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Abstract 
Baculoviruses are insect pathogens widely used as biotechnological tools in different fields of life sciences and technolo-
gies. The particular biology of these entities (biosafety viruses 1; large circular double-stranded DNA genomes, infective 
per se; generally of narrow host range on insect larvae; many of the latter being pests in agriculture) and the availability of 
molecular-biology procedures (e.g., genetic engineering to edit their genomes) and cellular resources (availability of cell lines 
that grow under in vitro culture conditions) have enabled the application of baculoviruses as active ingredients in pest control, 
as systems for the expression of recombinant proteins (Baculovirus Expression Vector Systems—BEVS) and as viral vectors 
for gene delivery in mammals or to display antigenic proteins (Baculoviruses applied on mammals—BacMam). Accordingly, 
BEVS and BacMam technologies have been introduced in academia because of their availability as commercial systems and 
ease of use and have also reached the human pharmaceutical industry, as incomparable tools in the development of biologi-
cal products such as diagnostic kits, vaccines, protein therapies, and—though still in the conceptual stage involving animal 
models—gene therapies. Among all the baculovirus species, the Autographa californica multiple nucleopolyhedrovirus has 
been the most highly exploited in the above utilities for the human-biotechnology field. This review highlights the main 
achievements (in their different stages of development) of the use of BEVS and BacMam technologies for the generation of 
products for infectious and noninfectious human diseases.

Key points  
• Baculoviruses can assist as biotechnological tools in human health problems.
• Vaccines and diagnosis reagents produced in the baculovirus platform are described.
• The use of recombinant baculovirus for gene therapy–based treatment is reviewed.
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Introduction

Technologies in the life sciences have grown exponentially 
since the birth of genetic engineering in the 1970s, a central 
discipline within biotechnology. The possibility of interven-
ing and modifying the double-stranded DNA molecules of 
organisms and their associated mobilomes (viruses, plas-
mids, transposons) has made possible an expansion of the 
general knowledge about living matter but has also facili-
tated the emergence of numerous goods and services that have 
improved the quality of human life. For example, baculovi-
ruses, despite being insect parasites, have become highly use-
ful tools for the development of beneficial products in human 
health. This review will describe the main technologies related 
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to baculoviruses and human health, the progress in this field, 
and the opportunities and prospects arising from that work. 
The recurring challenges of emerging human pathogens that 
rapidly spread locally or internationally, such as influenza 
viruses, arboviruses, and coronaviruses, plus the old prob-
lems that have plagued humanity for centuries (e.g., cancer 
and coronary and genetic diseases), constitute a fertile field 
where baculoviruses and their associated technologies can 
provide benefits.

Survey methodology

Extensive literature research was conducted using the fol-
lowing electronic databases: PubMed; Science Direct; 
Google Scholar; and Scopus. The keyword combinations 
such as baculovirus and molecular biology, baculovirus and 
viral cycle, baculovirus and expression vector, baculovirus 
and diagnosis, baculovirus and vaccine, baculovirus and 
virus like particles, baculovirus and display, emerging and 
viral diseases, baculovirus and influenza virus, baculovirus 
and arbovirus, baculovirus and Alphavirus, baculovirus and 
Flavivirus, baculovirus and dengue virus, baculovirus and 
zika virus, baculovirus and yellow fever virus, baculovirus 
and West Nile virus, baculovirus and japanese encephalitis 
virus, baculovirus and chikungunya virus, baculovirus and 
coronavirus, baculovirus and SARS-CoV, baculovirus and 
MERS-CoV, baculovirus and SARS-CoV-2, baculovirus and 
gene therapy, baculovirus and adeno-associated viruses, bac-
ulovirus and BacMam, BacMam and gene therapy, BacMam 
and cancer, BacMam and vascular diseases, BacMam and 
tissue engineering, or BacMam and regenerative medicine 
were utilized to build literature review. All articles were 
exhaustively studied to be employed as references in the 
present work.

Original papers, mainly from the last decade, were 
selected where the BEVS platform was used for the diag-
nosis, treatment, and prevention of diseases that affected 
humanity in recent years. A similar criterion was applied 
for the conceptual use of baculoviruses as gene therapy vec-
tors, selecting those studies that carried out tests on animals. 
Also, some older papers are considered when their inclusion 
is important for the topic development. All the articles were 
selected based on their scientific importance and publica-
tion year.

Baculoviruses

The planet’s virome is a space rich in a diversity of para-
sitic entities of organisms, which abundance and variety 
offer promising opportunities for biotechnological appli-
cations (Paez-Espino et al. 2016). Many viruses that do 

not infect humans or other mammals thus become tempt-
ing instruments for the development of associated tech-
nologies—for example, the production of recombinant 
proteins or the generation of viral vectors adapted to the 
delivery of specific sequences to target cells and tissues, 
among other possible applications (Mateu 2011). In this 
regard, baculoviruses stand out as a prominent group of 
viral entities with a major role in biotechnology.

Baculoviruses in nature

Baculoviruses are double-stranded DNA viruses that infect 
insects (larval stage) of the orders Lepidoptera, Hymenop-
tera, and Diptera (Fig. 1). The viral genomes are made up of 
a large circular molecule (about 80–180 kbp) that is packed 
in two different structures (Fig. 1C): budded viruses (BVs) 
or occlusion-derived viruses (ODVs). In both types of viri-
ons the viral DNA is associated with proteins conforming to 
a bacilliform structure known as a nucleocapsid (Nc) which 
in turn is enveloped by a lipid membrane that is different 
between BVs and ODVs (Rohrmann 2019). Essential pro-
teins for supporting entry into susceptible cells are located in 
these membranes. Thus, the F and GP64 proteins are present 
in the BV envelopes (Westenberg et al. 2007), whereas the 
“per-os–infectivity factors” (the PIF complex), responsible 
for penetrating the midgut-epithelium cells of insects, occur 
in the ODV membranes (Wang et al. 2019b). We need to 
note that ODVs are, in turn, immersed in a protein crystal—
mainly up made of polyhedrin (polh) or granulin depending 
on the species—denominated occlusion body (OB) that give 
them great stability in the environment (Fig. 1A). Hence, the 
name of nucleopolyhedrosis or granulosis that the diseases 
from these viruses also receive from the microscopically 
observable shape of their OBs in infected cells. Moreover, 
certain species of nucleopolyhedrosis carry several Ncs in 
their ODVs, while others carry only one unit, causing the 
former species to be referred to as “multiple nucleopoly-
hedroviruses” and the latter as “single nucleopolyhedrovi-
ruses.” Granuloviruses usually carry a single Nc per ODV 
(Fig. 2B) (Rohrmann 2019).

The viral cycle begins when susceptible larvae consume 
OBs. In the midgut, the crystals dissolve through the action 
of alkaline pH and proteases, and the ODVs are released. 
These viral forms, once in intestinal cells, will initiate the 
primary infection, which will then spread to different tis-
sues of the insect through the production of BVs (secondary 
infection) generally ending in the death of the larva (Saxena 
et al. 2018).

The family Baculoviridae are composed of numer-
ous species classified into 4 genera (Jehle et al. 2006): 
Alphabaculovirus (lepidopteran-specific nucleopoly-
hedroviruses); Betabaculovirus (lepidopteran-specific 
granuloviruses); Deltabaculovirus (dipteran-specific 
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nucleopolyhedroviruses); and Gammabaculovirus (hyme-
nopteran-specific nucleopolyhedroviruses). The genomes 
contain about 90–180 protein-encoding genes, of which 
38 (known as core genes) are shared by all members 
(Miele et al. 2011; Garavaglia et al. 2012; Javed et al. 
2017). Genes are expressed differentially throughout 
a viral cycle, either mediated by the host's transcrip-
tion machinery (early stages) or by the virus-encoded 
RNA polymerase (late stages). The variable gene con-
tent generates a great intra- and interspecies—indeed, 
pangenomic—diversity (Garavaglia et  al. 2012), with 
many auxiliary genes having been described that, for 
example, favor viral dissemination (Ishimwe et al. 2015) 
or produce notable changes in the physiologic state of the 
larvae (Gasque et al. 2019). The baculoviral prototype 
species is Autographa californica multiple nucleopoly-
hedrovirus (AcMNPV; of the genus Alphabaculovirus), 

from whose properties most nonagricultural biotechno-
logical applications are derived.

Biosecurity aspects for humans 
and the environment

Baculoviruses are abundant in nature and play fundamental 
ecologic roles in the population dimension of the insects they 
infect (Cory and Hails 1997). Because most of these pathogens 
have a very narrow host range, they depend on particular spe-
cies of invertebrates for their natural sustenance (Rohrmann 
2019). Baculoviruses do not infect vertebrates and although 
BVs have been found to be able to transduce cells from animals 
that are not their natural hosts—including mammals (Airenne 
et al. 2011; Ono et al. 2018; Parsza et al. 2020)—viral DNA is 
unable to replicate and support progeny generation (Tija et al. 
1983; Kost and Condreay 2002; Parsza et al. 2020). In fact, cell 
lines from mammals transduced with baculoviruses revealed 

Fig. 1  Baculovirus virions. Illustrations describing the main charac-
teristics of baculovirus morphologies. A Representation of typical 
shapes and dimensions of the occlusion bodies (OBs) of nucleopoly-
hedroviruses (NPV) and granuloviruses (GVs). B Representation of 
cross-sections on the OBs, revealing the occlusion-derived viruses 
(ODVs) present in multiple nucleopolyhedroviruses (MNPVs), single 
nucleopolyhedroviruses (SNPVs), and GVs. The latter illustrate two 
different cuts for each particle. C Comparative illustration between 
ODVs and budded viruses (BVs). The nucleocapsids are the same, 
but the envelopes are different (that of ODV is derived from the 

nuclear membrane of the infected cell, whereas that of BV is derived 
from the plasma membrane). Ncs are polar structures manifesting a 
different composition and differing forms in the extreme ends and are 
composed of mainly the VP39 protein. The covalently closed circular 
double-stranded DNA (cccdsDNA) is associated with a basic protein 
called p6.9. The per-os–infectivity (PIF) complex is composed of var-
ious proteins and is present in only the ODV envelope. The fusogenic 
GP64 protein is present only in the BV envelope of Group I-alphabac-
uloviruses (e.g., in AcMNPV), while in the remaining clades this role 
is performed by the F protein
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that some viral early genes (e.g., PE38 and IE-01) evidenced 
a limited expression while the late viral genes (dependent on 
viral RNA polymerase) remained silent (Shin et al. 2020).

As to immunologic aspects, baculoviruses generate a low 
response in mammals, but do not evoke systemic antiviral 
reactions (Gronowski et al. 1999; Abe et al. 2003; Bocca 
et al. 2013), rather an induction of innate immunity that 
produces a type I interferon–mediated by Toll-like recep-
tor–dependent and Toll-like receptor–independent path-
ways (Abe et al. 2005, 2009). Other transcriptomic analyses 
found similar evidence, including that baculoviruses slightly 
induce genes associated with Toll-like receptors, cytokine 
signaling, and complement (Shin et al. 2020).

The BV forms of baculoviruses handled under laboratory 
conditions are not infective to natural hosts—they would be 
infective only by injection into larvae—and are completely 
safe for human operators, as previously mentioned. In view 
of such considerations, these virions are generally regarded 
as entities that can be manipulated in facilities with biosafety 
level 1, as indicated in the guidelines for working with viral 
vectors of research-and-development laboratories from 

prestigious universities and institutions worldwide. As has 
been demonstrated through their uses in agriculture, baculo-
viruses do not infect nontarget organisms and do not produce 
adverse effects on plants or humans and other animals (Kost 
and Condreay 2002).

Baculoviruses in biotechnology

The initial application of baculoviruses (Fig. 2) was the use 
as active ingredients for bioinsecticide products for the con-
trol of agricultural and forestry pests (Haase et al. 2015; 
Lacey et al. 2015). Currently recognized by the International 
Committee on Taxonomy of Viruses are 84 species—55 
alphabaculoviruses, 26 betabaculoviruses, 1 deltabaculovi-
rus, and 2 gammabaculoviruses (Harrison et al. 2018), most 
being pathogenic for specific arthropods that are harmful to 
crops. For this reason, numerous products have been devel-
oped and placed on the market, thus participating as one of 
the alternatives for integrated pest management since the 
second half of the twentieth century. This development has 
also enabled the regulatory agencies of many countries to 

Fig. 2  Applications of baculoviruses. Illustrations indicating the main 
uses of baculoviruses. A Because of the research and development 
carried out on the biology of baculoviruses, 3 main applications have 
been generated: bioinsecticides, baculovirus  expression  vector sys-
tems (BEVS), and baculoviruses applied to mammals (BacMam). B 
Main procedures for the generation of bioinsecticide products based 
on occlusion bodies (OBs). C Main procedures for the generation 

of protein products based on recombinant budded viruses (recBVs) 
infecting insect cells and subsequent downstream processes. D. Main 
procedures for the generation of virion products based on recBVs 
infecting insect cells and subsequent downstream processes. Only 3 
alternatives of recBVs are illustrated: virions that display proteins in 
the envelope; virions that carry transgenes for the expression in mam-
mal cells; virions that display proteins in the nucleocapsid
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certify the safety of these viruses for humans and other non-
target organisms. We need to emphasize that for this applica-
tion in the agricultural sector wild-type baculoviral OBs are 
used and that their production is carried out mainly through 
infections in larvae reared in insectaries (Haase et al. 2015).

Subsequently, other uses emerged for members of Bacu-
loviridae owing to (i) the facilities offered by genetic engi-
neering through viral-DNA manipulation (Luckow et al. 
1993), (ii) the natural condition that the viral genome is 
infective per se in host cells (Rohrmann 2019), and (iii) the 
availability of more than 320 insect cell lines capable of 
multiplying baculoviruses under in vitro conditions (Lynn 
and Harrison 2016). Unlike the circumstance in the agricul-
tural sector, most of these new applications derive from a 
single alphabaculovirus, AcMNPV. In particular, the iden-
tification of two main groups of applications for engineered 
baculoviruses is possible: (a) systems for the expression of 
recombinant proteins within eukaryotic contexts and (b) the 
use of recombinant virions in mammals for different goals. 
The former are generally called Baculovirus Expression Vec-
tor Systems or simply BEVS (O’Reilly et al. 1994; Possee 
et al. 2020) and comprise platforms composed of vectors for 
molecular cloning that enable modifications of the AcMNPV 
genome (many being based on bacmids) and susceptible 
insect cell lines plus their culture media or a whole insect as 
a biofactory (Martínez-Solís et al. 2019). The latter group 
contains engineered baculoviruses applied to mammals 
and is recognized as BacMam technologies (Airenne et al. 
2013; Mansouri and Berger 2018; Ono et al. 2018). Unlike 
BEVS, which are a means for the generation of products 
(e.g., recombinant proteins, virus-like particles), in the Bac-
Mam technology, the virions are usually the final product 
for, among other applications, immunogenic or gene therapy 
uses (as protein-display systems or as gene vectors). These 
developments have led to different regulatory considera-
tions because in some instances baculoviruses can be only 
a contaminant, while in others they are the main ingredient 
of the products. In contrast to the use of this technology in 
the production of bioinsecticides (where OBs of many viral 
species and production systems are used in larvae), genome-
engineered BVs of AcMNPV multiplied on the Sf9 or Sf21 
insect cell lines, among others, are generally the bases of 
the BEVS and BacMam technologies (Kwang et al. 2016; 
Possee et al. 2020).

Baculoviruses as tools for the control 
and diagnosis of emerging human infectious 
diseases

The BEVS is a simpler, safer, faster, and easier-to-scale-
up method to produce recombinant proteins at a lower cost 
than traditional systems based on mammalian cell lines. In 

recent years, this platform has been widely used in academia 
and industry to produce viral structural proteins (VSPs) for 
the development of vaccines and therapeutic and diagnos-
tic assays to respond quickly in the event of epidemiologic 
emergencies (Kumar et al. 2018).

The AcMNPV is the most studied and implemented bac-
ulovirus for biotechnological purposes in the world (Pre-
manand et al. 2018). Several commercially susceptible cell 
lines are available such as those mentioned above derived 
from the ovary of Spodoptera frugiperda larva (Sf21, Sf9, 
expresSF +) or Trichoplusia ni larva (BT1-Tn5B1-4, mar-
keted as High Five™) (Martínez-Solís et al. 2019). As a 
low-cost alternative, the use of whole insect larvae or pupae 
as an ersatz bioreactor is possible. This technology enables 
a higher yield than insect cell lines in only a few weeks and 
at a lower cost. Among the lepidopteran species, the most 
exploited are S. frugiperda, Rachiplusia nu, and T. ni. In 
addition, species like Bombyx mori (silkworm) are widely 
exploited in Asian countries as small biofactories. This spe-
cies and its derived cell line Bm5, however, are susceptible 
to another nucleopolyhedrovirus belonging to the family 
Baculoviridae, the Bombyx mori nucleopolyhedrovirus (Tar-
govnik et al. 2016).

BEVS offers a eukaryotic environment providing adequate 
posttranslational modification, but the insects are not capable 
of producing human-type N-glycoproteins (Fabre et al. 2020). 
Since 1983, when the first protein was expressed by means 
of this system, different strategies have been implemented in 
order to improve the technology, upon considering both the 
host and the viral vector (Martínez-Solís et al. 2019). For 
instance, the N-glycosylation profile has been improved by 
the development of novel insect cell lines and viral vectors 
capable of producing human glycosyltransferase (Palmberger 
et al. 2013; Maghodia et al. 2021 ). In addition, the system 
provides strong promoters such as polh and p10 (derived 
from the polyhedrin and p10 genes, respectively) to produce 
recombinant proteins. Moreover, new chimeric promoters 
(polh-pSeL, polhpB2, pB2p10) and other elements have been 
incorporated into the viral vector to increase the yield and 
stability of the protein to be expressed (López-Vidal et al. 
2013; Martínez-Solís et al. 2019).

In recombinant-protein production, the use of BEVS 
has two main methodological steps. First, the recombinant 
virus must be produced, and next the host has to be infected 
to achieve the final bioproduct. The whole process takes 
between 4 and 8 weeks (Cox 2012; Cox et al. 2015; Tar-
govnik et al. 2016). Various approaches have been devel-
oped for the generation of recombinant baculovirus (rec-
baculovirus) including homologous recombination (i.e., 
BaculoGold™ system, BD Bioscience; BacPAK™ system, 
Clontech), site-specific transposition (i.e., Bac-to-Bac™ 
system, Thermo Fisher; Multibac™ system, Geneva Bio-
tech) or combined technologies (i.e., flashBAC™ system, 
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Oxford Expression Technologies) (Martínez-Solís et al. 
2019). Furthermore, the systems commercially available 
have enabled a simultaneous expression of two proteins, as 
in the example of the Bac-to-Bac™ system (Thermo Fisher), 
or a multiprotein complex with novel systems such as Multi-
Bac™ (Geneva Biotech). Of course, this degree of expres-
sion can be expanded by using internal–ribosome-entry-site 
sequences or 2A peptides (or by customizing commercial 
vectors through the addition of new transcriptional units). 
Moreover, as mentioned before, the system is completely 
secure from biohazard and represents no form of risk to 
operators because the baculovirus cannot replicate in mam-
malian cells. For all of the above considerations, BEVS is a 
system with great biotechnological value for recombinant-
protein production.

As we have emphasized, BEVS is widely used to pro-
duce VSPs (Mazalovska and Kouokam 2020). When one or 
more of these VSPs are coexpressed, they can self-assemble 
forming nonreplicative and nonpathogenic particles known 
as virus-like particles (VLPs). VLPs are one of the most 
promising tools in vaccine development. Various VLP-based 
vaccines that are currently at a clinical status have been man-
ufactured through the use of BEVS, as has been extensively 
reviewed by Kumar et al. (2018). In this regard, vaccines 
against infectious diseases caused by Ebola virus, Enterovi-
rus, Parvovirus, Norwalk virus, Polyomavirus, Papilloma-
virus, Simian virus 40, Rotavirus, Human immunodeficiency 
virus, and Respiratory syncytial virus are now being studied 
(Kumar et al. 2018). These vaccines represent a safer choice 
than established technologies, like inactivated or attenuated 
viruses, because those immunogens successfully mimic the 
virion morphology without the presence of any nucleic acid 
and, at the same time, are more likely to induce stronger cel-
lular and humoral responses than single-protein vaccines. 
Within the context of emerging viral infections such as 
influenza, arboviral, or coronavirus-related diseases, 
VLPs represent an even more relevant technology in view 
of their faster development times and greater flexibility 
than with traditional approaches for endemic diseases like 
the influenza vaccine manufactured in eggs (Maranga 
et al. 2002; López-Macías 2012). For the development 
of these strategies, baculovirus technology is a power-
ful ally because of the ability to assemble viral particles 
with high protein yields, with safer and simpler handling, 
and in the absence of adventitious agents or egg-related 
contaminants.

In addition, and likewise, for vaccine purposes, the bacu-
lovirus itself can be used as an antigen-presenting vehicle by 
displaying immunogenic peptides or recombinant proteins 
on its surface (Tsai et al. 2020). This technology (being able 
to be included in BacMam approaches for vaccine uses) is 
known as baculovirus display and has the ability to mount 
a strong immune response. The antigen presentation on the 

BV surface is achieved mainly by the fusion of heterolo-
gous proteins with GP64, the major surface glycoprotein of 
group-1 alphabaculovirus BVs (cf. the BV, Fig. 1C) (Kost 
et al. 2005; Xu et al. 2011). Moreover, baculoviruses can 
be used as DNA vectors to express the antigen in the tissue 
where the vaccine is injected, as is the circumstance with the 
new generation of recombinant adenovirus-based vaccines.

In summary, baculovirus technology has been success-
fully implemented (i) to express VSPs for use as vaccine can-
didates, with those immunogens exhibiting strong humoral 
and cellular responses, (ii) to develop diagnostic tests, and 
(iii) to produce VLPs with excellent results and comparative 
advantages versus established systems—including admin-
istration routes and the potential use as a delivery vector. 
All of these advantages indicate the widespread use of this 
technology as a tool for studying and developing strategies 
for future emerging virus threats and pandemics. In the next 
section, we will describe the use of baculovirus in the fight 
against the main emerging viral diseases, where most of the 
research work has been carried out in recent years (i.e., influ-
enza viruses, arboviruses, and coronaviruses). The use of the 
platform for the diagnosis and prevention of other clinically 
significant viral diseases, however, are comprehensively 
reviewed by Kumar et al. (2018).

Influenza vaccines and diagnostic‑reagent 
production

Influenza—caused by the virus of the same name—is a 
highly contagious respiratory disease spread worldwide that 
exhibits high rates of morbidity and mortality. Among the 
four types of influenza viruses, A and B are responsible for 
the greatest number of seasonal infectious, producing around 
5 million cases of virus-mediated severe flu and around 
650,000 fatal cases per year all over the world (Harding and 
Heaton 2018; Basak et al. 2020). Furthermore, influenza A 
has caused four pandemics since 1918 (Harding and Heaton 
2018), one being produced by the H1N1 influenza A in 2009 
(Shim et al. 2019).

Influenza is a segmented negative-strand RNA virus 
belonging to the Orthomyxoviridae family. The virus enve-
lope is formed by a lipid bilayer and three transmembrane 
surface proteins encoded by the viral genome: hemaggluti-
nin (HA), neuraminidase (NA), and the proton-channel pro-
tein M2 (Veit and Thaa 2011). These components together 
with the viral-matrix protein 1 (M1) contribute to the virus 
assembly (Hilsch et al. 2014). Among the VSPs, the viral 
glycoprotein, HA and NA, are the most antigenic surface 
species involved in the viral pathogenesis—i.e., attachment 
and release, respectively (Kash et al. 2004). At least 18 dif-
ferent HA subtypes exist (H1–H18) along with 11 NA sub-
types (N1–N11) (Kosik and Yewdell 2019).
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Serious influenza infection is prevented through a vac-
cination that reduces the impact of the disease (Fauci 2006). 
Because HA is the only influenza component responsible for 
the induction of neutralizing and protective antibodies in 
infected individuals, hemagglutinin is usually the principal 
component in vaccine production (Ting-Hui-Lin et al. 2019). 
Notwithstanding, antibodies directed against NA reduce the 
viral replication and the severity of the disease by block-
ing the viral receptor; therefore, NA can also be an effec-
tive ingredient for influenza vaccines (Deng et al. 2012). 
As both the antigens HA and NA are subject to selected 
point mutation, the formulation of the influenza vaccines 
must be annually updated in the fight against the seasonal 
flu (Fauci 2006). Often, new influenza subtypes with new 
antigenic properties can arise because of the reassortment 
of viral genome components among different virus strains. 
This trait shuffling may be a cause of pandemic outbreaks 
(Harding and Heaton 2018).

The conventional production platforms for the inacti-
vated influenza virus vaccines are based on embryonated 
eggs and, in consequence, do not offer a rapid response in 
the circumstance of a pandemic. The production requires 
around 6 months after the circulating strain be detected 
(Ting-Hui-Lin et al. 2019). This use of eggs works well, 
although the approach has many other drawbacks. For 
example, the whole-virus manipulation requires special-
ized containment laboratories, thus complicating the scal-
ing-up in a pandemic outbreak. In addition, an adaptation 
of the viral strain to multiplication in eggs is also usually 
necessary, a time-consuming process that is not always 
successful. Furthermore, the production requires the use of 
antibiotics and noxious chemicals for the final inactivation 
of the virus. and this type of vaccine is even not recom-
mended for sufferers of egg-protein allergy. To overcome 
these limitations, different alternative systems to produce 
the influenza vaccines in a more rapid and cost-effective 
way are being explored (Harding and Heaton 2018; Ting-
Hui-Lin et al. 2019). Among these approaches, the recom-
binant subunit protein–based vaccines have been exten-
sively explored, with the associated manufacturing process 
not requiring specialized facilities for virus manipulation. 
The production involves the generation of the viral-enve-
lope antigen via recombinant-DNA technology and further 
utilization of the purified antigen as the active ingredient. 
Consequently, BEVS emerged as a suitable alternative 
flexible platform for the fast production of the viral anti-
gen by the infection of insect cells with rec-baculoviruses 
containing the HA gene (He et al. 2009). Within this con-
text, in 2013 the Food and Drug Administration (FDA) in 
the USA licensed the first recombinant HA-based trivalent 
influenza-virus vaccine (a cocktail of three strains) named 
FluBlok® developed by the Sanofi Pasteur-Protein Science 
Corporation and produced in infected expresSF + insect 

cells. This cell line was established to grow in serum-free 
medium at high densities in suspension cultures that are 
scalable in simple stirred tank reactors (Buckland et al. 
2014). The three HA variants are expressed by coinfection 
with three independent rec-baculoviruses encoding differ-
ent human hemagglutinins (Meghrous et al. 2009). Stand-
ardized upstream and downstream processes have been 
developed to rapidly produce new HA variants and the 
entire procedure requires only 8 weeks (Cox et al. 2015). 
This vaccine has been demonstrated to be safe, immuno-
genic, and effective after several clinical trials were con-
ducted (King et al. 2009); and in 2017, the trivalent vac-
cine was replaced by a quadrivalent version.

Moreover, with an aim at reducing the production costs 
and improving the antigen-expression levels, living insect 
larvae were also implemented as biofactories. Thus, the 
expression of the HA ectodomain—fused with the retention 
signal KDEL, the (Lys-Asp-Glu-Leu) endoplasmic-reticu-
lum protein—in T. ni larvae infected with rec-baculoviruses 
was four-fold higher than that obtained with Sf21 insect cells 
(Gomez-Casado et al. 2011). In addition, the HA ectodo-
main fused with the viral signal peptide of GP64 was more 
highly expressed in the hemolymph of Spodoptera litura 
larvae (Hsieh et al. 2018). This signal peptide facilitated 
the necessary posttranslational modifications along with the 
secretion of the recombinant protein (Targovnik et al. 2019). 
The HA concentration in the hemolymph was around 100-
fold higher than in Sf21 cell-culture medium (Hsieh et al. 
2018). In all these reports, the larva-derived HA induced 
protective immunity in vaccinated mice.

Recently, BEVS has also been used as an antigen-expres-
sion platform for the development of diagnostic tests for 
influenza. Shim et al. (2019) developed a process to produce 
in insect cells the HA ectodomain as a suitable antigen to 
develop an enzyme-linked immunosorbent assay (ELISA) 
for detecting anti-HA antibody in serum samples derived 
from infected and vaccinated individuals (Shim et al. 2019).

Furthermore, vaccines based on NA have also been 
proposed to prevent viral spread (Faletti et al. 2014) such 
as FluNhance™ (Sanofi Pasteur-Protein Science Corpo-
ration), which is an influenza-subunit vaccine based on a 
recombinant expression of the NA antigen in insect cells. 
This product is currently undergoing clinical trial (phase 
II challenge) and would be used as a booster of the already 
licensed vaccine to thus induce a broader and more protec-
tive immunity. Individuals vaccinated with FluNhance™ in 
combination with the conventional influenza virus vaccine 
have developed milder illnesses (Johansson et al. 2002). 
We must also mention that NA has likewise been success-
fully expressed in insect larvae. In fact, the production of 
the same amount of NA that is generated in 153 mL of 
cell suspensions was possible with only six larvae of R. nu 
(Faletti et al. 2014).
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In addition, BEVS were used to develop an influenza-
VLP vaccine by coexpressing HA, NA, and M1 proteins 
in insect cells (Bright et al. 2007), thus representing a sig-
nificant improvement in immunogenicity with respect to 
the recombinant-subunit vaccine. These VLPs can simulate 
the virus structure and induce protective immunity against 
the infection owing to the production of high anti-HA– and 
anti-NA–antibody titers (Bright et al. 2007; He et al. 2009). 
In this regard, different eukaryotic cells have been explored 
for the production of VLP vaccines against influenza (Deng 
et al. 2012). Nevertheless, the BEVS resulted in the best 
approach for that purpose because they provided an effi-
cient platform to express multiple recombinant proteins 
simultaneously (Lai et al. 2019). Several reports demon-
strated the effectiveness of VLPs produced  in BEVS to 
confer protection against the influenza virus when those 
prototypes were administered via either the intramuscular 
or intranasal immunization routes in mice challenged with 
a lethal dose of the virus (Bright et al. 2007; Hahn et al. 
2013; Smith et al. 2013; Ren et al. 2018; Lai et al. 2019). 
Within this context, Novavax manufactures a VLP vaccine 
for different influenza A and B strains through the coex-
pression of only the three structural proteins (HA, NA, and 
M1) in Sf9 insect cells infected with three different rec-
baculoviruses (Hahn et al. 2013). The Novavax influenza 
VLP vaccine has proved both safe and immunogenic in 
phase I and phase II clinical trials (Deng et al. 2012; Hahn 
et al. 2013). The production, formulation, and inspection 
require only 2 months, after which time the product-release 
test needs 3 weeks more (Hahn et al. 2013). Recently, Lai 
et al. (2019) developed an improved method of manufactur-
ing H7N9 VLP vaccine by coexpressing the H7, N9, and 
M1 proteins in High Five™ insect cells and an adequate 
level of dissolved oxygen (150 mmHg) at a high multiplic-
ity of infection (Lai et al. 2019).

An alternative strategy has been established to produce 
vaccines based on nanoparticles. Thus, the production of 
NanoFlu® (a quadrivalent nanoparticle vaccine) involving 
the expression of HA through the use of BEVS has been 
developed by Novavax. Once the four HA variants are simul-
taneously expressed in Sf9 cells, the proteins are assembled 
into a nanoparticle during the purification. The vaccine is 
finally formulated with the patented saponin-based adjuvant 
Matrix M™ (Novavax) that improves the activation of innate 
immune cells and antigen presentation (Khalaj-Hedayati 
et al. 2020). The NanoFlu® vaccine is currently in phase III 
clinical trials (Shinde et al.  2021).

Unlike the variable HA proteins, the conserved M2 
ectodomain has been studied as a presumed universal 
antigenic target for developing vaccines that produce 
cross-protective immunity. Kim et al. (2013) developed 
a VLP-based vaccine candidate by Sf9-cell coinfection 
with a rec-baculovirus expressing five tandem repeats of 

the heterologous M2 ectodomain (M2e5x) from different 
influenza A strains and a baculovirus expressing the M1 
matrix protein. To improve the incorporation of M2 into 
the VLPs, M2e5X was fused to the HA transmembrane 
domain (Kim et al. 2013). This vaccine induces lower 
neutralizing antibodies than the VLP based on HA expres-
sion, but the M2e5X’s VLPs improved the effectiveness 
of the traditional attenuated influenza-virus–based vac-
cine and stimulated cross protection when tested in mice 
(Kim et al. 2013; Lee et al. 2019).

The simultaneous coexpression of multiple proteins to 
achieve influenza vaccines involves the coordinate syn-
chronous cell infection with several rec-baculoviruses. 
This strategy may be inefficient on large scale, or else 
would require baculovirus shuttle vectors that accept more 
than one heterologous gene so as to result in larger DNAs 
that are unstable (Sequeira et al. 2018; Martínez-Solís 
et al. 2019). To circumvent this obstacle, several reports 
indicated that recombinant insect cells would provide a 
promising platform to manufacture functional influenza 
VLPs (Matsuda et al. 2020). For instance, High Five™ 
cells stably transformed with HA and M1 efficiently 
produce VLPs at a yield comparable to those obtained 
with the baculovirus–insect-cell system (Matsuda et al. 
2020). Another report developed a combined approach to 
express five HAs at the same time to produce a pentava-
lent HA VLP. The strategy involved High Five™ cells 
stably transformed with two different HA genes and the 
subsequent infection with a rec-baculovirus that encoded 
the other three HAs plus M1. This study demonstrated 
an efficient and scalable platform to produce multivalent 
VLPs (Sequeira et al. 2018).

The use of nonreplicative baculoviruses as gene-delivery 
DNA vectors for the assembly of VLPs in mammalian cells 
represents another promising strategy for influenza-vaccine 
development. Regarding this BacMam application, a rec-
baculovirus was constructed, carrying influenza HA, NA, 
and M1 genes under the control of the human cytomegalo-
virus immediate-early enhancer and promoter. To improve 
targeted gene delivery, Gwon et al. (2016) incorporated into 
the baculovirus genome the envelope-glycoprotein–encod-
ing sequence from the human endogenous retrovirus. As a 
result, mice immunized with the recombinant BVs produced 
a strong humoral response and neutralizing antibodies after 
the challenge with a lethal dose of influenza virus (Gwon 
et al. 2016).

Finally, the antigen-displaying alternative baculoviruses 
are also being explored as another approach to develop-
ing vaccines for influenza. The HA incorporation into the 
baculovirus surface demonstrated an ability to elicit strong 
humoral and cell-mediated immunity that protected animals 
from the lethal challenge of influenza viruses (Prabakaran 
et al. 2008; Prabakaran and Kwang 2014; Yu et al. 2020). 
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This vaccine can be administrated by the subcutaneous or 
intranasal route, thus enabling a new alternative in the devel-
opment of vaccines against mucosal pathogens (Prabakaran 
and Kwang 2014; Sim et al. 2016). The rec-baculoviruses 
displaying HA antigens against influenza disease are exten-
sively reviewed by Premanand et al. (2018).

Table 1 provides a summary of the principal influenza 
vaccines developed through the use of BEVS and BacMam 
platforms.

Table 1  Summary of vaccine produced in BEVS and BacMam platform in the campaign against influenza-virus infection

M1 viral-matrix protein 1; HA hemagglutinin; NA neuraminidase; VLP virus-like particles. All preclinical tests were performed in mice; ND no 
data

Bacu-
lovirus 
tool

Host Protein and Strain Type of vector Development stage References

Protein or subunit expression
Sf9 cells HA from A/H6N1 BaculoGold™ (BD Bio-

sciences)
Exploratory Faletti et al. (2014)

Sf9 cells HA from A/H1N1, H3N2, 
and two strain B. Contain 
saponin-based Matrix M 
adjuvant

ND Phase-III clinical trial 
(Nanoflu™, Novavax)

Shinde et al. (2021)

expresSF + cells NA (strain ND) ND Clinical
trial II (FluNhance ™, 

Sanofi Pasteur-Protein 
Science Corporation)

Deng et al. (2012)

expresSF + cells HA from A/H1N1, A/
H3N2, and two strain B

ND Approved (FlubloK, 
Sanofi Pasteur-Protein 
Science Corporation)

Buckland et al. (2014)

T. ni larvae HA ectodomain fused with 
KDEL from A/H1N1

ND Preclinical Gomez-Casado et al. (2011)

S. litura larvae HA from A/H6N1 Bac to Bac™
(Thermo Fisher)

Preclinical Hsieh et al. (2014)

R. nu larvae NA from A/H1N1 BaculoGold™ (BD Bio-
sciences)

Exploratory Faletti et al. (2014)

VLP
Sf9 cells HA, NA, M1 from H3N2 

and H7N9
Bac to Bac™
(Thermo Fisher)

Preclinical Bright et al. (2007); Smith 
et al. (2013); Ren et al. 
(2018)

Sf9 cells HA, NA, M1 from H5N1 Bac to Bac™
(Thermo Fisher)

Phase-I/II clinical trial Khurana et al. (2011)

Sf9 cells M2e5x (five tandem 
repeat) from A/H3N2, 
two A/H1N1, and two A/
H5N1

Bac to Bac™
(Thermo Fisher)

Preclinical Kim et al. (2013)

Sf9 cells HA, NA, M1 from H7N9 ND Phase-I/II clinical trial Hahn et al. (2013)
Sf9 cells HA, NA, M1 from A/

H1N1, A/H3N2 and two 
strain B

ND Phase-IIa clinical trial 
(Novavax)

Kumar et al. (2018)

High Five™ cells HA, NA, M1 from A/
H7N9

Bac to Bac™
(Thermo Fisher)

Exploratory Lai et al. (2019)

Display
Sf9 cells HA from A/H7N9 ND Preclinical Prabakaran et al. (2008)
Sf9 cells HA from A/H1N1 Bac to Bac™

(Thermo Fisher)
Preclinical Sim et al. (2016)

Gene delivery
Sf9 cells HA, NA, M1 from A/

H1N1
Bac to Bac™
(Thermo Fisher)

Preclinical Gwon et al. (2016)
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Arboviruses vaccines and diagnostic‑reagent 
production

Arboviruses (arthropod-borne viruses) are responsible for a 
large number of viral diseases that are transmitted to humans 
through the bites of arthropods (such as mosquitoes and 
ticks). While certain arboviral infections can be asympto-
matic or cause mild febrile illness, others can be more severe 
causing encephalitis, hemorrhagic fever, joint pain, or even 
lead to death (Marchi et al. 2018). In fact, arboviral diseases 
represent 17% of communicable diseases worldwide, affect-
ing millions of people and causing an estimated more than 
700,000 deaths annually (Kading et al. 2020; World Health 
Organization 2020). In the last 50 years, these diseases have 
spread rapidly, causing epidemics around the world. Vac-
cination is the most effective method of preventing such 
infectious diseases, though few commercial vaccines have 
been approved for humans against certain arboviruses such 
as the Yellow fever virus (YFV), the Dengue virus (DENV). 
and the Japanese encephalitis virus (JEV), for which entities 
the vaccine development involves whole-virus manipulation 
(Krol et al. 2019). The recombinant-subunit and VLP vac-
cine approaches offer a quicker and lower-risk alternative to 
vaccine manufacturing, thus avoiding exposure to biohazard-
ous agents (Cho et al. 2008). Accordingly, several eukaryotic 
expression platforms such as plant, yeast, mammalian, and 
insect cells have been exploited to produce recombinant anti-
gens for controlling and preventing an imminent arbovirus 
outbreak (Martínez et al. 2012; Wilder-Smith et al. 2017; 
Girard et al. 2020). Since arboviruses replicate efficiently in 
arthropod cells, BEVS has emerged as a suitable and biosafe 
technology to produce authentic arbovirus proteins for the 
manufacture of new vaccines and diagnostic methods in the 
campaign against arboviruses transmitted by mosquitos, the 
former proteins mainly from the genera Flavivirus (Family 
Flaviviridae) and Alphavirus (Family Togaviridae), as sum-
marized in Table 2.

Flaviviruses are enveloped, positive-sense, single-
stranded RNA viruses whose genomes encode six non-
structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B) 
essential for viral-RNA replication along with another three 
structural proteins present in the virion: the capsid (C), the 
membrane (M), and the envelope (E). In particular, the ecto-
domain of the E glycoprotein is divided into three structur-
ally distinct domains (DomI, DomII, and DomIII), where 
DomIII is implemented in viral binding to the host-cell 
receptor and is the main antigenic component to induce pro-
tective immunity against flavivirus infection (Modis et al. 
2003). Therefore, the E protein, and especially its DomIII, is 
a prime candidate antigen for vaccine and specific diagnos-
tic-kit development. The Flaviviridae family contains five 
species with great impact on public health in recent years: 
the DENV, the Zika virus (ZIKV), and the YFV, which are 

transmitted by mosquitoes of Aedes spp.; plus the JEV and 
the West Nile virus (WNV), which are transmitted by mos-
quitoes of Culex spp. (Gould et al. 2017).

Nowadays, DENV, the causative agent of dengue fever 
and dengue hemorrhagic fever, is one of the contagious 
viral diseases most widely distributed throughout the world. 
An increasing number of dengue outbreaks have occurred 
in recent times, resulting in around 400 million reported 
dengue-infection cases yearly (Pierson and Diamond 2020). 
Unlike other flaviviruses, the DENV is subdivided into four 
serotypes (DENV1 to DENV4). Although great efforts have 
been made to develop vaccines that simultaneously protect 
against all four variants (VanBlargan et al. 2013), only one 
vaccine for DENV infection is currently approved and with 
partial effectiveness depending on the serotype and the indi-
vidual’s basal immunologic status and age (Hernández-Ávila 
and Santos-Preciado 2016). Dengvaxia (Sanofi Pasteur) is a 
live-attenuated tetravalent vaccine based on the yellow fever 
viral backbone that expresses the precursor membrane (prM) 
and the E proteins from the four DENV serotypes (Van-
Blargan et al. 2013). In order to achieve a more effective 
vaccine, BEVS has currently been used to safely generate 
dengue antigens (Metz and Pijlman 2011). In this regard, the 
E ectodomain, comprising the three E domains, was success-
fully expressed in insect cells through the use of rec-bacu-
loviruses (Delenda et al. 1994; Staropoli et al. 1997). The 
protein retained its antigenicity and was capable of eliciting 
neutralizing antibodies that protected mice from lethal virus 
infection (Eckels et al. 1994). In the second approach, the 
DENV-2 E was expressed, but fused to the prM transloca-
tion signal. As a result, an aggregated E was obtained with 
a native folding exposing functional epitopes that induced 
neutralizing antibodies in mice (Kelly et al. 2000). As a low-
cost strategy, the production of dengue antigens in whole-
insect larvae is possible. Within this context, Cerezo et al. 
(2020) demonstrated that the DomIII from DENV-1 and 
DENV-2 fused to hydrophobin (DomIIIHFB) and produced 
in insect larvae could elicit serotype-specific neutralizing 
antibodies in mice without cross-reacting against heterolo-
gous serotypes and other flaviviruses. Therefore, the DomII-
IHFB expression belonging to the four serotypes would be 
useful for providing reagents for the formulation of a low-
cost tetravalent subunit vaccine (Cerezo et al. 2020).

An alternative approach involving the expression of syn-
thetic consensus proteins based on the amino acid sequence 
belonging to all serotypes has emerged as an excellent alter-
native to achieve tetravalent vaccine antigens. For instance, 
a consensus protein of the dengue E ectodomain, has been 
expressed in Sf9 cells infected with rec-baculoviruses. The 
antigen was capable of eliciting high titers of specific pro-
tective antibodies against all the serotypes. Moreover, the 
vaccine could activate an antigen-specific T-cell response 
(Sun et al. 2017). In addition, a fusion of the E ectodomain 
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Table 2  Summary of products manufactured in BEVS and BacMam platform in the campaign against arbovirus infections

E envelope; prM premembrane; C capsid; NS1 nonstructural protein 1; DomIII E protein domain  III; HFB hydrophobin; VLP virus-like parti-
cles. All preclinical tests were performed in mice; ND no data

Arbovirus Product Baculovirus tool Structural protein Type of vector Host References

Dengue virus
Vaccine (preclinical 

stage)
Protein or subunit 

expression
E ectodomain from 

DENV-2
AcRP23-lacZ Sf9 cells Staropoli et al. (1997)

Vaccine (preclinical 
stage)

Protein or subunit 
expression

Fusion of E ectodo-
main from DENV-1, 
DENV-3, and 
DENV-4

pVL (stratagene) and 
AcMNPV genome

Sf9 cells Rantam et al. (2015)

Vaccine (preclinical 
stage)

Protein or subunit 
expression

Consensus E protein Bac to Bac™
(Thermo Fisher)

Sf9 cells Sun et al. (2017)

Vaccine (preclinical 
stage)

Protein or subunit 
expression

E full-length from 
DENV-2

pBlueBacIII + lin-
earized AcMNPV 
(Invitrogen)

High Five™ cells Kelly et al. (2000)

Vaccine (preclinical 
stage)

Protein or subunit 
expression

DomIII from DENV-1 
and DENV-2 fused 
to HFB

Bac to Bac™
(Thermo Fisher)

R. nu larvae Cerezo et al. (2020)

Vaccine (exploratory 
stage)

VLP C, prM, E from 
DENV-2

Bac to Bac™
(Thermo Fisher)

B. mori larvae Utomo et al. (2019)

Two-step MAC-ELISA Protein or subunit 
expression

Tandem repeat of 
DomIII from four 
serotype

pAcGP67/pSecG2T 
(BD Bioscience) 
AcPak6 DNA (Inv-
itrogen)

Sf9 cells Niu et al. (2015)

Zika virus
Vaccine (preclinical 

stage)
VLP prM-E Bac to Bac™

(Thermo Fisher)
Sf9 cells Dai et al. (2018)

Vaccine (preclinical 
stage)

Display E ectodomain Bac to Bac™
(Thermo Fisher)

Sf9 cells Luo et al. (2020)

Point-of-care IgG and 
IgM diagnosis

Protein- or subunit-
expression platform

E, NS1 BaculoGold™ (BD 
Biosciences)

Sf9 cells Kim et al. (2018)

Yellow fever virus 
Vaccine (preclinical 

stage)
Protein or subunit 

expression
E, NS1 ND Sf9 cells Despres et al. (1991)

IgM capture ELISA Protein or subunit 
expression

E pSynXIV/ vSynV1gal High Five™ cells Barros et al. (2011)

West Nile virus 
Vaccine (preclinical 

stage)
Protein or subunit 

expression
E pPSC12

(Protein Science 
Corporation)/ Bsu 
linearized AcMNPV

expresSF + cells Bonafé et al. (2009)

Vaccine (preclinical 
stage)

VLP NS1 Bac to Bac™
(Thermo Fisher)

Sf9 cells Qiao et al. (2004)

Competitive ELISA Protein or subunit 
expression

NS1 Bac to Bac™
(Thermo Fisher)

Sf9 cells Yeh et al. (2012)

IgG indirect ELISA Protein or subunit 
expression

E Bac to Bac™
(Thermo Fisher)

T. ni larvae Alonso-Padilla et al. 
(2010)

Chikungunya virus 
Vaccine (exploratory 

stage)
Protein or subunit 

expression
E1, E2 Bac to Bac™

(Thermo Fisher)
Sf21 cells Metz et al. (2011)

Vaccine (exploratory 
stage)

VLP E1, E2 Bac to Bac™
(Thermo Fisher)

Sf21 cells Metz et al. (2013)

Vaccine (exploratory 
stage)

VLP E1, E2 Bac to Bac™
(Thermo Fisher)

Sf9 Basic cells Wagner et al. (2014)

IgM indirect ELISA 
and immunochroma-
tographic assay

Protein or subunit 
expression

C Bac to Bac™
(Thermo Fisher)

Sf9 cells Cho et al. (2008)

IgG capture ELISA Protein or subunit 
expression

E1 Bac to Bac™
(Thermo Fisher)

Sf9 cells Kumar et al. (2014)
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belonging to three distinct DENV serotypes (1, 3, and 4) 
was expressed with the ability to induce humoral and cel-
lular responses (Rantam et al. 2015). A recombinant fusion 
E protein can also be useful as a reagent for efficient immu-
nodiagnostic-kit development with the potential to detect 
all four serotypes at once. In this scenario, a tandem repeat 
of DomIII belonging to four serotypes was expressed in 
Sf9 cells infected with rec-baculoviruses. The protein was 
successfully used as an antigen for developing an ELISA 
capture to detect anti-DENV IgM antibodies in sera from 
patients at early stages of infection (Niu et al. 2015). In addi-
tion, the use of infected R. nu larvae to express DomIII from 
DENV-2 resulted in a low-cost platform to produce immu-
nodiagnostic reagents. The VLP approach has also been 
employed to produce a dengue vaccine. There, the coex-
pression of the structural proteins C, prM, and E belong-
ing to DENV-2 was found to lead to VLP formation when 
expressed in baculovirus-infected silkworm larvae (Utomo 
et al. 2019). Furthermore, DENV-2 VLPs were also pro-
duced by a transient-expression system through transfection 
of prM and E genes into Sf9 cells (Kuwahara and Konishi 
2010).

ZIKV, for its part, is a flavivirus globally disseminated 
and associated with possible neurologic complications, the 
coexpression of whose structural proteins (prM and E) in 
Sf9 insect cells infected with rec-baculovirus also led to an 
assembly of VLPs . After administration to mice, the ZIKV 
VLPs induced a protective immunity that elicited neutraliz-
ing antibodies, virus-specific IgG titers, and a T-cell immune 
response (Dai et al. 2018). Recently, a report described for 
the first time the display of the E protein on the BV sur-
face and the resulting immunogenic and protective effect 
against ZIKV. To the display, E was fused with the signal 
peptide and the transmembrane domain from AcMNPV 
GP64 (Luo et al. 2020). For the purpose of ZIKV diagnosis, 
the nonstructural proteins NS1 and E from the ZIKV were 
efficiently produced in insect cells infected with rec-baculov-
iruses. The purified antigen and monoclonal antibodies were 
used to develop a point-of-care diagnosis to rapidly detect 
IgG and IgM antibodies against ZIKV in sera from patients 
(Kim et al. 2018). The test appears as a novel technology 
and an alternative compared to traditional methods used in 
ZIKV diagnosis.

The E and NS1 proteins, or a fusion of both (E-NS1), 
have also been expressed in insect cells infected with rec-
baculoviruses in order to produce a vaccine candidate 
against yellow fever (YF), a reemerging viral zoonosis 
caused by the YFV. Of all construction tested, E-NS1 
protein has resulted in the most immunogenic construc-
tion, whose administration proved to protect mice from a 
lethal viral challenge (Despres et al. 1991). YF infection 
is prevented by a highly effective vaccine (YFV-17D), but 
major outbreaks still occur due to the failure of vaccination 

campaigns in certain regions, mainly belonging to Africa 
and Central and South America (Pijlman 2015). Despite 
the proven efficacy of the vaccine, it is based on attenuated 
viruses, vaccination is not recommended for persons older 
than 60 years or younger than 6 years of age, or for aller-
gic and immunocompromised patients. Therefore, BEVS 
offers an alternative platform to develop immunogens that 
could be administered regardless of people’s age or health 
status (Araujo et al. 2020). Furthermore, a YF diagnosis 
can be performed with the E antigen expressed in High 
Five™ cells as a reagent to develop an immunoassay to 
detect specific antibodies in the serum of infected patients 
(Barros et al. 2011).

Among the flaviviruses transmitted by Culex spp., one 
of the most widely distributed throughout the world is the 
WNV, causing a generally asymptomatic infection, but cer-
tain cases of infection can lead to severe clinical manifes-
tations and even death (Krol et al. 2019). Several vaccine 
candidates have been developed against the WNV through 
the use of BEVS. For example, the soluble ectodomain E 
protein was expressed in expresSF + cells, while WNV-anti-
genic VLPs were also produced in Sf9 cells by the coexpres-
sion of prM and E VSPs (Qiao et al. 2004; Bonafé et al. 
2009). Both vaccine candidates resulted in stable, nontoxic, 
immunogenic preparations that were protective in model 
animals inoculated with WNV lethal doses. The diagnosis 
of WNV is currently carried out by an ELISA test involving 
the whole virus as a reagent. Nevertheless, the development 
of a cheaper and safer serological test through the use of the 
recombinant protein E expressed in T. ni larvae infected with 
rec-baculoviruses was possible. The antigenic component 
resulted correctly folded like the native counterpart and was 
recognized by the sera from infected animals (Alonso-Padilla 
et al. 2010). In another study, recombinant NS1 produced in 
rec-baculovirus-infected Sf9 insect cells was used as a rea-
gent to develop a competitive ELISA assay (Yeh et al. 2012).

The JEV is another serious disease-producing flavi-
virus transmitted by Culex spp. mosquitoes. The infec-
tion is spread mainly in Asian countries causing around 
50,000 cases with some 15,000 deaths per year (Nerome 
et al. 2018). Even though a vaccine against JEV has been 
approved for human use (IXIARO, Valneva), BEVS has been 
explored as an alternative platform to achieve more cost-
effective prototypes. In this regard, the E protein has been 
successfully expressed in insect cells infected with rec-bac-
uloviruses, where the recombinant protein induced neutral-
izing antibodies in mice. Moreover, through the expression 
of the E protein alone or the coexpression of the E with prM 
in rec-baculovirus-infected Sf9 insect cells, the production 
of JEV VLPs was possible that were 10 times more abun-
dant than those produced in Chinese-hamster-ovary (CHO) 
cells (Yamaji and Konishi 2013; Du et al. 2015). In addi-
tion, stably transformed insect cells were developed for the 
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constitutive production of JEV VLPs (Yamaji and Konishi 
2013). As a low-cost alternative, large amounts of VLPs 
were furthermore produced in silkworm pupae infected with 
rec-baculoviruses that subsequently induced protection in 
mice (Nerome et al. 2018).

Finally, the Chikungunya virus (CHIKV) belonging to 
Alphavirus genus is the causative agent of chikungunya 
fever, an infectious disease that has recently captured the 
scientific community´s attention as an emerging threat to 
public health (Kading et al. 2020). No vaccine or specific 
treatment for CHIKV infection is currently available (Kuo 
et al. 2016). Like the Flavivirus, the Alphavirus contains 
enveloped positive-sense single-stranded RNA molecule as 
genome. The mature virion consists of three structural pro-
teins: the Capsid (C); and the two major envelope surface 
glycoproteins, E1 and E2, that form the spike complex on 
the virion surface. E1 and E2 are highly immunogenic and 
are involved in mediating the fusion and interaction with 
the host receptor during the infection. BEVS were also 
extensively used in the production of alphavirus antigens 
to manufacture vaccine candidates and diagnostic tests. 
Several studies indicated that the structural proteins E1 and 
E2 expressed through the BEVS platform are correctly pro-
cessed (Metz et al. 2011, 2013). At this point, an immunoas-
say to detect specific IgM and IgG antibodies from infected 
patients has been developed with the structural CHIKV pro-
teins expressed in BEVS as antigens (Cho et al. 2008; Kumar 
et al. 2014). In addition, a stable Sf9 cell line was developed 
that expressed the CHIKV E2 as an antigen for the serodi-
agnosis of CHIK (Chua et al. 2016). A study has found that 
CHIKV structural proteins expressed in baculovirus-infected 
Sf9 cells self-assemble into VLPs (Metz et al. 2013; Wagner 
et al. 2014). To enhance the yield of CHIKV VLPs, a new 
Sf9 cell line, designated Sf9Basic, was developed with the 
ability to grow at high pH (Wagner et al. 2014). Moreover, 
CHIKV VLPs with Matrix M™ as an adjuvant were more 
immunogenic than a subunit vaccine in animal models and 
protected against lethal viral doses. Thus, these VLPs con-
stitute promising candidates for vaccines to prevent CHIKV 
infection (Metz et al. 2013; Wagner et al. 2014).

Coronaviruses vaccines and diagnostic‑reagent 
production

Coronaviruses—enveloped, positive-sense, single-stranded 
RNA viruses, with large genomes ranging from 26 to 
32 kb—are phylogenetically divided into four genera: Alpha- 
and Beta- (those further subdivided into four lineages A, 
B, C, and D) plus Gamma- and Deltacoronavirus (Pallesen 
et al. 2017). To date, the seven known coronaviruses are able 
to infect humans, of which four (HCoV-OC43, HCov-229E, 
HCoV-HKU1, and HCov-NL63) circulate endemically in 
humans and are generally considered harmless causing 

only mild respiratory diseases. In contrast, the Middle East 
respiratory syndrome coronavirus (MERS-CoV) isolated 
in 2012 in Saudi Arabia, the severe acute respiratory syn-
drome coronavirus (SARS-CoV) isolated in 2003 in south 
China, and the newly identified SARS-CoV-2 isolated in 
2019 in Wuhan, China, produce much more severe clini-
cal outcomes, with pulmonary, cardiovascular, and renal 
involvement. In 2002, the SARS epidemic produced a total 
of 916 deaths in 8,098 patients diagnosed in several coun-
tries around the globe, while the MERS epidemic caused 
858 deaths in 2,254 cases (Song et al. 2019) and the current 
SARS-CoV-2 pandemic over 4 million deaths in more than 
190 million cases worldwide (World Health Organization 
2021).

Coronaviruses encode four structural proteins (Zeng et al. 
2004): the membrane protein (M), essential for assembly 
and budding; the envelope protein (E), also involved in 
assembly; the spike protein (S), responsible for viral entry 
and membrane fusion; and the nucleocapsid protein (N). 
During infection, the spike behaves as the main antigenic 
determinant and target of neutralizing antibodies, with its 
receptor-binding domain being the region where most sites 
are concentrated for neutralizing-antibody recognition.

BEVS can be a useful technology for studying corona-
viruses and developing diagnostic tests and vaccines, as 
this platform has already been successfully implemented in 
the production of commercially available vaccines such as 
those for influenza (Cox and Hashimoto 2011). Examples 
of BEVS-mediated immunogens and reagents are sum-
marized in Table 3. Thus, BEVS were used to produce the 
recombinant S protein derived from the Urbani Strain of 
SARS-CoV that evoked high titers of neutralizing antibod-
ies in mice thus immunized that strikingly cross-neutralized 
other strains including Tor2, GD03T13, SZ3, and Palm 
Civet’s SARS-CoV (He et al. 2006). Dai et al. (2020) also 
described a universal design for use against all beta corona-
viruses (SARS, SARS-CoV-2, and MERS-CoV), a vaccine 
based on a dimeric form of the S-protein–receptor-binding 
domain, which immunogen induced a high level of neutral-
izing antibodies in mice and conferred protection against 
intranasal challenge with MERS-CoV (Dai et al. 2020). 
A SARS-CoV-2–subunit vaccine was also developed by 
Novavax, produced from the full-length spike glycoprotein 
expressed in Sf9 insect cells, which antigen was demon-
strated to have increased thermal stability compared to the 
wild-type spike protein, an essential variable to consider 
in view of the known stringent temperature requirements 
for novel RNA vaccines. When used to immunize mice and 
baboons in combination with the Matrix-M™ adjuvant, the 
recombinant antigen elicited high titers of anti-S antibodies 
and strong multifunctional T- and B-cell responses (Tian 
et al. 2021). The Novavax vaccine is currently in phase III 
human trials, and the safety and efficacy of the vaccine have 
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been verified when coadministered with seasonal influenza 
vaccines (Jhaveri et al. 2020).

As an alternative to cultured insect cells, whole liv-
ing insects have also been studied as biofactories for the 

production of coronavirus recombinant proteins. For 
instance, the silkworm larvae successfully expressed the 
SARS-CoV-2 spike protein (Fujita et al. 2020), thus indicat-
ing that the system could be a viable vehicle for generating 

Table 3  Summary of products manufactured in BEVS and BacMam platform in the campaign against coronavirus infections

RBD receptor-binding domain; VLP virus-like particles; M membrane; E envelope; S spike; N nucleoprotein. All preclinical tests were developed 
in mice, except MERS-CoV VLP from Wang et al. (2017b) that was performed in macaques and Sars-CoV-2 VLP from Tian et al. (2021) was 
performed in baboons and mice; ND no data

Coronaviruses Product Baculovirus tool Structural protein Vector type Host References

MERS-CoV
Vaccine (preclinial 

stage)
Protein or subunit 

expression
RBD-dimer Bac to Bac™

(Thermo Fisher)
Sf9 cells Dai et al. (2020)

Vaccine (preclinial 
stage)

VLP M, E, S Bac to Bac™
(Thermo Fisher)

Sf9 cells Wang et al. (2017b)

Vaccine (preclinial 
stage)

VLP RBD Bac to Bac™
(Thermo Fisher)

Sf9 cells Wang et al. (2017a)

Indirect and IgG-
ELISA sandwich

Protein or subunit 
expression

S  Bac to 
Bac™(Thermo 
Fisher)

Sf9 cells Lee et al. (2018)

SARS-CoV
Vaccine (preclinial 

stage)
Protein or subunit 

expression
S Bac to Bac™

(Thermo Fisher)
expresSF + He et al. (2006)

Vaccine (explora-
tory stage)

VLP M, E, S BaculoGold™ (BD 
Biosciences)

Sf21 cells Ho et al. (2004)

Vaccine (preclinial 
stage)

VLP M, E, S Bac to Bac™
(Thermo Fisher)

Sf21 cells Lu et al. (2007)

Vaccine (preclinical 
stage)

VLP E, M from Sars-
CoV and S from 
bat-CoV

Bac to Bac™
(Thermo Fisher)

Sf21 cells Bai et al. (2008a)

Vaccine (explora-
tory stage)

VLP M, N, E, S pAcP102X/
pAcVC3

/linearized AcM-
NPV

Sf9 cells Mortola and Roy 
(2004)

Vaccine (preclinial 
stag)

VLP S with influenza 
M1

Bac to Bac™
(Thermo Fisher)

Sf9 cells Liu et al. (2011)

Vaccine (preclinial 
stage)

Display S Bac to Bac™
(Thermo Fisher)

Sf9 cells Feng et al. (2006)

Vaccine (preclinical 
stage)

Gene delivery N, S Bac to Bac™
(Thermo Fisher)

Sf9 cells Bai et al. (2008b)

Immunofluores-
cence assay

Protein or subunit 
expression

N195 (N) and Sc 
(S) fusion protein

Bac to Bac™
(Thermo Fisher)

Sf9 cells He et al. (2005)

IgG indirect ELISA Protein or subunit 
expression

N pAc-cHis/linearized 
AcMNPV

Tn5 cells Saijo et al. (2005)

SARS-CoV-2
Vaccine (explora-

tory stage)
Protein or subunit 

expression
S BmNPV bacmid 

(Qd04)/pFastBac1
B. mori larvae Fujita et al. (2020)

Vaccine (phase 
III clinical trial, 
Novavax)

VLP technology S with Matrix M 
adjuvant

BacVector™ (Mil-
lipore)

Sf9 cells Tian et al. (2021)

Vaccine (explora-
tory stage)

VLP M, E, S Bac to Bac™
(Thermo Fisher)

ExpiSf9™ Mi et al. (2021)

Indirect IgG ELISA Protein or subunit 
expression

S complete and 
RBD

Bac to Bac™
(Thermo Fisher)

High Five™ cells Amanat et al. (2020)

Indirect IgG ELISA Protein or subunit 
expression

S Bac to Bac™
(Thermo Fisher)

R. nu larvae Smith et al. (2021)
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diagnostic kits and therapeutic proteins for coronaviruses. 
One such kit for the serological testing of COVID-19 based 
on the expression of the S protein from SARS-CoV-2 in 
rec-baculovirus–infected R nu larvae has already been pro-
duced with excellent results (Smith et al. 2021). Likewise, 
Escribano et al. (2020) have proposed the use of pupae from 
T. ni as a living bioreactor for the large-scale production of 
recombinant proteins, a technology they named CrisBio®. 
This approach was successfully used for the production of 
veterinary-virus vaccines (Escribano et al. 2020) and is now 
shifting into human zoonotic diseases with a successful proof-
of-concept test for avian flu (Sisteré-Oró et al. 2020) and a 
subsequent grant to develop a COVID-19 vaccine as well.

Baculoviruses were also tested as vectors to mediate the 
gene expression for bat-coronavirus proteins in mammalian 
cells under the control of mammalian promoters (a BacMam 
approach). The immunization of mice with such viruses 
induced the expression of high titers of antibodies as meas-
ured by ELISA assays along with Th1-cell responses as visu-
alized by ELISPOT (Bai et al. 2008b). Another alternative 
approach is the use of a baculovirus-facilitated surface dis-
play of the spike protein, which approach was tested by Feng 
et al. (2006), who accordingly demonstrated the capability of 
inducing a serum-neutralizing activity against SARS-CoV 
(Feng et al. 2006). A baculovirus display of the S protein 
can also be used to study the physiopathology of SARS-CoV 
along with the contribution of specific amino acids in trig-
gering immune responses, as proven by Chang et al. (2004), 
the knowledge of which specificity can aid in targeted-drug 
design (Chang et al. 2004). The BacMam approach for coro-
naviruses vaccine development is summarized in Table 3.

The development of serological tests can also be achieved 
with BEVS, because of the technology’s ease of use and 
substantial protein yields. BEVS has accordingly been suc-
cessfully implemented to produce ELISA and/or immuno-
fluorescence assays for SARS-CoV (He et al. 2005; Saijo 
et al. 2005), MERS (Lee et al. 2018), and SARS-CoV-2 
(Amanat et al. 2020).

Many attempts have been made to achieve a VLP vaccine 
via the baculovirus system since the first SARS outbreak. 
First Ho et al. (2004) and then Mortola and Roy (2004) and 
Lu et al. (2007) provided evidence that VLPs composed of 
the S, M, and E proteins from SARS-CoV form correctly 
when simultaneously expressed in infected-Sf9 cells (Ho 
et al. 2004; Mortola and Roy 2004; Lu et al. 2007). What 
is still not clear, though, is if the incorporation of the N 
protein is necessary for VLP formation or the latter depends 
on viral species and the expression system used (Naskalska 
et al. 2018). VLPs for SARS-CoV-2 have also been success-
fully produced in ExpiSf9 cells—a nonengineered deriva-
tive of the Sf9 insect cell line adapted for the first time to 
grow at high-density and with a faster duplication rate and 
adequate morphology (Mi et al. 2021). In addition, hybrid 

SARS-like VLPs—formed by the S protein from Bat-CoV 
and the M and E proteins from SARS-CoV—were found to 
up-regulate the level of costimulatory molecules for optimal 
activation of T cells along with the secretion of cytokines by 
immature dendritic cells at much higher levels than obtained 
with monoligated SARS-CoV VLPs (Bai et al. 2008a), a 
finding of great utility in view of the need for strong cel-
lular immunity on top of humoral neutralizing responses. 
Chimeric SARS-CoV VLPs were also successfully produced 
in insect cells by coexpression of the SARS-CoV S protein 
combined with the influenza M1 protein (Liu et al. 2011), 
which immunogens protected mice against infection without 
the need for adjuvants as opposed to the full-length S pro-
tein alone, which did require adjuvants. Chimeric VLPs like 
these could prove a powerful option since influenza antigens 
can stimulate the memory of CD4 cells from past infections 
and accelerate the activation of the antigen-specific B-cells 
against coronaviruses. Furthermore, VLPs produced in 
insect cells were also effective against MERS-CoV infec-
tion in nonhuman primates and mice, through eliciting high 
specific antibody titers and Th1 cellular responses (Wang 
et al. 2017a, b).

The administration route is also an essential aspect to 
consider against respiratory infections such as coronaviruses 
because of the need for a mucosal-antibody response to com-
bat viral upper respiratory tract replication. The nasal admin-
istration in mice of VLPs produced in insect cells induced 
production of detectable IgA against the S protein in saliva, 
pulmonary mucosa, intestines, and the urinary tract; and 
although serum IgG levels were higher with intraperitoneal 
administration, the neutralizing activity was higher with 
intranasal administration (Lu et al. 2010), thus proving the 
versatility and effectiveness of the baculovirus system for 
these kinds of strategies.

The study of VLPs usually concentrates on two main top-
ics, the particle assembly and the ability to elicit an immune 
response, but as indicated by Naskalska et al. (2018), the 
SARS-Cov-2 VLPs can also be useful as delivery vectors for 
cells expressing the angiotensin-converting enzyme 2, the 
specific receptor for SARS-CoV-2 (Naskalska et al. 2018). 
These kinds of vectors would exhibit a narrow tissue tropism, 
similar to what was observed with antibody–drug conjugates, 
thus highlighting one more tool that the baculovirus provides 
in the fight against coronaviruses and other infections.

Baculoviruses as tools for the treatment 
of noninfectious human diseases via gene 
therapy

Baculoviruses represent a flexible tool for producing biolog-
ics for therapeutic purposes. Certain recombinant proteins 
produced in BEVS are being analyzed for the treatment of 
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noninfectious diseases and are in different stages of medical 
evaluation. Already on the market is a recombinant protein 
(Provenge®) produced in BEVS for the treatment of prostate 
cancer developed by Dendreon (Kumar et al. 2018), but in 
recent years, most of the studies have been directed mainly 
toward evaluating the use of baculoviruses for gene ther-
apy–based treatment, either by producing adeno-associated 
viruses (AAVs) or through the BacMam technology.

BEVS associated with gene therapy: baculovirus 
and AAV

Gene therapy is a medical procedure that bases the treat-
ment of diseases on the use of genetic sequences as active 
ingredients. Accordingly, different virus species have been 
engineered to generate viral vectors that enable the possibil-
ity of directing the active ingredients to the targeted cells—
via approaches involving an in vivo administration to the 
patient's body or an ex vivo modification of patient cells or 
tissues similar to a cell therapy followed by reintroduction 
into the patient—but without the recombinant’s replication 
or progeny generation in either approach. Among the most 
widely studied options that have reached the pharmaceutical 
market are gene therapies mediated by AAVs (Ginn et al. 
2018).

AAVs are small (about 20–25 nm) icosahedral nonen-
veloped single-strand (ss-) DNA viruses (genus: Depend-
ovirus; family: Parvoviridae) whose infections in humans 
manifest no significant clinical consequences despite being 
very widespread. In particular, AAVs require helper viruses 
(e.g., adenoviruses, herpes-simplex viruses) to sustain their 
generation of progeny. The ssDNA (about 4.7 kb in length) 
is flanked by inverted terminal repeats (ITRs; of about 145 
b, generating hairpin structures) and encode two sets of 
proteins: those associated with replication (Rep proteins); 
and the virion structural elements (Cap proteins). The ITRs 
govern the main processes of the multiplication cycle —i.e., 
double-stranded (ds-) DNA generation, replication, packag-
ing—and, together with the Rep proteins, are responsible 
for the possible genomic integration (at a locus located in 
the long arm of chromosome 19) when helper viruses are 
not present (Mezzina and Merten 2011). AAV-based viral 
vectors have been extensively evaluated for gene therapy 
because of their simplicity, satisfactory immune profile, 
the occurrence of serotypes with different tissue tropisms, 
and the ability to transduce nondividing cells, thus ensur-
ing a long-term expression of the transgene—n. b.: the 
nucleic acid remains episomal in the absence of Rep pro-
teins (Keeler and Flotte 2019). In essence, the recombinant 
AAVs (rAAV) carry an ssDNA that contains the gene of 
interest (GOI, which is replacing certain viral genes) flanked 
by the ITRs. Products such as Glybera® (alipogene tiparvo-
vec), Luxturna® (voretigene neparvovec), or Zolgensma® 

(onasemnogene abeparvovec) are AAV-based gene therapies 
to treat lipoprotein-lipase deficiency, inherited retinal dis-
eases, and spinal muscular atrophy, respectively (Ginn et al. 
2018; Keeler and Flotte 2019).

The initial procedures for producing rAAVs involved 
transfecting mammalian-cell lines (mainly human-embry-
onic-kidney HEK 293 cells) with plasmids that carried the 
therapeutic sequence and the ITRs, plus other helpers with 
the AAV genes and those needed from other viruses (gener-
ally, adenovirus genes). Although undergoing improvements 
over time with the purpose of achieving scalable systems 
(including, for example, the development of mammalian 
packaging cells), the approach did not enable productions 
in the yield necessary for therapy in human beings (Galib-
ert and Merten 2011). Those limitations led to studies that 
evaluated the rAAV production by complementation sys-
tems that involved adenoviruses, herpes-simplex viruses, or 
baculoviruses (Aponte-Ubillus et al. 2018). In the first report 
where BEVS were employed for this purpose, three rec-bac-
uloviruses were used (rep and cap genes in two independent 
BVs and the ITR-GOI-ITR construct in the third: the so-
called ThreeBac system) along with Sf9 cells (Urabe et al. 
2002). Subsequently, different optimizations were performed 
including the use of only two rec-baculoviruses—i.e., the 
TwoBac system; one combing both the rep and the cap genes 
and the other carrying the ITR-GOI-ITR (Wu et al. 2019) 
plus the later generation of a OneBac system consisting of 
packaging-Sf9 cells that expressed rep and cap genes when 
infected with a rec-baculovirus that carried the therapeutic 
nucleic acid (Mietzsch et al. 2015). Subsequent optimiza-
tions of the OneBac platform enabled quite good yields of 
whole particles with little contaminating DNA (Mietzsch 
et al. 2015; Joshi et al. 2019). In another study, an alternative 
OneBac system was developed that involved a rec-baculo-
virus expressing both rep and cap genes and carrying the 
ITR-GOI-ITR construct (Wu et al. 2018). What is interesting 
to us about this work is that these studies enabled the insect 
larval platform to produce rAAV, thus significantly lower-
ing the overall costs. In another report, the genomic stabil-
ity of rec-baculoviruses was evaluated in accordance with 
the genetic-engineering platforms to produce those recom-
binants, either through transposons or homologous recombi-
nation (Aurelién et al. 2021). All these current contributions 
are enabling the insect-cell–rAAV-production platform to 
remain a viable alternative for the gene-therapy industry, 
thus underscoring that approach as a principal milestone 
after Glybera® was produced by a ThreeBac system.

One of the main problems in rAAV production is the gen-
eration of empty capsids or capsids carrying contaminating 
DNA. For this reason, all the technologies developed for this 
purpose not only aim at high general yields but also must 
ensure a definitive production of complete particles free of 
helper DNA. These remaining aspects of the present state 
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of the art constitute a significant challenge that makes this 
bioprocess one that still requires critical improvement on any 
of the production platforms and, of course, leaves open the 
opportunity for innovations.

BacMam technology associated with gene therapy

In addition to the application of BEVS to produce protein-
based drugs for numerous noninfectious human diseases, 
baculoviruses can also be used as viral gene-delivery vectors 
for therapeutic or immunogenic purposes. These BacMam 
applications emerged in the mid-1990s with the report that 
BVs constructed with the prototype species AcMNPV could 
transduce, but would not infect, mammalian cells (Hof-
mann et al. 1995); thus enabling the expression of a given 
GOI assembled with a typical mammalian-gene syntax (as 
opposed to the insect syntax used when applying BEVS or 
a baculovirus display platform). Later ODVs (Fig. 1C) were 
found to not possess this capability (Mäkelä et al. 2008), 
with the result that the range of the baculovirus species shar-
ing this characteristic was then expanded by adding stud-
ies about the BVs of Bombyx mori nucleopolyhedrovirus 
(Kenoutis et al. 2006; Liu et al. 2017) and the Anticarsia 
gemmatalis nucleopolyhedrivirus AgMNPV (Parsza et al. 
2020). In particular, these benefits in mammalian cells were 
reported to be due to the GP64 protein present in the BV 
envelopes of group 1-alphabaculoviruses (Kataoka et al. 
2012; Luz-Madrigal et al. 2013); consequently narrowing 
down the feasibility of such applications to this specific 
subgroup of species, for which the viral entry mechanism 
would be based on clathrin-mediated endocytosis (Fujita 
et al. 2006; Liu et al. 2014; Hu et al. 2019b). Even variants 
of lentiviruses containing different GP64 proteins evidenced 
cell-expanded transduction efficiencies (Sinn et al. 2017).

The reasons that led so many researchers to explore this 
application of AcMNPV BVs (Ono et al. 2014; Mansouri 
and Berger 2018) resides mainly in biosafety issues: quite 
simply stated, the virus does not infect mammals (Kost and 
Condreay 2002) and furthermore exhibits a natural effi-
ciency in transducing different mammalian cells including 
stem cells (Airenne et al. 2011). In addition to those essen-
tial properties, the virus is easy to manipulate for generat-
ing recombinant virions (Luckow et al. 1993; Airenne et al. 
2011) and producing those constructs on an industrial scale 
(He et al. 2005; Kwang et al. 2016); possesses an exten-
sive capacity for carrying exogenous DNA of up to at least 
38 kbp, thus enabling the insertion of several GOIs at once 
(Cheshenko et al. 2001); and is characterized by an excellent 
immunogenic profile when administered in vivo as a result 
of the lack of preexisting immunity in mammals (Bocca 
et al. 2013). Another advantage is the compatibility of the 
baculovirus system carrying GOIs that will express suicide 
proteins in mammalian cells (useful in cancer treatments), 

but not in insect cells (where the viral vector is produced) 
owing to the use of introns and other typical elements of 
mammalian genetics (Chen 2019).

Despite these definitive benefits, the usually short-expres-
sion time in vivo of the GOI in mammals (around 7–14 days 
postinoculation) should be considered, which timing lim-
its readministrations (Luo et al. 2013), mainly because of 
certain generic immunologic responses that baculoviruses 
trigger—those being more pronounced upon systematic 
administration, though lesser upon local inoculation (Ono 
et al. 2014). Among such responses, the innate immune sys-
tem is a clear example because the administration of BVs 
has been reported to upregulate the RIG-1–like receptor 
(Balasundaram et al. 2017) and the Toll-like–receptor–9 
signaling pathways (Abe et al. 2009; Boulaire et al. 2009), 
thus activating type-I interferon (Hervas-Stubbs et al. 2007; 
Abe et al. 2009) and natural-killer cells (Moriyama et al. 
2017). In addition, a few other genes are induced by bacu-
loviruses, such as those encoding complement factors and 
adhesion molecules, or those involved in cytokine-cytokine 
receptor interaction ( Shin et al. 2020). Other in vitro stud-
ies revealed that the cGAS-STING nucleic-acid–sensing 
pathway would act as a decisive agent in generating an anti-
viral state produced by interferon types I and III (Amalfi 
et al. 2020). In this regard, the unmethylated CpG DNA of 
baculoviruses would be one of the main causes of the low 
transgene expression in certain cells triggering the different 
responses mentioned (Ono et al. 2018). At around the same 
time, baculovirus-transduced cell transplantation in animal 
models (associated with ex-vivo–gene-therapy approaches) 
gave very good results and did not elicit a systemic induc-
tion of monocytes and CD8 + T cells as did other viruses 
(Chuang et al. 2009). Another relevant aspect to be consid-
ered is regarding the GP64 viral protein of BVs (Fig. 1C). 
Although this fusogenic factor is useful and sufficient for the 
baculoviral Ncs to enter the cells and then, in turn, penetrate 
the nucleus in an actin-dependent manner (Fujita et al. 2006; 
Long et al. 2006), that factor—though generally considered 
polytropic—can manifest differences according to the mam-
malian cells targeted (Airenne et al. 2011; Kataoka et al. 
2012; Luz-Madrigal et al. 2013).

Nevertheless, a lot of effort is being made to overcome 
the limitations (Aulicino et al. 2020) that other viral vectors 
used in gene therapy do not escape, where those vectors 
can generate much greater immune responses as a result of 
being derived from mammalian pathogens and have other 
serious disadvantages including the limited duration of the 
transgenes they carry and the costs of scaled-up production. 
Thus, several investigations have been reported that have 
offered improvements in baculoviral vectors for BacMam-
type applications. In this, list of developments can be men-
tioned: (i) the pseudo-typed BVs, which constructs express 
in insect cells the stomatitis-vesicular-virus glycoprotein 
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(Barsoum et al. 1997; Kolangath et al. 2014) or other fac-
tors from eukaryote parasites and viruses (Tamura et al. 
2016; Hu et al. 2019a) to increase transduction capability in 
mammals; (ii) the development of baculoviral-hybrid vec-
tors that achieve a longer duration of the GOI expression by, 
for example, the presence of the ORI P of the Epstein-Barr 
virus, either alone (Shan et al. 2006; Suzuki et al. 2009) 
or combined with the FLP/FRP, ɸC31/attB-P or Cre/Loxp 
recombinase systems (Lo et al. 2009, 2017; Sung et al. 
2013); (iii) the inclusion of the inverted terminal repeats 
and the Rep gene of the adeno-associated virus (Wang 2008) 
or the inverted terminal repeats and the transposase gene 
of the Sleeping-Beauty transposon (Turunen et al. 2014); 
and (iv) genome modifications to increase the BV yield in 
insect cells (Graves et al. 2018), among other optimiza-
tions. In addition, progress has been made in different for-
mulations to achieve better results after the administration 
of recBVs in mammals. Thus, binary complexes between 
rec-baculoviruses and nanoparticles composed of the HIV 
trans-activator–of–transcription protein and DNA molecules 
encoding therapeutic genes have been studied (Paul et al. 
2011) to combine the benefits of viral horizontal-gene-trans-
fer systems with those based on nonviral complexes. Similar 
efforts have been made involving galactosylated-polyethyl-
enimine–DNA complexes (Kim et al. 2009), cationic poly-
amidoamine-dendrimer synthetic nanoparticles (Paul et al. 
2013), or nanomagnetic particles (Zhu et al. 2020) in combi-
nation with rec-baculoviruses. This last approach, combined 
with the use of magnetic fields, helps overcome serum inac-
tivation and achieves local expression of the GOI after even 
administrations that are systemic. Moreover, recombinant 
BVs that express complement-regulatory proteins on the 
virion surfaces exhibited a higher complement resistance 
than nonmodified variants (Kawai et al. 2018), while other 
studies tested the use of different compounds in baculovirus 
formulations to inhibit the complement system (Kaikkonen 
et al. 2010) or to improve transduction by decreasing the 
endosomal pH (Hu et al. 2019b). Of interest to this field 
was that baculoviruses expressing the adenovirus receptor 
have been developed to perform combined gene therapies 
with both viral vectors (Hong et al. 2017). Furthermore, the 
downstream processing of vectors during in vivo expansion 
received attention in order to improve the quality and quan-
tity of BVs recovered from infected insect cells (Kwang et al. 
2016; Nasimuzzaman et al. 2018) including the development 
of different chromatographic methods (Nasimuzzaman et al. 
2016; Lothert et al. 2020).

Although no BV-vector-based therapies have yet reached 
a clinical stage, several biodistribution and efficacy studies 
in different animal models utilizing recombinant AcMNPVs 
have been performed in the last 10 years. These approaches 
were designed mainly for the treatment of cancer, heart 
and/or vascular diseases, and tissue engineering and/or 

regenerative medicine and include preclinical assays in mice, 
rats, rabbits, dogs, and pigs with various types of therapeutic 
sequences and different BV technologies (Table 4).

We need to mention that certain studies were carried out 
in nonhuman primates (Balasundaram et al. 2017) or using 
whole-human-blood samples (Georgopoulos et al. 2009) 
and cells from human donors (Bak et al. 2011; Paul et al. 
2011; Graves et al. 2018; Wang et al. 2019a, 2020). In addi-
tion, owing to the excellent transport capability of bacu-
loviruses, new approaches in synthetic biology are being 
explored in vitro that enable, for example, the incorporation 
of complex gene circuits that can express a therapeutic gene 
in target cells and not in others (Lin et al. 2018).

Furthermore, in vivo and ex vivo studies involving ani-
mals and human cells have demonstrated the feasibility and 
safety of a BV-mediated gene therapy, thus creating new pos-
sibilities for the future approval of clinical trials and giving 
us the ability to realistically imagine the clinical approval of 
the first BV-based gene therapy in the near future. Overall, 
BVs have been used to treat several noninfectious diseases 
but mostly are in use for cancer therapy and tissue engineer-
ing and/or regenerative medicine.

Concluding remarks and perspectives

Baculoviruses, and especially AcMNPV, have been 
exploited in diverse biotechnological uses for years, gener-
ating products and conceptual tests in different technological 
fields that include agriculture (the first and most obvious 
biotech use), but also animal and human health. All these 
new technological opportunities emerged because of the 
basic studies carried out on baculoviruses in general, and 
on AcMNPV in particular—it is chosen as the prototype of 
this family, which includes more than 80 species and hun-
dreds of isolates (Fig. 3). Although baculoviruses (or at least 
their effects) have been known since the nineteenth century 
through the consequences they produced in colonies of B. 
mori larvae reared for silk production, only by the middle 
of the twentieth century did the baculoviruses begin to be 
identified as viral entomopathogens (Rohrmann 2019). In 
the early 1970s, a baculovirus isolated from Autographa 
californica larvae began to be extensively characterized 
(Vail et al. 1971). Thus, owing to the development of the 
insect-cell lines Sf21, Sf9, and High Five™ that were useful 
for multiplying viruses under laboratory conditions (Vaughn 
et  al. 1977; Wickham et  al. 1992), AcMNPV virions 
became subjected to multiomics studies that included the 
genome sequencing (Ayres et al. 1994), the determination 
of differential gene expression by means of transcriptomic 
approaches (Yamagishi et al. 2003; Chen et al. 2013), and 
the identification of the proteomic composition from both 
BVs (Wang et al. 2010) and ODVs (Braunagel et al. 2003).
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During this time, the genetic engineering procedures 
were also applied to the AcMNPV genome to generate 
engineered virions for both basic and applied research. 
These modifications were first based on homologous-
recombination processes performed in insect-cell culture 
(Smith et al. 1983), which experiments then enabled the 
generation of AcMNPV bacmids (Luckow et al. 1993). 
These Escherichia coli megaplasmids containing the bac-
uloviral genome created other possibilities for genomic 
modification in bacteria (Bideshi and Federici 2000) that 
promoted progress in the central aspects of functional 
genomics by knock-out and complementation approaches. 
Moreover, in recent times, the most sophisticated and 
powerful tools of genetic engineering have been used on 
AcMNPV, including the generation of synthetic genomes 
(Shang et al. 2017) or the gene-editing procedures medi-
ated by CRISPR/Cas technology (Pazmiño-Ibarra et al. 

2019), thus auguring a future replete with new knowledge 
and improvements in application.

Therefore, the versatility manifested by AcMNPV in tol-
erating genomic changes and the possibilities for scaling-up 
in cell culture not only enabled the use of this baculovirus as 
a biopesticide (Vail et al. 1971), but also favored the devel-
opment of innovations for the expression of recombinant 
proteins (Smith et al. 1992) and VLPs (Pearson and Polly 
1993) for the generation of protein-display platforms (Boub-
lik et al. 1995), or for use as a virus vector in gene deliveries 
to mammalian cells (Hofmann et al. 1995). Accordingly, 
BEVS and BacMam technologies were born in just over 
10 years between 1983 and 1995, and during that time, eve-
rything was prepared for their transfer to the human- and 
veterinary-health industries. Although Elcar®, the first 
baculovirus-based biopesticide registered between 1972 
and 1975, did not contain AcMNPV as the active ingredient 

Fig. 3  Milestones in baculovirus research and development. The 
scheme is a timeline of the last 50 years where some ground-break-
ing discoveries and developments involving baculoviruses are cited, 
with a particular focus on AcMNPV, the most widely studied and 
applied species of Baculoviridae. These achievements are classified 
according to 4 categories: basic research and applications of omic 
technologies in AcMNPV, plus the development of cell lines to mul-
tiply the vector; the use of genetic-engineering tools on the AcMNPV 
genome; biotechnological applications of AcMNPV virions; and reg-

ulatory approvals of some AcMNPV-based products (or baculovirus 
based products). Only in the example of the first registered biopesti-
cide (Elcar®) and the first veterinary therapy based on recombinant 
protein produced in Bombyx mori larvae (Virbagen® Omega) are 
mentioned products generated using other baculoviral species (Heli-
coverpa zea NPV and Bombyx mori NPV, respectively; milestones 
indicated with orange stars). All the references that support these 
milestones are included in the main text
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(Ignoffo 1999), most the other products registered for verte-
brates (human and nonhuman) are derived from this species. 
In this regard, the statement is appropriate that the first 4 
commercial products reaching the market derived from the 
use of BEVS platforms in human health were Cervarix® 
(a human VLP vaccine against human papillomavirus; 
GlaxoSmithKline, 2007); Provenge® (a recombinant pro-
tein for prostate-cancer immunotherapy; Dendreon, 2010); 
Flublok® (a human-subunit vaccine against influenza; Pro-
tein Sciences Corporation, 2013); and Glybera® (human 
gene-therapy product for the treatment of lipoprotein-lipase 
deficiency based on recAAV produced by BEVS) (Kumar 
and Gong 2018). In addition, 8 products for veterinary use 
produced in BEVS are already on the market. Among those 
that can be highlighted are Porcilis Pesti (MSD), the first 
veterinary subunit vaccine against swine flu, and Circumvent 
PCV (MSD), the first veterinary VLP vaccine against swine 
circovirus type 2, both produced in insect cells. In addition, 
Virbagen® Omega (Virbac) was the first veterinary protein 
therapy produced in insect larva for the treatment of feline 
viral diseases.

In the coming years, owing to the development of more 
extensive knowledge about baculoviruses, which new per-
spective will enable the development of the next generation 
of vectors for producing better-engineered virions that would 
be more useful for the aforementioned applications and for 
other innovations, we could expect that these technologies 
will be well valued by and appropriate for more human- and 
veterinary-health companies. Furthermore—and in view of 
the approvals received in recent years by various human-
gene-therapy products based on viral vectors (Ginn et al. 
2018) and the new generation of vaccines that use virions 
(Rawat et al. 2021)—we would expect that in this third dec-
ade of the twenty-first century, clinical trials in humans may 
begin to promote BacMam technologies and bring those pro-
cedures to the pharmaceutical market (Aulicino et al. 2020). 
The usefulness of the application of baculoviruses in human 
and animal health is already indisputable. The joint efforts 
between the baculovirus-genome engineering and improve-
ment in the production and the downstream processes will 
enable baculovirus and/or insect-cell systems to be more 
productive and less expensive. Moreover, a greater number 
of registered products will favor a higher level of knowledge 
in regulatory agencies. All these propitious conditions in 
combination will enhance the use of baculoviral systems and 
derived technologies in the pharmaceutical industry.
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