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Abstract 
Both the increasing environmental temperature in nature and the defensive body temperature response to pathogenic fungi 
during mammalian infection cause heat stress during the fungal existence, reproduction, and pathogenic infection. To adapt 
and respond to the changing environment, fungi initiate a series of actions through a perfect thermal response system, con-
servative signaling pathways, corresponding transcriptional regulatory system, corresponding physiological and biochemical 
processes, and phenotypic changes. However, until now, accurate response and regulatory mechanisms have remained a chal-
lenge. Additionally, at present, the latest research progress on the heat resistance mechanism of pathogenic fungi has not been 
summarized. In this review, recent research investigating temperature sensing, transcriptional regulation, and physiological, 
biochemical, and morphological responses of fungi in response to heat stress is discussed. Moreover, the specificity thermal 
adaptation mechanism of pathogenic fungi in vivo is highlighted. These data will provide valuable knowledge to further 
understand the fungal heat adaptation and response mechanism, especially in pathogenic heat-resistant fungi.

Key points
• Mechanisms of fungal perception of heat pressure are reviewed.
• The regulatory mechanism of fungal resistance to heat stress is discussed.
• The thermal adaptation mechanism of pathogenic fungi in the human body is highlighted.

Keywords Fungi · Heat sensing · Heat adaptation · Molecular mechanisms · Heat shock transcription factors

Introduction

Mammalian body temperature can serve as a nonspecific 
defense against invasive fungal diseases; most fungi cannot 
grow at this temperature (Bergman and Casadevall 2010; 
Robert and Casadevall 2009). The mammalian immune 
system also plays an important role in fungal infection. 
However, the number of critically ill patients with cancer, 
chronic disease, or coronavirus disease 2019 (COVID-19) 
has increased over recent years while immune function has 
decreased, increasing susceptibility to fungal diseases. At 
present, the occurrence of thermophilic and heat-resistant 
fungi has also increased the risk of fungal infections in 
humans. In the COVID-19 burst period, due to infection 
with Aspergillus strains, SARS-CoV-2-associated pul-
monary aspergillosis was a major, life-threatening fungal 
disease in these patients (Hoenigl 2021; Salmanton-Garcia 
et al. 2021). In addition, the global outbreak of Candida 
auris, a new heat-resistant pathogenic fungus, has attracted 
attention because of its high-temperature resistance, multiple 
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drug resistance, and high fatality rate (Spivak and Hanson 
2018). C. auris infection may be the first case of a new fun-
gal disease caused by global warming (Casadevall et al. 
2019). Although there is no direct evidence confirming the 
correlation between global warming and heat-resistant fungi, 
the study of fungal heat adaptation mechanisms can help 
our understanding of how heat-resistant fungi emerge. These 
investigations would also suggest solutions to prevent more 
heat-resistant fungal infections in the future.

Each fungus has an optimal temperature for survival. 
Severe ambient temperature can cause damage, including 
misfolded proteins, accumulation of oxidative stress caused 
by reactive oxygen species (ROS), and osmotic stress caused 
by osmotic pressure changes (Gao et al. 2016; Moraitis and 
Curran 2004). Fungi also have a series of complex regu-
latory systems to cope with the damage. Therefore, fungi 
can adapt to high-temperature changes, maintaining their 
existence and reproduction under the condition of tempera-
ture fluctuations. These adaptive mechanisms include heat 
shock transcription factors (HSFs) to regulate activation of 
conservative signaling pathways, antioxidant responses, heat 
shock (HS) responses, and trehalose accumulation (Sugiy-
ama et al. 2000a; Zahringer et al. 2000). To improve the 
economic benefit in industrial production, the heat resistance 
mechanism of Saccharomyces cerevisiae has been a major 
mainly focus (Thorwall et al. 2020). In recent years, due to 
the aggravation of fungal pathogenic diseases in humans, 
research on thermal adaptation mechanisms of pathogenic 
fungi has been increasing. However, few articles summa-
rized recent advances in the study of heat resistance in 
pathogenic fungi. In this review, we summarize the recent 
research progress of different fungal heat adaptation mecha-
nisms and confirm that heat shock, an ancient response, is 
highly conserved in fungal organisms. We have attempted to 
delineate the network regulatory mechanisms of fungal heat 
perception, regulation, response, and adaptation. Moreover, 
we focused on the adaption mechanism of pathogenic fungi 
in vivo. We also focused on to elevated temperature stress by 
regulating gene expression, and consequently altering their 
morphology and metabolites, thus contributing to fungal 
immune escape. These data provide support for the preven-
tion and treatment of heat-resistant fungal infections.

Temperature sensing mechanism in fungi

Temperature perception is the first step of microbial thermal 
adaptation. To respond to a change in external temperature, 
fungal cells transmit a perception signal to an intracellular 
signaling system (Leach and Cowen 2014a, b). Investiga-
tions of the temperature sensing mechanism help deepen 
our understanding of the physiological process of thermal 
adaptation. At present, this thermal adaptation mechanism 

has been extensively studied in bacteria. RNA thermometers 
are the most important temperature sensing mechanism in 
bacteria, which can sense temperature changes without the 
aid of auxiliary factors (Chowdhury et al. 2006). RNA ther-
mometers are complex RNA structures. Their conformation 
changes with temperature and the RNA structure can block 
RNA binding sites in mRNAs of key regulatory factors. 
Most RNA thermometers are located in the 5′-untranslated 
region and shield ribosome binding sites by base pairing at 
low temperatures. When external temperatures are elevated, 
the melting of RNA structures allows ribosomes to enter and 
initiate translation (Narberhaus et al. 2006). In plants, heat 
sensors recognize specific changes and activate protective 
mechanisms. Phytochrome and calcium signaling play a key 
role in sensing sudden changes in temperature and activating 
signaling cascades (Nishad and Nandi 2021). The theory of 
fungal temperature sensing was proposed a long time ago. 
The possibility of folding protein reactions, membrane fluid-
ity changes, and RNA thermometers as fungal heat sensors 
has also been explored (Jones 2016). However, at present, 
investigation of fungal dissecting mechanisms is still limited. 
Although thermometers in fungi have been hypothesized, 
no relationship was found between these hypothesized ther-
mometers and the thermal protection response of fungi (Wan 
et al. 2012). There are few studies on the role of fungal RNA 
thermometers in their own temperature sensing mechanism. 
Moreover, the role of RNA thermometer in fungal tempera-
ture perception mechanisms remains to be determined. 
However, in recent years, investigations have explored the 
changes in fungal structures and their signaling molecules 
in response to temperature fluctuations (Leach and Cowen 
2014b). Whether these altered structures and their signal-
ing molecules play roles in temperature sensing will require 
further investigation in fungi.

A possible link between membrane fluidity and heat 
shock response has been found in Synechocystis. Changes 
in the physical ordering of the Synechocystis membrane 
affect the activation of heat shock genes (Klinkert and Nar-
berhaus 2009; Mikami and Murata 2003). Furthermore, as 
one of the earliest structures of fungi detected in thermal 
changes, the fungal plasma membrane is the most likely to 
act as a thermal sensor (Digel 2011). The cell membrane 
consists of a lipid bilayer consisting of proteins that cross the 
bilayer and interact with lipids on both sides of the lobules. 
Recent advances in lipid analysis of eukaryotic cell mem-
branes show that they contain hundreds of various lipids 
(Simons and Sampaio 2011). Sphingolipids (SLs), includ-
ing ceramides, sphingosine, and sphingosine-1-phosphate, 
are a common class of lipids in eukaryotic cells. In addition 
to playing a role in the cell membrane, these lipid compo-
nents also act as bioactive signal molecules to regulate fun-
gal apoptosis and senescence, cell movement, differentia-
tion, growth, and other important life processes (Iessi et al. 
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2020). SLs can also dynamically aggregate with sterols to 
form lipid rafts or lipid rows, which serve as effective sign-
aling and protein classification hubs (Bartke and Hannun 
2009). Following heat shock of S. cerevisiae, the expres-
sion of enzymes in the sphingolipid synthesis pathway is 
upregulated. Ultimately, these molecules influence multiple 
biotic processes, such as actin cytoskeletal polarization, pro-
grammed cell death, and trehalose production (Chen et al. 
2013; Futerman and Schuldiner 2010). These results further 
support the idea that SLs can act as a temperature sensor. 
Moreover, in the heat shock response of fungi, SLs link nec-
essary metabolic processes to a range of different cellular 
functions required for temperature and pressure responses 
(Jenkins et al. 1997). In addition to SLs, many lipids also 
serve as signaling molecules (e.g., ceramide (Cer) and long 
chain bases) in response to temperature stimuli, thus playing 
a regulatory role in the temperature stress response (Shapiro 
and Cowen 2012). For example, high temperature stress can 
also induce the expression of Cer and its derivatives (Wells 
et al. 1998). Lysophospholipids are also subjected to tem-
perature stress and respond to signals to assist in the cell 
thermal adaptation process (Fabri et al. 2020). To respond 
to temperature stress, lipid molecules in the plasma mem-
brane and SL composition and enzyme activity in the SL 
pathway change, triggering intracellular signals to respond 
to temperature and pressure and acting as part of fungal tem-
perature sensing.

Stress-induced acidification is widespread in eukaryotes, 
including mammals, insects, plants, and fungi (Kroschwald 
et al. 2015; Triandafillou et al. 2020). Heat shock induces 
transient intracellular acidification, an intracellular change 
that enhances stress resistance in eukaryotes (Tombaugh 
and Sapolsky 1993). It was previously thought that HSF1 
activation was triggered only by heat-induced misfolded 
proteins in S. cerevisiae (Baler et al. 1992). However, a 
recent study confirmed that HSF1 can be strongly activated 
during cytoplasmic acidification when protein synthesis is 
inhibited. This acidification process is necessary to induce 
a heat shock response in the translation of suppressed cells. 
Heat-triggered acidification also increases population fitness 
and promotes cell cycle re-entry upon heat shock (Trianda-
fillou et al. 2020). This finding suggests another pathway 
for HSF1 activation. In addition to the association between 
intracellular misfolded proteins and HSF1 activation, some-
thing may trigger cytoplasmic acidification; HSF1 activation 
may play a role in cell temperature perception. To date, stud-
ies on intracytoplasmic acidification caused by heat stress 
have been performed only in S. cerevisiae and remain to be 
explored in pathogenic fungi. Strengthening research on this 
topic may provide a new direction to explore the heat resist-
ance mechanisms of pathogenic fungi.

Recent studies have revealed that Arabidopsis thaliana 
phytochrome B, a red light receptor, binds target genes in a 

temperature-dependent manner and participates in its own 
temperature sensing mechanism (Jung et al. 2016; Rockwell 
and Lagarias 2017). Interestingly, the same phenomenon has 
been found in the filamentous fungus Aspergillus nidulans. 
The heterohistamine kinase TcsB and photochrome FphA 
participate in their own temperature sensing. Moreover, the 
temperature-activated photochrome provides input signals 
into the high-osmolarity glycerol (HOG) signaling pathway 
(Yu et al. 2019). However, to date, investigation of the fungal 
temperature sensing mechanism network has been limited. 
When discussing the temperature sensing mechanism of 
fungi, there are many questions worth exploring. Fungi are 
subjected to different degrees of temperature stress during 
infection and to fluctuating temperatures in nature. For both 
environmental and pathogenic fungi, mechanisms to quickly 
sense changing temperatures are highly important for adap-
tation to new temperature stress. However, few studies have 
examined the mechanisms of the temperature sensor net-
work, and further research is needed to reveal these specific 
mechanisms. In addition, when studying the temperature 
sensing mechanism in fungi, we need to distinguish whether 
the response is a signal from the cell’s perception of ambi-
ent temperature, or a thermal adaptation after perception of 
ambient temperature.

Conserved genes and transcription factors 
in fungi play an important regulatory role 
in heat adaptation

HSF1 and heat shock proteins

After the fungal temperature sensor transmits the signal 
into the cell, transcription factors related to heat adaptation 
regulate gene expression, improving fungal survival at the 
increased temperature. HSFs are important regulators for 
heat stress survival in eukaryotes. There are four different 
HSF members in mammals and plants: HSF1–HSF4. Yeast 
expresses only a single HSF that performs a similar func-
tion to HSF1 (Akerfelt et al. 2010). In fact, HSF1 does not 
act as a master regulator of the thermal shock response, but 
rather controls the expression of a set of genes that induce 
the expression of molecular chaperones and other target pro-
teins that restore protein folding homeostasis. These protein 
chaperones are called heat shock proteins (HSPs) (Pincus 
2017). HSF1 exists as an inactive monomer or dimer in 
eukaryotes and hides acidic groups in the cytoplasm. Under 
heat stress, HSF1 forms a homologous trimer that binds to 
heat shock elements (HSEs) of the nGAAn sequence repeat 
unit, thus upregulating the expression of HSPs. However, 
in S. cerevisiae, HSF1 binds HSEs as a trimer at normal 
temperature, and phosphorylation and other posttranslational 
modifications directly stimulate HSF1 activity and regulate 
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transcription of HSPs after heat shock (Gao et al. 2016). An 
evolutionarily conserved HSF1 is also expressed in Candida 
albicans. This transcription factor participates in the global 
transcriptional response to heat shock by inducing transcrip-
tion through HSEs, which is essential for C. albicans sur-
vival. Interestingly, Hsf1 proteins of C. albicans and S. cer-
evisiae have different binding affinities. Analysis of the motif 
binding HSF1 has revealed a common sequence between 
human and S. cerevisiae, comprising three reverse nGAAn 
repeat patterns. C. albicans Hsf1 binds nGAAn elements in 
at least three configurations in different dimeric and trimeric 
forms. The TTCnnGAAnnTTC element has the strongest 
binding ability, whereas GAAnnTTC and TTCn7TTC have 
lower but still significant binding affinity (Leach et al. 2016; 
Nair et al. 2018). HSF1 of C. albicans is rapidly phosphoryl-
ated after heat shock at 30–42 °C followed by dephospho-
rylation. However, the molecular memory for this reaction is 
short, fading within 2 h (Leach et al. 2012b). In addition, fol-
lowing acute heat shock of C. albicans, HSF1 binds distinct 
motifs in nucleosome-depleted promoter regions to regulate 
heat shock genes and genes associated with virulence. Under 
heat shock conditions, C. albicans responds to temperature 
through HSF1 and Hsp90 coordinating gene expression and 
chromatin structure, resulting in heat adaptation and changes 
in virulence (Leach et al. 2016). The main function of HSF1 
in Aspergillus fumigatus is to regulate the HS response and 
regulate the expression of heat shock proteins. HSF1 also 
enhances the heat resistance of A. fumigatus by regulat-
ing cell wall biosynthesis and remodeling and expression 
of genes related to lipid homeostasis (Fabri et al. 2021). 
The discovery of homologues of HSF in different fungi also 
confirms the high conserved nature of this ancient response 
process in organisms.

Hsp70 is a proximal sensor of HSF1-mediated cell protec-
tion that can distinguish between two different environmen-
tal stressors (Wang et al. 2012). In the heat shock response, 
misfolded cytoplasmic proteins titrate Hsp70 to activate 
HSF1 in the nucleus (Masser et al. 2019). There are two 
interaction sites between Hsp70 and HSF1 in S. cerevisiae. 
Elimination of Hsp70 regulation of HSF1 results in overall 
dysregulation of HSF1 transcriptional activity. When both 
loci are destroyed simultaneously, there is a synergistic effect 
on gene expression and cellular fitness (Peffer et al. 2019). 
Hsp70 and Hsp90 are the main HSPs regulated by HSF1. 
These two protein chaperones form a negative feedback 
loop with HSF1. The regulatory roles of HSP70 and HSF1 
have been demonstrated. However, the interaction between 
HSP90 and HSF1 requires further evidence. This regula-
tory circuit can coordinate the heat shock response of the 
cell with its external environment (Krakowiak et al. 2018; 
Masser et al. 2020). Heat shock protein Hsp104 in yeast, 
a homolog of bacterial ClpB, works with the Hsp70 chap-
erone system to reactivate denatured proteins (Miot et al. 

2011). FpHsp104, a homolog of yeast Hsp104 in the plant 
pathogen Fusarium pseudograminearum, plays an impor-
tant role in heat tolerance development and pathogenicity 
(Xia et al. 2021). There is a new type of Hsp104 regulation 
called delayed upregulation (DUR). DUR is regulated by 
HSEs and involves Msn2/4P-regulated gene products (Seppa 
et al. 2004). Moreover, Ssd1, an essential gene for Hsp104-
mediated protein disaggregation, regulates cell heat resist-
ance and cell wall remodeling; it also affects the ability of 
Hsp104 to bind protein aggregates (Mir et al. 2009). Overex-
pression of Hsp25 in Metarhizium robertsii promoted fungal 
growth under heat stress and enhanced the tolerance of heat 
shock-treated spores to osmotic stress (Liao et al. 2014). 
SHSPs are found in a variety of fungi, including Aspergillus, 
Magnaporthe, Fusarium, and Penicillium (Wu et al. 2016).

Mitogen‑activated protein kinase (MAPK) Hog1 
and its related transcription factors and interacting 
proteins

Hog1, the central MAPK of the HOG signaling pathway, 
is activated in response to fluctuations in environmental 
osmotic stress. Initially thought to be activated only by 
osmotic stress, it was later shown that Hog1 can also be 
activated by heat stress and play an important role in resist-
ing heat stress (Fig. 1) (Dunayevich et al. 2018). Moreo-
ver, Hog1 stimulated by heat stress depends on the cell wall 
integrity (CWI) signaling pathway and membrane-bound 
osmosensor Sho1 (Dunayevich et  al. 2018). Activated 
Hog1 helps promote recovery of cell damage caused by 
heat stress (Winkler et al. 2002). Recently, a chemical genet-
ics approach demonstrated that the bulk of the heat shock 
response is independent on HSF1. Most genes induced by 
heat stress are controlled by Msn2 and Msn4, C2H2-type 
zinc-finger proteins downstream of Hog1 (Pincus 2017). 
Msn2 and Msn4, as stress-induced transcription factors that 
regulate general stress responses, can be activated by a vari-
ety of stress responses, including carbon source hunger, heat 
shock, and severe osmotic and oxidative stress. Therefore, 
they can regulate most heat-resistant genes (Johnson et al. 
2021; Stewart-Ornstein et al. 2013). For example, they regu-
late expression of the Nth1 gene, which encodes neutral tre-
halase in S. cerevisiae, thus regulating the hydrolysis of tre-
halose under different stress conditions. They also maintain 
trehalose concentration under stress by regulating trehalose 
synthesis and hydrolase expression (Zahringer et al. 2000). 
Msn2 may also help to cope with high temperatures by regu-
lating genes related to lipid metabolism, which in turn alters 
membrane fluidity (Li et al. 2017). Interestingly, there are 
different roles of HSF1, Msn2, and Msn4 in ensuring cell 
survival and growth before and after a fungus is exposed to 
extreme temperatures. HSF1 activates transcription of most 
of its target genes during the recovery period after severe 

5418 Applied Microbiology and Biotechnology (2022) 106:5415–5431



1 3

heat shock. Delayed upregulation of HSF1 is induced by 
accumulation of misfolded proteins in heat-shocked cells, 
which are necessary to restore normal cell growth. By 
contrast, Msn2 and Msn4 are not involved in delayed gene 
upregulation; they function prior to high temperature expo-
sure. However, they are also indispensable for cell growth 
during recovery (Yamamoto et al. 2008). Similar transcrip-
tion factors, CaMsn4 and CaMsn2, have been identified in C. 
albicans, although they were not found to play a significant 
role in the stress response (Nicholls et al. 2004).

OLE1, a gene encoding the delta-9 fatty acid desatu-
rase in S. cerevisiae, catalyzes the production of monoun-
saturated fatty acids from saturated fatty acids (Lutz et al. 
2019). OLE1 plays an important role in tolerance to multi-
ple stresses (Covino et al. 2016). The content of oleic acid 
in the membrane was significantly increased and the strain 
surface was more tolerant to various stresses in ectopic over-
expression of OLE1. Interestingly, after deletion of Hog1, 
the OLE1-mediated tolerance to multiple stresses signifi-
cantly decreased. Further investigation confirmed that Hog1 
had a positive regulatory effect on OLE1-mediated multiple 
stress tolerance (Nasution et al. 2017). Moreover, OLE1 
overexpression constitutively activates Hog1 through Ssk2. 
Spt23 and Mga2, two highly conserved membrane-bound 
transcriptional regulators in fungi, regulate a large number 
of expressed genes involved in ribosomal biogenesis and 
lipid metabolism. OLE1 is the major target gene regulated 
by Mga2 and Spt23 (Covino et al. 2016). The ratio of satu-
rated to unsaturated acyl chains in the membrane lipid is a 
key factor determining the fluidity and phase behavior of 
the membrane. S. cerevisiae maintains membrane fluidity 
through OLE1-activated unsaturated fatty acids as lipid 

building blocks. Membrane fluidity is increased by increas-
ing unsaturated fatty acid content and/or decreasing average 
fatty acid length or sterol content. This regulation enhances 
plasma membrane stability (Ballweg and Ernst 2017). OLE1 
overexpression in S. cerevisiae at high temperature also con-
tributes to a reduction in lipid peroxidation induced by heat 
stress. In this way, oxidative damage of the plasma mem-
brane can be reduced and the heat resistance of cells can be 
enhanced (Li et al. 2019).

Other signaling pathway and transcription factors

The cAMP (CAMP)/protein kinase A (PKA) signaling path-
way is one of the most important eukaryotic signaling path-
ways. This pathway is central in the transduction of fungal 
environmental signals, and the mediation of various cellular 
functions and heat tolerance in many fungi. The TPK1 subu-
nit of S. cerevisiae PKA is involved in chromatin remodeling 
under heat stress, thus enabling adaptation to changing envi-
ronments (Reca et al. 2020) . Compared with wild type A. 
flavus, the ΔacyA-C (adenylate cyclase gene) strain shows 
significantly lower heat tolerance (Yang et al. 2016b). Stud-
ies on ΔPka mutants of C. albicans have indicated that this 
pathway plays an important role in resistance to heat, and 
oxidative and salt stress (Giacometti et al. 2009a). Moreover, 
this signaling pathway is important for heat resistance in C. 
auris (Kim et al. 2021).

The calcium-calcineurin signaling pathway is highly 
conserved and plays an important role in fungal adaptation 
to host or environment stress, expression of virulence fac-
tors, and growth and development (Juvvadi et al. 2017). The 
calcineurin responsive zinc finger transcription factor Crz1 

Fig. 1  Regulatory mechanism 
of high-osmolarity glycerol 
(HOG) and the cell wall integ-
rity (CWI) pathway under heat 
stress. Heat shock stimulates 
intracellular glycerol outflow 
through the HOG pathway and 
CWI pathway, thus decreasing 
expansion pressure

Stl2
p Hog1

p

p

Fps1
Sln1

Pkc1

Lost of   turgor pressureHeat 
shock

Sks1

Msn2/4 Hot1

Sko1
Pck1/2

Rim1

Mcm1

Pbs2

：Positive relationship,

Ssk2
Wsc1/2

Glycerin

Swi6pHac1p

： transcription factor, ：transmembrane protein, ：Protein kinase.

5419Applied Microbiology and Biotechnology (2022) 106:5415–5431



1 3

plays an important role in heat resistance in B. bassiana (Li 
et al. 2015). Importantly, calcineurin and its downstream 
target Crz1 have also been shown to regulate heat tolerance 
and virulence expression in C. glabra (Chen et al. 2012). 
Transcriptome analysis has indicated that Crz1 in C. neofor-
mans regulates genes that aid in resistance to heat damage 
during heat stress (Chow et al. 2017). However, no pheno-
type associated with temperature sensitivity has been found 
in C. albicans crz1Δ mutants (Delarze et al. 2020). In C. 
albicans, TPK1 and TPK2, two catalytic subunits encod-
ing PKA, play roles in response to heat and oxidative stress 
(Giacometti et al. 2009). No temperature-related phenotypic 
change has been observed in the Aspergillus flavus crz1Δ 
mutant (Lim et al. 2019).

In addition to those described above, other transcription 
factors involved in cross-tolerance that play a role in fun-
gal resistance to heat stress were found. In S. cerevisiae, 
the LRE1 gene acts independently of the CAMP and PKA 
pathways. However, the homologous genes have not been 
studied in other pathogenic fungi. Lre1 plays a role in resist-
ing heat stress by inhibiting the protein kinase Cbk1 in S. 
cerevisiae. Overexpression of this transcription factor can 
affect the expression of chitinase and trehalose accumulation 
(Versele and Thevelein 2001). Swi6p and Hac1p, cell divi-
sion transcription factors, are involved in the unfolded pro-
tein response and play an important role in the maintenance 
of S. cerevisiae heat shock resistance (Jarolim et al. 2013). 
Swi6p and Hac1p homologues are present in C. albicans 
but do not play roles in heat resistance. The homologues 
regulate the proliferation of C. albicans and their hyphal 
growth (Hussein et al. 2011). BbThm1, a member of the 
Zn(II) 2CYS6 (Gal4-like) family in Beauveria bassiana, 
had been shown to enhance cell resistance to heat stress and 
play an important role in other stresses, including oxidative 
osmosis and various fungicides (Huang et al. 2019b). Com-
pared with other factors that regulate the tolerance response 
of multiple fungi to heat stress, these factors that exist only 
in single fungi might have conferred unique advantages in 
the process of epigenetic evolution.

The role of fungal enzymes and other 
metabolites in heat adaptation

Fungal transcription factors regulate gene expression to 
encode enzymes and other metabolites during heat adapta-
tion; these products are summarized in Table 1. This class of 
substances can be used to protect cells from damage caused 
by rising temperatures. Oxidative damage is one of the major 
secondary effects of heat shock. When cells are exposed to 
higher temperatures, the oxygen respiration rate increases 
and ROS accumulate in the cells, resulting in increased 
intracellular oxidation and cell damage (Moraitis and Curran 

2004). Fungi secrete a variety of antioxidant enzymes in 
response to oxidative stress. Superoxide dismutase plays a 
protective role in the body by converting superoxide radical 
to hydrogen peroxide (Ribeiro et al. 2017). Interestingly, 
in addition to their antioxidant function, peroxide-reduced 
proteins can also act as molecular chaperones and signal 
transduction regulators (Gao et al. 2016; Ribeiro et al. 2017; 
Wood et al. 2003). Pyruvate in the spores of M. robertsii 
was found to accumulate rapidly under heat stress; this 
occurs earlier than the above enzymes and is the first reac-
tive oxygen scavenger after heat treatment. Heat stress can 
also induce pyruvate accumulation in other fungi, includ-
ing A. fumigatus, Cordyceps militaris, Magnaporthe oryzae, 
Neurospora crassa, and S. cerevisiae (Zhang et al. 2018). 
By secreting pyruvate, fungi can effectively reduce protein 
carbonylation, stabilize mitochondrial membrane potential, 
and promote fungal growth (Zhang et al. 2017).

Glutathione, a common antioxidant, is synthesized under 
the catalysis of γ-glutamyl cysteine synthase (Gsh1 gene) 
and glutathione synthase (Gsh2 gene). During heat shock 
stress, S. cerevisiae induces the expression of Gsh1 and 
Gsh2 in a YAP1-dependent manner, which is followed by 
increased intracellular glutathione content (Sugiyama et al. 
2000a). Further study has demonstrated that heat shock-
induced glutathione synthesis protects mitochondrial DNA 
from oxidative damage (Sugiyama et al. 2000b). Most stud-
ies have focused on the role of endocrine glutathione in 
fungi. A recent study showed that S. cerevisiae and their 
offspring can survive and replicate at high temperatures by 
helping each other. Further investigation found that glu-
tathione, secreted by yeast, accumulates in large quantities 
outside the cell, which could eliminate harmful extracellular 
chemicals and prevent yeast from dying at high temperatures 
(Laman Trip and Youk 2020). The monothiol glutaredoxins 
Grx3 and Grx4 are important regulators of iron homeosta-
sis in S. cerevisiae. They generally play an important role 
in (2Fe-2S) cluster sensing and transport (Martinez-Pastor 
et al. 2017). Moreover, Grx3 and Grx4 also play an addi-
tional role in the resistance of S. cerevisiae to oxidative 
stress (Mechoud et al. 2020). In addition, the loss of Grx4 
would decrease the heat resistance and damage cell wall 
integrity in C. neoformans. At the same time, Grx4 and 
calcineurin signaling jointly affect the heat tolerance of C. 
neoformans (Hu et al. 2021).

Some studies have classified a variety of fungi, including 
Eurotiales, Mucorales, and Onygenales. These fungi can be 
classified as heat-resistant, thermophilic, and mesophilic. 
The peptidase of thermophilic fungi and mesophilic fungi 
has been compared and analyzed. The peptidase of ther-
mophilic fungi can adapt to high temperatures. The amino 
acid sequence of the peptidase protein was found to be 
significantly different. Compared with mesophilic fungi, 
the proportion of hydrophobic and charged amino acids in 
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thermophilic fungi peptidase was increased while the pro-
portion of polar amino acids was decreased (de Oliveira 
et al. 2018). Interestingly, 400 proteins (200 thermophiles 
and 200 mesophiles) in multiple databases have been studied 
to assess their amino acid preferences. A high frequency of 
hydrophobic salt bridges and smaller volume non-polar resi-
dues (Gly, Ala, and Val) in thermophilic proteins has been 
observed. However, the frequency of larger polar residues 
was low in thermophiles. This phenomenon may be caused 
by the preference of thermophilic proteins to small non-
polar amino acids and the change in residual physical and 

chemical properties and an increase in salt bridges (Panja 
et al. 2015). This result is consistent with the observation of 
thermophilic and mesophilic fungi in previous studies (de 
Oliveira et al. 2018). Further studies are needed to investi-
gate the differences in heat resistance of phylogenetically 
related species and the differences in peptidase structure.

In addition, as a substance secreted by fungi to aid in heat 
adaptation, trehalose was discovered more than two dec-
ades ago. Many investigations have confirmed that trehalose 
plays an important role in the early heat shock response (Luo 
et al. 2021). In addition to S. cerevisiae, trehalose has been 

Table 1  Summary of proteins and metabolites associated with fungal heat adaptation

Proteins or metabolites Fungal species The role in respond to heat stress Corresponding references

Lre1 Saccharomyces cerevisiae It increased trehalose accumulation 
and heat resistance and regulated the 
expression of the cyclin genes

Versele and Thevelein (2001)

Swi6p/Hac1p S. cerevisiae They shared contributions to the regu-
lation of temperature, cell wall, and 
other stresses response

Jarolim et al. (2013)

Grx3/Grx4 Cryptococcus neoformans Grx4 is required for membrane and 
cell wall integrity

Hu et al. (2021)

BbThm1 Beauveria bassiana Used as transcription factor for heat 
and membrane integrity

Huang et al. (2019b)

CgSTE11 Candida glabrata It mediates crosstalks between MAPK 
signaling pathways in response to 
environmental challenges

Huang et al. (2019a)

SSD1 S. cerevisiae Gene is necessary for Hsp104-medi-
ated protein breakdown

Mir et al. (2009)

Superoxide dismutase Most fungi It converts the superoxide anion into 
hydrogen peroxide and responds to 
oxidative stress

Ribeiro et al. (2017)

Catalase Most fungi Used as antioxidants or molecular 
chaperones to regulators of signal 
transduction

Gao et al. (2016)

Peroxiredoxin Most fungi It acts as molecular chaperones and 
signal transduction regulators

Wood et al. (2003)

Ct1 C. neoformans Cts1 is a substrate of calcineurin dur-
ing high-temperature stress responses

Aboobakar et al. (2011)

Cyr1 and PKA Candida auris
Aspergillus flavus
Candida albicans

They play an important role in promot-
ing C. auris growth and enhancing 
heat stress and antifungal drugs 
resistance

Giacometti et al. (2009); Kim et al. 
(2021); Yang et al. (2016a)

Pyruvate Aspergillus fumigatus, Cordyceps 
militaris, Metarhizium robertsii, 
Magnaporthe oryzae, Neurospora 
crassa, S. cerevisiae

By secreting pyruvate, fungi can effec-
tively reduce protein carbonylation, 
stabilize mitochondrial membrane 
potential, and promote fungal growth

Zhang et al. (2017)

Glutathione Most fungi It protects mitochondrial DNA from 
oxidative damage

Sugiyama et al. (2000a); Sugiyama 
et al. (2000b)

Trehalose Most fungi Used as a protein stabilizer and 
promotes survival in extreme heat 
conditions

Luo et al. (2021); Piper (1993)

Glycerin S. cerevisiae Maintain yeast osmotic pressure bal-
ance and the stability

Li et al. (2009)

Arabitol Penicillium roqueforti
Rhizomucor miehei

Arabitol may form the core of heat 
resistance of P. roqueforti conidia

Ianutsevich et al. (2020); Punt et al. 
(2020)
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shown to play a protective role in heat stress in C. albicans 
(Arguelles 1997), C. neoformans (Ngamskulrungroj et al. 
2009), and C. parapsilosis (Sanchez-Fresneda et al. 2014). 
Trehalose enables proteins to maintain their conformation at 
high temperatures and inhibits the aggregation of denatured 
proteins. It also helps the fungus to survive in extreme heat 
conditions (Arguelles 1997; Piper 1993). However, failure to 
degrade trehalose after the heat shock response may impair 
cell recovery from heat shock (Singer and Lindquist 1998). 
A recent study showed that increased intracellular treha-
lose levels following heat stress led to increased osmotic 
pressure in Schizosaccharomyces pombe, which in turn 
activates the cell wall integrity pathway. In the fungal heat 
shock response, there is a synergy between trehalose, heat 
shock proteins, and lipids to maintain cell membrane integ-
rity (Peter et al. 2021). Glycerol is also synthesized during 
the sensitive response period of heat shock. It can main-
tain osmotic pressure balance and enzyme stability in yeast 
during heat shock. It also prevents the enzyme from being 
inactivated at high temperature (Blomberg 2000; Li et al. 
2009; Zancan and Sola-Penna 2005). Arabitols, secreted 
by Penicillium roqueforti, have also been shown to play an 
important role in heat resistance (Punt et al. 2020). Arabinol 
has been shown to help resist osmotic stress in the salt-tol-
erant fungus Fusarium sp. (Smolianiuk et al. 2013). Further 
investigation has shown that arabinol is highly expressed in 

the thermophilic fungus Rhizomucor miehei, thus suggest-
ing that this product may help fungi resist osmotic stress 
under heat stress (Ianutsevich et al. 2020). Interestingly, 
C. albicans has been found to resist oxidative and osmotic 
stress by accumulating glycerol and arabitol in the cell 
(Sanchez-Fresneda et al. 2013). Additionally, A. fumigatus 
can decrease the damage caused by osmotic stress by accu-
mulating glycerol (Schruefer et al. 2021). Whether glycerol 
and arabinol secreted by these pathogenic fungi may help 
them survive under high temperature stress requires further 
investigation.

Morphological and structural changes 
of fungi under heat stress

In the face of temperature stress, fungi change morphology 
and structure by perceiving ambient changes in temperature. 
Many studies have focused on this in recent years. Observa-
tion of the morphology and microstructure of cells following 
heat treatment are summarized in Fig. 2. The classic mor-
phogenesis is thermophilic diphasic fungi, which includes 
Coccospora and Histoplasma capsulatum. These fungi can 
change form at high temperatures, enhancing their virulence 
(Klein and Tebbets 2007). In nature, H. capsulatum grows 
in the soil as mold and forms spore-producing hyphae. After 

Normal condition Heat stress Morphology  shift 

Histoplasma  capsulatum Hyphae transform to yeast cells

Candida albicans

Saccharomyces cerevisiae

Aspergillus fumigatus, 
Candida albicans

Penicillium roqueforti

Yeast cells transform to hyphae.

The cell gets bigger, the volume of 
most organelles increased.

The cell gets bigger.

The mycelium cell wall is thickened.

Nucleolus
Mitochondria

Vacuole

Nucleolus
Mitochondria

Vacuole

ETC

References

(Sil 2019)

(Berman 2006)

(Keuenhof et al. 2022) 

(van den Brule et al. 2020a; van 
den Brule et al. 2020b) 

(Fabri et al. 2021; Ikezaki et al. 
2019)

Fig. 2  The observing morphology and microstructure change of cells 
after heat shock. Under external heat stress, some fungi transition 
between the yeast and mycelium states. Simultaneously, the spore 

volume of some fungi increases, the organelles inside the spore also 
markedly change, and unknown structures (electron-translucent struc-
ture) even appear

5422 Applied Microbiology and Biotechnology (2022) 106:5415–5431



1 3

these spores are inhaled into the mammalian host, the host 
body temperature causes the mycelium to change to a yeast 
shape and induce expression of virulence-related genes (Sil 
2019). The mechanism underlying the temperature response 
in H. capsulatum has been elucidated. Ryp4, a transcription 
factor, was identified by analyzing the Ryp regulatory cir-
cuit. Ryp4 was found to be necessary for growth and gene 
expression at the yeast stage and is regulated with Ryp1, 
Ryp2, and Ryp3. This pathway regulates the transition of 
H. capsulatum between yeast and filamentous forms in 
response to temperature changes (Beyhan et al. 2013). By 
contrast, C. albicans grows yeast-like at ambient tempera-
ture while a morphological filamentous form was induced 
at high temperature (Berman 2006). This transformation of 
C. albicans to different forms requires the formation of actin 
lines to coordinate the growth of polarized cells. The tri-
protein complex BNi1-BUD6-AIP5 coordinates nucleation 
in actin cable assembly and hyphal growth, thus assisting 
in filamentous transformation (Xie et al. 2020). Moreover, 
at room temperature, overexpression of C. albicans HSF1 
results in upregulation of positive regulators of filamentation 
(including Brg1 and Ume6), which control the filamentous 
morphology of C. albicans (Veri et al. 2018). Thus, filamen-
tous transformation may be conserved in various filamentous 
fungi and yeasts.

Paracoccidioides brasiliensis is a pathogenic fungus 
causing paracoccidioidomycosis. After changing culture 
conditions, such as temperature or carbon dioxide, the fun-
gus is induced to transition from mycelia to pathogenic yeast. 
Transcriptional analysis of the mycelium and yeast forms 
of P. brasiliensis has revealed upregulation of a variety of 
genes in yeast cells responding to heat shock and involved in 
defending against oxidative stress, including HSP90, HSP70, 
HSP60, and other genes encoding heat shock proteins and 
oxidoreductases (Felipe et al. 2005). Another transcriptome 
analysis has found that the most upregulated genes encode 
exomeric proteins expressed only on the surfaces of yeast 
cells. In addition, a variety of genes related to virulence and 
stress response are upregulated (Carlin et al. 2021). In fact, 
the morphological changes in thermo-dimorphic fungi are 
largely caused by temperature stimulation. Meanwhile, the 
upregulation of transcription factors related to the stress 
response after morphological change also indicates that the 
morphological transformation may facilitate better survival 
during the heat adaptation process. However, whether the 
transformation of fungal morphology directly increases tol-
erance to high temperatures, or is an unrelated phenotype 
caused by stress during fungal heat adaptation, remains to 
be studied.

Recent studies have begun to focus on the structural 
changes of fungi under heat stress, confirming that the mor-
phological changes of fungal spores themselves are also cor-
related with heat resistance. For example, cells were found to 

be larger following heat shock treatment than in an untreated 
group in S. cerevisiae (Keuenhof et al. 2022). The conid-
ial size of P. roqueforti formed at 30 ℃ was also 12–14% 
larger on average than that at 15 ℃ and 25 ℃ (Punt et al. 
2020). The average spore size of Paecilomyces variotii was 
also positively correlated with heat resistance. In addition, 
spore ratio roundness was also significantly correlated with 
heat resistance. Elliptic spores of heat-resistant strains were 
more spherical than those of heat-sensitive strains, while 
those of sensitive strains were more elongated in P. variotii 
(van den Brule et al. 2020a; van den Brule et al. 2020b). 
In recent studies on osmotic stress of S. cerevisiae, signifi-
cant changes in volume spores were also observed. Further 
analysis showed that the change in cell volume was related 
to yeast metabolism under osmotic stress (Saldana et al. 
2021). Osmotic stress affects both growth control and the 
cell cycle, resulting in abnormal fungal spore morphology. 
This unusual morphology results from crosstalk between 
upstream components of the HOG pathway (Brewster and 
Gustin 2014). Fungi not only undergo osmotic stress, but 
also have a direct influence of thermal shock during heat 
treatment. It is unclear whether the change in cell volume is 
related to metabolic enhancement under stress. Moreover, 
the mechanisms underlying spore enlargement and structural 
changes in some organelles following heat treatment have 
not been elucidated.

The internal microstructure of fungal spores also changes 
dramatically under heat stress. The organelle structure of S. 
cerevisiae was significantly altered by mild and continuous 
heat shock at 38 ℃ (Keuenhof et al. 2022); the volumes of 
most organelles, including vacuoles, mitochondria, nuclei, 
and multivesicular bodies (MVBs), were increased while the 
volume of cytoplasm decreased. MVB volume was increased 
nearly 70%. Notably, the authors also observed electron-
translucent structure aggregates near the cell membrane; 
this process may be related to increased membrane fluidity 
(Keuenhof et al. 2022). MVBs are involved in the transport 
of ubiquitin compounds in cells, which may be related to 
the increased intracellular degradation (Henne et al. 2011). 
Changes in MVB structure may accelerate the degradation 
of folded proteins that have accumulated in cells due to the 
heat shock response. However, the mechanism of the above-
mentioned changes in organelles after heat treatment has not 
yet been explored. ZCF8, a previously unidentified transcrip-
tion factor in C. albicans, maintains vacuolar homeostasis 
when fungi are exposed to fluctuations in nitrogen. Overex-
pression of ZCF8 increased the number of large vacuoles in 
S. cerevisiae (Reuter-Weissenberger et al. 2021). Fungal vac-
uole enlargement was observed under both heat stress and 
nitrogen stress. This suggests ZCF8 may also be involved in 
the regulation of vacuolar morphology changes under heat 
stress. In addition to the changes in internal microstructure, 
it was also found that after 5 min of heat shock, the cell wall 
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became significantly thicker in A. fumigatus. Further inves-
tigation found that short-term heat shock stress simultane-
ously triggered co-expression of HSF1 and HSP90. PkcA 
and MpkA of the CWI signaling pathway also regulate HSF1 
and Hsp90 expression. Each pathway component interacts 
with the cell wall to enhance heat resistance in A. fumiga-
tus (Fabri et al. 2021). However, the mechanism underlying 
HSF1-mediated thickening of the A. fumigatus cell wall has 
not yet been elucidated. The mycelium of C. albicans also 
thickens after heat shock treatment (Ikezaki et al. 2019). 
Hsp90 also regulates activation of Mkc1, Hog1, and Cek 
kinases during heat shock in C. albicans. This regulation 
can affect cell wall structure for a long time and lead to heat 
resistance of C. albicans (Leach et al. 2012a). These results 
suggest a need to explore the mechanism of organelle mor-
phological changes during fungal heat adaptation by study-
ing the regulatory circuits composed of multiple signaling 
pathways and transcription factors associated with the fungal 
stress response.

Thermal adaptation of pathogenic fungi 
in vivo

In addition to thermal shock in the natural environment, 
pathogenic fungi are also affected by thermal shock in mam-
malian hosts. The fungus spreads from the environment to 
various host sites, including the mouth, lungs, blood, and 
central nervous system. In response to pathogenic fungal 
infection, the host produces both exogenous and endogenous 
pyrogens through a series of signals that travel to the brain. 
These pyrogens activate heat neurons in the anterior hypo-
thalamus to achieve a higher thermal balance point, resulting 
in fever (Ogoina 2011). This increased temperature leads 
to heat stress for the invading pathogens. At the same time, 
the body’s immune system quickly responds to the invading 
pathogens. The detection and elimination of fungal patho-
gens depends on phagocytes of the innate immune system, 
especially macrophages and neutrophils (Erwig and Gow 
2016). Invading fungi respond to the elevated temperature 
stress by regulating gene expression to alter their morphol-
ogy and metabolites, which contribute to fungal immune 
escape (Hopke et al. 2018).

Melanin is a dark green, brown, or black antioxidant 
polyphenol pigment required for the secretion of many fun-
gal pathogens to maintain pathogenicity (Lee et al. 2019). 
Melanin production significantly enhances the virulence 
of human pathogenic fungi and contributes to the survival 
of fungi in harsh environments (Nosanchuk et al. 2015). A. 
fumigatus produces at least two types of melanin, pyomela-
nin and dihydroxynaphthalene (DHN) melanin. Pyomela-
nin protects fungi from ROS and acts as a defensive com-
pound in response to cell wall stress (Keller et al. 2011; 

Schmaler-Ripcke et al. 2009). Pksp is a precursor in the 
formation of DHN-melanin. Active PksP not only inhibits 
apoptosis of phagocytes by interfering with host PI3K/Akt 
signaling, but also effectively inhibits the acidification of 
conidium-containing phagosomes. These features enable A. 
fumigatus to survive in phagocytes and to escape human 
immune effector cells, successfully multiplying in humans 
(Couger et al. 2018; Heinekamp et al. 2012). C. neoformans 
is a fungus that has been well studied in vivo. Its polysac-
charide capsules and melanin aid in immune system escape 
(Matsumoto et al. 2019). It has been shown that melanin 
production, regulated by CAMP and the HOG pathway, 
improves C. neoformans resistance to heat and ROS, which 
help the fungi survive at human temperatures (Kwon-Chung 
and Rhodes 1986). A recent investigation showed that mela-
nin synthesis is also associated with the regulation of HSF1. 
Four direct targets of HSF1 have been found in the plant 
pathogen Colletotrichum gloeosporioides, all of which are 
the melanin synthesis gene CgHSF1, which activates mela-
nin biosynthesis through transcription (Gao et al. 2022). In 
addition to the secretion virulence factor, adaptation of C. 
neoformans to host core temperature is accompanied by a 
decay of ribosomal protein mRNA mediated by CCR4, the 
major mRNA deadenylase. RNA decay also regulates expo-
sure of C. neoformans cell wall glucan to avoid phagocytosis 
by immune cells (Bloom et al. 2019).

Amino acid transport is an important nutritional mecha-
nism for fungi. A variety of amino acid permeases of C. 
neoformans can help resist environmental stress. These 
amino acid permeases can function at elevated temperatures, 
thus allowing amino acid transport to occur at unfavora-
ble temperatures to ensure proper nutrient supply (Martho 
et al. 2016). Moreover, the roles of amino acid permeases of 
C. neoformans in resisting environmental stress have been 
confirmed to be related to Ras signal transduction (Calvete 
et al. 2019). However, amino acid permease in C. albicans 
does not show a temperature-related phenotype, and the 
amino acid permease Gap4 induces morphogenesis of C. 
albicans by participating in S-adenosylmethionine transport 
(Kraidlova et al. 2016). Furthermore, many natural fungi 
also change drastically when they enter their mammalian 
hosts. This change in temperature gradient from the environ-
ment to the body triggers the fungal adaptive development 
program (Gow et al. 2002). Colonization of C. albicans in 
the gastrointestinal tract is enhanced by the coexistence of 
mycelium and yeast (Witchley et al. 2019). By sensing ambi-
ent temperature, thermal-biphasic fungi, such as Blastomy-
ces dermatitidis, H. capsulatum, Penicillium marneffei, and 
Sporothrix schenkii, could undergo mycelium-to-yeast trans-
formation (Casadevall 2017), enhancing their pathogenicity 
and immune evasion.

At present, because of the complex internal conditions of 
the body, there are few studies on fungal thermal adaptation 
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in human infections. To survive in a host, pathogenic fungi 
must survive temperature stress, nutrient stress, acid–base 
stress, oxidative stress, and immune response stress. It is 
thus difficult to study the effect of a single factor, body tem-
perature, on invasive fungi. These multiple stresses jointly 
regulate the expression of genes related to the stress response 
through multiple signal transduction pathways. These mul-
tiple responses may help fungi enhance their adaptation to 
internal stress and accelerate pathogenic infection. In fact, 
when pathogenic fungi are exposed to a single stress sig-
nal in the body, they also increase their tolerance to other 
stresses (Brown et al. 2019; Mitchell et al. 2009). Human 
temperature is an important factor that triggers expression 
of virulence genes in pathogenic fungi to cope with various 
stresses. Therefore, further investigation of how fungi adapt 
to heat stress in the human body will be important.

Conclusion

In this review, we summarize the latest research on the 
mechanisms of heat resistance in fungi and classify them 
into network regulatory mechanisms of heat perception, 

transcriptional regulation, response, and adaptation. We 
also discussed the process of heat adaptation of patho-
genic fungi in vivo. Pathogenic fungi can strengthen their 
immune escape ability when stimulated by changes in 
human body temperature. An outline of the fungal ther-
mal adaptation mechanism is shown in Fig. 3. A complex 
signal regulation network underlies each part of the fungal 
heat adaptation process. Each network will require further 
investigation. In general, fungal heat stress is accompa-
nied by oxidative and osmotic stress, as well as immune 
response stress in the body (Kwon-Chung and Rhodes 
1986). There are many shared regulatory elements in 
the responses to these abovementioned stresses in fungi 
(Caspeta and Nielsen 2015). For example, CgSTE11 of 
C. glabrata plays an important role in high temperature 
tolerance and broad cross-tolerance to other environmen-
tal stresses, including acids, alcohol, and oxidants (Huang 
et al. 2019a). We previously showed that there are cross-
linkages between regulatory elements, signaling path-
ways, and transcription factors, in the resistance to various 
stresses (Song et al. 2016; Xin et al. 2020). These provide 
clues that elements of other stress response pathways may 
play an identical or similar role in fungal heat tolerance 
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Fig. 3  Outline of the process of fungal thermal adaptation mecha-
nism. The fungal cell membrane may be the first sensor of a sudden 
increase in external temperature; it subsequently transmits heat sig-
nals into the cell via lipid rafts and other substances that act as signal-
ing molecules. After receiving a heat signal, cells control the expres-
sion of heat-resistance genes and secrete a variety of substances (such 
as heat shock proteins, trehalose, and glycerin) through the regulation 
of a series of transcription factors, thus helping cells resist the dam-

age caused by heat stress. (a) When the concentration of unfolded 
proteins exceeds the capacity of Hsp70 at elevated temperature, 
Hsp70 is released from Hsf1, and the released Hsf1 induces more 
Hsp70. After sufficient Hsp70 is produced to restore protein homeo-
stasis, Hsp70 binds and inactivates Hsf1. Experiments have indicated 
that Hsf1 expression is also inhibited by HS90 in vitro. However, fur-
ther evidence is needed to explore the specific mechanism
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and adaptation. We can further confirm central genes that 
play a major role in fungal responses to various stresses. 
Finally, these molecules can be used as targets to design 
effective drugs to combat pathogenic fungal diseases, in 
particular for antifungal and heat-resistant fungi.
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