
fraxineus underneath European ash trees in early summer, 
incidences of H. fraxineus in the epi-, but not necessarily 
in the endophytic mycobiomes of diseased and symptom-
less leaves increased (Agan et al. 2020; Cross et al. 2017). 
Occurrence within symptomless leaves revealed then a bio-
trophic phase in the life cycle in which H. fraxineus exists in 
close contact with living penetrated host cells, prior to a dev-
astating switch to necrotrophy (Mansfield et al. 2018). Leaf 
necrosis correlated with the acceleration of the ash-specific 

H. fraxineus in the mycobiomes, declines in the diversity 
of biotrophs, and increases in varied ubiquitous facultative 
pathogenic endophytic ascomycetes (Cross et al. 2017). Leaf 
mycobiomes of tree species co-inhabiting forests with Euro-
pean ash showed close compositional similarities to those 
of ash trees, confirming that many of the mycobiome spe-
cies are non-specific and generalists (Agan et al. 2020; Ago-
stinelli et al. 2021). In particular, abundances of the black 
yeast-like ubiquitous Aureobasidium pullulans as typical 
epi- and endophytic foliar ascomycetous generalist (Andrews 
et al. 2002) were found to increase in the mycobiomes of 
symptomatic ash trees (Agan et al. 2020). Among some 
other endophytic ascomycetes with antibiotic and mycopara-
sitic potential (Barta et al. 2022; Becker et al. 2020; Bilański 
and Kowalski 2022), the exceptionally stress-tolerant A. pul-
lulans with a genome well equipped with a broad catalog 
of stress-tolerance genes (Gostinčar et al. 2014) is another 
candidate for developing operational BCA strategies against 
ash dieback disease due to its strong antagonistic activities 
against tree leaf pathogens (Agan et al. 2020; Pinto et al. 
2018).

Meta‑transcriptomics

Meta-transcriptomics as a first approximation identifies 
physiological activities in ecological niches and thus pro-
vides biologically informative functional insights beyond 
pure accounting of species abundances. Technically more 
challenging by the need of isolating sensitive RNA for multi-
organisms' RNA-seq from difficult environmental probes, 
by the high abundances (ca. 95%) of disturbing rRNA 
(potentially solved for eukaryotes by polyA enrichment 
of mRNA), and among, also, by a gigantic amount of yet 
unknown genome background data for best functional anno-
tation, first reports are emerging where sequence similarities 
to established genetic data in databases, motifs in deduced 
protein products and also parallel meta-genome sequencing 
of total isolated DNA were made use of (Fonseca et al. 2022; 
Hesse et al. 2015; Liao et al. 2014; Schneider et al. 2021). 
Reconstruction of smaller genomes from environmental 
metagenomes (metagenome-assembled genomes = MAGs) 
from individual bacteria has started with suitable bioinfor-
matic tools and pipelines (Zhou et al. 2022) but for the larger 
genomes of the many non-model fungi in nature, and for the 
better transcript annotations of today's possible meta-tran-
scriptomics, this will all still take time. Supportive activity 
tests in environmental samples or their extracts are feasible 
for a few more persistent types of enzymes, for instance, 
laccases and peroxidases. Backing for actual physiological 
activities through meta-proteomics and metabolomics is 
desired (Sebastiana et al. 2021), but also still goes beyond 
the current technical feasibilities of routine (Baldrian 2019).
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In methodological proof of concept, meta-barcoding of 
PCR-amplified ITS fragments has lately been complemented 
by shotgun-metagenomic sequencing and small RNA meta-
transcriptomics in order to characterize the core mycobiome 
of the leaf phyllosperic mycobiome of selected Brazilian 
rubber trees from its native neotropical Amazonian habitat. 
Yeast-like basidiomycetes with potential for antifungal-com-
pound production and non-invasive ectophytic fungal patho-
gens (sooty blotch, flyspeck) were discovered in the barcod-
ing to dominate in the core mycobiome, while the shotgun 
meta-genomics with the higher sequencing depth and meta-
transcriptomic revealed extra abundances of insect patho-
gens (Ophiocordycipitaceae) and anaerobic fungi (Neocal-
limastigomycota), and Trichoderma spp. was detected in 
meta-transcriptomics as one of the physiologically most 
active fungal genera besides Fusarium and Hypomyces 
(Fonseca et al. 2022). Another recent study demonstrated 
for meta-genomic ITS and meta-transcriptomic RNA data 
from matched samples of root- and needle-associated fungal 
communities of P. abies in comparative bioinformatic work-
flows the principle power for functional community insights 
(in the study nutrient-related) but also the current limitations 
by coverage in available databases, such as of definitions 
at lower taxonomic levels and available reference genomes 
(Schneider et al. 2021).

Meta-transcriptomics now helps to unravel critical shifts 
in fungal lifestyles, e.g. from endophytic (asymptomatic) to 
pathogenic (symptomatic) by changes in gene expression 
in latent pathogens of P. contarta needles, and identified 
simultaneous shifts in host cell transcription, from upregu-
lated defense genes in healthy needles as a taming response 
to fungal recognition to strong activation of a broad vari-
ety of stress-response genes upon disease outbreak (Ata 
et al. 2022). Meta-transcriptomic analyses under long-term 
anthropogenic N deposition (over 16 years) into maple for-
est floors indicated significant shifts in fungal community 
expression of fungal CAZyme gene profiles under influence 
of N, along with increases in abundances of Ascomycta as 
compared to Basidiomycota (typically less prominent in 
abundance in forest soils than the ascomycetes; Chaithai-
song et al. 2022), decreases in expression of ligninolytic 
genes, and reduced litter decay in moderately decomposed 
O horizons (Hesse et al. 2015). Shifts in hardwood forest 
ECM-species communities correlated with C and N cycling 
in N-fertilized forest soils, with enhanced relative C to 
N mining activities by ECM in rhizosphere soils and by 
AM-species in bulk soils (Carrara et al. 2021). Long-term 
soil warming in a boreal Picea mariana forest resulted in 
changed fungal soil communities with more stress-tolerant 
taxa and allocation of their carbon resources to fungal cell 
metabolic maintenance at expense of litter decomposition 
(Romero-Olivares et al. 2019). In another meta-transcrip-
tomic study in an unmanaged temporal P. abies forest, 

activities of ECM-fungi in soil went significantly down in 
winter seasons, along with host photosynthetic production 
(Žifčáková et al. 2016). Finally, in a recent study performed 
for a better understanding of tree nutrition in a designed, 
roofed outdoor cosm with defined irrigation with beech sap-
lings collected from a natural forest in their natural soil, 
mixed transcriptomes from mycorrhized beech roots short-
time (48 h) after feeding of defined nitrogen sources showed 
unanticipated independent reactions between ECM fungi 
and the host to sudden anthropogenic high nitrate and high 
ammonium fluxes in forest soil. The fungi were unaffected 
by the changes in their gene expressions while the host was 
unexpectedly not shielded by the fungi and responded by 
uptake and upregulating nitrogen-specific metabolic and 
protective gene functions (Rivera Pérez et al. 2022).

Conclusions and outlook

Various genetic and genomic methods can now be applied 
to forest tree species and their associated fungal communi-
ties. In this review, we have summarized these techniques 
and examples of how they can be used in forest conserva-
tion genetics, tree breeding, association genetics, and for the 
investigation of associated fungal communities their ecologi-
cal functions, and effective and rapid diagnostics. Since it 
is not possible to include all aspects in such a review, we 
selected examples from different research fields to give an 
overview of the topic. Due to decreasing sequencing costs 
and the availability of reference genomes, whole genome 
re-sequencing is feasible for several tree species now. Where 
this is not possible, different methods for genome complex-
ity reduction are valuable alternatives to obtain genome-
wide marker sets and to get insights into the molecular basis 
of adaptive traits or to predict the fate of forest tree popula-
tions in times of climate change. For these studies, differ-
ent molecular methods can also be combined (e.g., RNA-
seq for SNP identification, genotyping of these SNPs in a 
larger set of individuals, and finally association analyses to 
detect significant SNPs for the trait of interest). Promising 
molecular techniques, such as genomic selection, will help 
to substantially reduce the time of breeding cycles because 
decision-making is possible in the young tree age.

Bahram and Netherway (2022) recently reviewed the 
manifold mediator roles of fungi linking to organisms 
including trees and ecosystems as central ecological agents. 
Due to their smaller genomes compared to tree species, fun-
gal genomes are easier to analyze. For instance, genome 
comparisons, which have only recently been started in for-
est tree species (e.g., to determine species barriers despite 
hybridization), are routinely conducted in fungal model spe-
cies and led to the identification of the presence or absence 
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of specific genes and expansions in certain gene families 
that are characteristic for different ecological fungal guilds. 
A deep understanding for instance of pathogen biology in 
its wide array of physiological and molecular determinants, 
host–pathogen interactions, and resistance mechanisms is 
fundamental for improved tree breeding programs. New 
genome-editing techniques may become more widespread 
as valuable tools in forest genetics research to better under-
stand the gene functions of trees and their microbiomes and 
to confirm candidate genes identified by conventional asso-
ciation analyses.

Nevertheless, despite similarities in genetic backgrounds, 
there are no overall unifying rules explaining all possible 
situations of seemingly the same kind in nature. Studies of 
individual fungi are as important as defining whole tree-
related communities, their collective ecological functions, 
and holobionts co-diversification. The composition of fungal 
communities can be influenced by various factors, such as 
forest management or changes in environmental conditions. 
Therefore, knowledge of balanced compositions of fungal 
communities and their functions should be considered in 
forest management. “The social life of trees and forests” of 
which fungi are a part is not to be neglected.
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