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Abstract
Trillions of microbes inhabit the human gut and build extremely complex communities. Gut microbes contribute to host
metabolisms for better or worse and are widely studied and associated with health and disease. Akkermansia muciniphila is a
gut microbiota member, which uses mucin as both carbon and nitrogen sources. Many studies on A. muciniphila have been
conducted since this unique bacterium was first described in 2004. A. muciniphila can play an important role in our health
because of its beneficial effects, such as improving type II diabetes and obesity and anti-inflammation. A.muciniphila establishes
its position as a next-generation probiotic. Besides the effect of A. muciniphila on host health, a technique for boosting has been
investigated. In this review, we showwhat factors can modulate the abundance of A.muciniphila focusing on the interaction with
host-derived substances, other bacteria and diets. This review also refers to the possibility of the interaction betweenmedicine and
A. muciniphila; this will open up future treatment strategies that can increase A. muciniphila abundance in the gut.

Key points
• Host-derived substances such as bile, microRNA and melatonin as well as mucin have beneficial effects on A. muciniphila.
• Gut and probiotic bacteria and diet ingredients such as carbohydrates and phytochemicals could boost the abundance of A.

muciniphila.
• Several medicines could affect the growth of A. muciniphila.
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Introduction

Beneficial microbes, probiotics such as bifidobacteria and lac-
tic acid bacteria, can sustain or improve host health by pro-
ducing antimicrobial substances, immunomodulation and
competition for adhesion to host cells with pathogens
(Servin 2004). Commensal gut bacteria also can sustain host
health. Short-chain fatty acids (SCFAs) such as propionate

and butyrate, produced by commensal gut bacteria such as
Bac tero ide t e s , Firmicu te s , Ac t inobac te r ia and
Verrucomicrobia, are used as a source of energy and
immunomodulation in the host (Louis and Flint 2017). In
return for these effects or to foster gut bacteria, substances
such as mucin, maternal milk and bile, which can all be
growth factors for bacteria in the gut, are provided by the host
(Aakko et al. 2017; McLoughlin et al. 2016; Wahlström et al.
2016). Mucin is an energy source for mucin-degrading bacte-
ria such as Bacteroides and Akkermansia (Crouch et al. 2020).
Bile acids strongly link host physiology with bacterial metab-
olism. Primary bile acids are secreted to the gut by the liver for
the absorption of lipid from diets, and primary bile acids are
converted to secondary bile acids by a part of gut bacteria
(Wahlström et al. 2016). Bile metabolism can modulate gut
microbiota maturation (van Best et al. 2020). Human oligo-
saccharides (HMOs) in maternal milk are among the most
important factors to modulate gut bacteria (Lawson et al.
2020). A part of gut bacteria such as members of the genus
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Bifidobacterium, Bacteroides and Akkermansia muciniphila
have specific enzymes to use HMO (Aakko et al. 2017;
Kostopoulos et al. 2020). Conversely, diets and antibiotics
also affect gut microbiota (Gentile and Weir 2018; Mu and
Zhu 2019). Ingredients of diets such as fibre and fat or foods
such as fermented milk can modulate gut microbiota (Daniel
et al. 2014; Makki et al. 2018; Veiga et al. 2014). Diet can also
alter human gut microbiota reproducibly (David et al. 2014).

Gut bacteria can strongly affect host systems involved in
homeostasis such as metabolism and the central nervous and
immune systems (Marchesi et al. 2016; Rutsch et al. 2020).
Concerning the immune-metabolic axis, gut bacteria are asso-
ciated with metabolic disorders such as obesity and type II
diabetes (Dabke et al. 2019). In the brain–gut axis, multiple
sclerosis and Alzheimer’s diseases are strongly correlated
with gut microbiota (Chen et al. 2016; Vogt et al. 2017).
Gut microbiota is also associated with blood glucose regula-
tion via enteric neurons (Muller et al. 2020). From a compar-
ison study of gut microbiota between healthy volunteers and
patients, gut bacteria associated with host health such as
Akkermansia muciniphila (improvement of metabolic disor-
der) have been reported (Depommier et al. 2019; Everard et al.
2013; Plovier et al. 2017). That is why gut microbiota is
recognised as a superorgan in the human body (Putignani
et al. 2014). It is of interest to understand how gut bacteria
interact with human health and how the gut stimulates bene-
ficial bacteria that inhabit a gut.

A. muciniphila, isolated from human faeces, can degrade
mucin and use it as a sole carbon and nitrogen source (Derrien
et al. 2004). The abundance of A. muciniphila is inversely
associated with obesity, diabetes and inflammation (Hansen
et al. 2012; Santacruz et al. 2010; Schneeberger et al. 2015).
The reverse effect of A.muciniphila on obesity and diabetes is
becoming clear by animal and human studies (Depommier
et al. 2019; Plovier et al. 2017).A.muciniphila can also induce
host adaptive immune response (Ansaldo et al. 2019). These
studies make A. muciniphila a next-generation beneficial mi-
crobe. Hence, our health needs to stimulate A. muciniphila in
the gut. This review gives an update on current knowledge of
the stimulation factor of A. muciniphila. The effect of host-
derived substance, bacteria and diets on the change in the gut
microbial niche of A. muciniphila is reviewed.

Interaction with host-derived substances

Carbon and nitrogen sources are the most important nutrients
for microbes and those that reside in the gut environment.
Figure 1 illustrates the important host-derived substances for
A. muciniphila. Mucin is the most important substance for
mucin-degrading bacterium A. muciniphila (Ottman et al.
2017). Administration of mucin stimulates A. muciniphila,
so that A. muciniphila prefers mucin to other sugar such as

glucose and mannose (Berry et al. 2015). Especially, A.
muciniphila may prefer sulfated mucin because the higher
percentage of sulfated mucin is positively associated with
the abundance of A. muciniphila (Earley et al. 2019). On the
mucus layer, oxygen is diffused from intestinal epithelial cells
(IECs). A. muciniphila also adapts to oxic–anoxic interface
using cytochrome system (Ouwerkerk et al. 2016). The inter-
action between A. muciniphila and mucin has been reviewed
in more detail (Geerlings et al. 2018). Mucin is secreted by
IECs. IECs are key cells of gut bacteria interaction because of
their gut homeostasis functions such as mucosal barriers and
immunological mediators (Wittkopf et al. 2014). There is a
unique substance derived from IECs, which can stimulate the
growth of A. muciniphila, ‘microRNA’.

IECs and other cells such as immune cells, adipocytes and
other epithelial cells produce microRNAs. MicroRNAs are
small non-coding RNAs, a class of endogenous RNAs with
21–25 nucleotides (O’Brien et al. 2018). MicroRNAs are ob-
served in the faecal samples and body fluids such as serum,
milk and saliva (Duran-Sanchon et al. 2020; Gallo et al. 2012;
Kroh et al. 2010; Mirza et al. 2019). The host’s gene expres-
sion and the gut microbiota are regulated by microRNAs
(Gennarino et al. 2009). The disturbance of gut microbiota
composition is observed in IEC microRNA-deficient mice
(Liu et al. 2016). MiR-515-5p and miR-1226-5p can affect
the growth of Fusobacterium nucleatum and Escherichia coli,
respectively. In the case of A.muciniphila, oral administration
of miR-30d to mice affects this microorganism’s physiology
by regulating the expression of gene encoding lactase of A.
muciniphila leading to the bloom of A. muciniphila (Liu et al.
2019). Different microRNAs have a specific effect on each
gut bacteria. Further study on the interaction between
microRNA and gut bacterial species could lead to innovative
techniques for modulating the gut microbiota’s targeted
microorganisms.

Breast milk can modulate gut microbial composition at an
early life stage (Moossavi et al. 2019). Here breast milk is
defined as physiological substances because it contains sugar
(oligosaccharides), proteins, vitamins, hormones, cytokines
and even bacteria (Ballard and Morrow 2013; Moossavi
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Fig. 1 The host-derived substances modulate A. muciniphila
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et al. 2019). Concerning the effect of breast milk on gut bac-
teria, HMOs are well known to stimulateBifidobacterium spp.
(Lawson et al. 2020). Although the abundance of
Bifidobacterium spp. in the breast-fed infants was higher than
that in formula-fed infants, the lower abundance of A.
muciniphila was observed in breast-fed infants (Bergström
et al. 2014). Interestingly, A. muciniphila can use HMOs
(Kostopoulos et al. 2020). Dual hydroxylation of glycan in
mucin and breast milkmay confer an ability for getting a niche
in the gut mucosal environment to A. muciniphila. Goat milk
also could increase the population of A. muciniphila in mice
although the mechanism is unknown (Kao et al. 2020).

The comparison study on the interaction between metabol-
ic disorder and microbiome newly demonstrates the effect of
hormone and cytokine on the abundance of A. muciniphila.
Melatonin, known as a sleep-promoting hormone secreted by
the enigmatic pineal gland (Pandi-Perumal et al. 2005), pre-
vents obesity via gut microbiota in high-fat-fed mice (Xu et al.
2017). This study also shows that melatonin treatment could
increase the abundance of genus Akkermansia. The abun-
dance of A. muciniphila is regulated by interleukin-36 (IL-
36) cytokine (Giannoudaki et al. 2019). The knockout of IL-
36 receptor antagonist, known to inhibit the effect of IL-36,
can cause an increase inmucin production leading to the abun-
dance of A. muciniphila and the reduction of weight gain and
metabolic dysfunction in mice.

Bile metabolism is strongly associated with gut microbiota
because primary bile acids secreted by the host are converted
to secondary bile acids by gut bacteria-harbouring bile modi-
fication enzymes associated with bile hydroxylation and
deconjugation (Wahlström et al. 2016). The growth of A.
muciniphila is increased by a secondary bile acid
(deoxycholic acid (DCA)) (Hagi et al. 2020). DCA also in-
creases the expression of MUC2 in human colon carcinoma
cells (Song et al. 2005). Another bile acid, ursodeoxycholic
acid (UDCA), can increase the abundance ofA.muciniphila in
mice (Van den Bossche et al. 2017). Secondary bile acid may
be a key bile acid for A. muciniphila to survive in the gut. A
part of the bile acid-resistant mechanism in A.muciniphila has
been clear (Hagi et al. 2020). Transcriptomic analysis showed
that the treatment of ox-bile upregulated the expression of
genes encoding HlyD (membrane fusion protein)-ABC and
RND (resistance-nodulation-cell division protein family) type
transporters. An ABC transporter inhibitor (orthovanadate)
and RND-type transporter inhibitor (PaβN (Phe-Arg β-
naphthylamide dihydrochloride)) could reduce the tolerance
against bile acids. These transporters play an important role in
the bile acid tolerance of A. muciniphila.

The suppressed gastric acid production by proton pump
inhibitor (PPI) can alter gut bacterial composition in humans
(Jackson et al. 2016). PPIs might weaken a barrier of gastric
acid to protect bacterial invasion from the external environ-
ment. Interestingly, PPI use is also positively associated with

the high-fat mass index and negative abundance of A.
muciniphila (Davis et al. 2020). However, whether IPPs could
affect the change in abundance of A. muciniphila directly is
unclear. Another medicine, metformin used in the treatment of
type 2 diabetes, affected the increased population and change
in gene expression of A. muciniphila (Shin et al. 2014; Wu
et al. 2017). The change in gut microbiota by metformin may
be associated with host homeostasis because the level of bile
acids in plasma and SCFAs in faeces could be increased by
metformin. Medicines used for metabolic syndrome could af-
fect A. muciniphila via a change in host metabolism such as
bile acids although the detailed mechanisms are unknown.
These results imply that the impact of transporter inhibitors
on commensal gut microbiota including A. muciniphila needs
to be investigated for our health.

Interaction with bacteria

Various gut bacteria such as A. muciniphila inhabit the mucus
layer and interact with each other. Figure 2 illustrates the
interplay between A. muciniphila and other bacteria. Some
bacteria cannot degrade mucin, so non-mucin-degrading bac-
teria benefit from mucin-degrading bacteria. A. muciniphila
produces sugars derived from mucus and SCFAs such as ac-
etate and propionate. Non-mucus-degrading bacteria such as
Anae ro s t i p e s cacca e , Eubac t e r i um ha l l i i and
Faecalibacterium prausnitzii use sugars degraded frommucin
by A. muciniphila for their growth. The growth of A.caccae
and butyrate production was supported by mucin degradation
of A. muciniphila (Chia et al. 2018). Interestingly, A. caccae
induces the increased expression of mucin degradation genes
and reduced expression of ribosomal genes in A. muciniphila.
In another bacterial interaction, 1,2-propanediol produced by
A. muciniphila is used by E. hallii for the production of pro-
pionate. In return for sugars and SCFA, pseudovitamin B12
required for propionate metabolism is given by E. hallii
(Belzer et al. 2017). A. muciniphila also has a cobamide re-
modelling enzyme CbiR (Mok et al. 2020). In the presence of
a vitamin B12 analogue cobinamide, A. muciniphila can pro-
duce pseudovitamin B12 using CbiR. Another study shows
that another A. muciniphila strain could produce vitamin B12
(ATTC BAA-835 strain cannot synthesise) although vitamin
B12 from others promoted propionate production (Kirmiz
et al. 2020). There are some vitamin B12 analogues in human
faeces (Allen and Stabler 2008). A. muciniphila might use
cobalamin analogues and affect vitamin B12 metabolism in
the gut. Unique cobamide metabolism may be acquired to
inhabit a complex ecological niche. These metabolic cross-
feeding networks are important for regulating microbial com-
position and host health.

There are several papers on the effect of probiotic bacteria
on the growth of A. muciniphila. The administration of
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mixture composed of Lacticaseibacillus rhamnosus LMG S-
28148 and Bifidobacterium animalis subsp. lactis LMG P-
28149 improved the abundance of A. muciniphila associated
with decreased glucose and insulin levels in obese mice (Alard
et al. 2016). Acetate and lactate derived from the probiotics
might stimulate the growth of A. muciniphila because acetate
and the acetate-conjugated portion of the drug could boost the
growth of A. muciniphila (Daisley et al. 2020). In a human
study, the administration of L. rhamnosus HN001 and B.
longum BB536 increases the abundance of A. muciniphila
(Toscano et al. 2017). Dizman et al. demonstrated that
fermentedmilk withB. animalis could improve the abundance
of A. muciniphila in metastatic renal cell carcinoma patients
(Dizman et al. 2021). These species may interact with A.
muciniphila although the interaction mechanism is unknown.

A dose of B. fragilis increased the abundance of A.
muciniphila in a mouse model of Clostridium difficile infec-
tion (Deng et al. 2018). Cross-feeding interaction via SCFAs
between A. muciniphila and B. fragilis or the inhibition of C.
difficile-induced apoptosis and Muc2 and ZO-1 loss in colon
cells may contribute to the increase in A. muciniphila. In
chicken, live Salmonella vaccine increased a mucus level
resulting in an abundance of A. muciniphila (Redweik et al.
2019). Change in host metabolism or production of SCFAs by
probiotic or vaccine effects might improve the growth of A.
muciniphila in the gut.

Interaction with diets

A. muciniphila uses carbohydrates derived from mucin com-
posed of fucose, galactose, N-acetylgalactosamine (GalNAc)
and N-acetylglucosamine (GlcNAc) (Ottman et al. 2017).
How can other carbohydrates help A. muciniphila growth?
Xylo-oligosaccharide, fructo-oligosaccharides, arabinoxylan
and inulin are known as prebiotics, resulting in improved ben-
eficial bacterial growth such as bifidobacteria and lactobacilli
(McLaughlin et al. 2015). Figure 3 describes the diets or their
components associated with the boost of A. muciniphila.

Long-chain arabinoxylans and inulin affect the higher produc-
tion of mucin leading to an increased faecal abundance of A.
muciniphila in humanised rats (Van den Abbeele et al. 2011).
Induced-mucin production by these components is associated
with the abundance of mucin-degrading A. muciniphila be-
cause A. muciniphila cannot grow on inulin. Mannan-
oligosaccharide also can increase the abundance of A.
muciniphila as well as that of B. acidifaciens, L. gasseri and
B. pseudolongum in high-fat diet-fed mice, resulting in the
attenuation of metabolic disorders (Wang et al. 2018). In ad-
dition to oligosaccharides from dietary fibres, the abundance
of A. muciniphila increased by polysaccharide from seaweed
(Enteromorpha Clathrata) as well as Bifidobacterium spp. and
Lactobacillus spp. (Shang et al. 2018). Gut bacteria such as
Bifidobacterium and Bacteroides can degrade natural polysac-
charides (Flint et al. 2008). Although it is not clear if A.
muciniphila can degrade polysaccharides, bacterial degrada-
tion of polysaccharides may support the growth of A.
muciniphila. A low carbohydrate diet, ketogenic diet, alters
gut microbial composition with increased A. muciniphila in
mice (Ma et al. 2018). The change in the gut immune system
might affect A. muciniphila because ketogenic diets also con-
tribute to the decreased intestinal Th17 (Ang et al. 2020). The
promoted mucin production by Th17 attenuation might affect
the abundance of A. muciniphila because the correlation be-
tween an inhibited Th17 differentiation and an increased mu-
cin production has been indicated (Cha et al. 2010).

Plants such as vegetables, beans and herbs have plenty of
phytochemicals and the effect of plants or their extractions
including phytochemicals on the host health and gut microbi-
ota has been studied (Yin et al. 2019). The increase in A.
muciniphila was observed in high-fat/high-sucrose (HFHS)-
fed mice by the treatment of camu camu (Myrciaria dubia)
which is a native fruit of the Amazon (Anhê et al. 2019). The
treatment of camu camu affected the composition of bile acids
and the increase in A. muciniphila, resulting in the prevention
of obesity and metabolic syndrome. Interestingly, the abun-
dance of A. muciniphila is positively correlated with the sec-
ondary bile acids such as Tauro-conjugated DCA and UDCA.

Lactobacillus

BifidobacteriumAkkermansia muciniphila

E. hallii

glycosyl hydrolases genes

pseudovitamin B12 

A. caccae

mucin production

C. difficile

B. fragilis 

Live Salmonella vaccine

Acetate?

Lactate?

Fig. 2 The interaction between A.
muciniphila and other bacteria
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The secondary bile acids such as DCA and lithocholic acid
can activate TGR5. TGR5, highly expressed in the gallblad-
der, brown adipose tissue and other tissues, is a bile acid-
responsive receptor involved in host metabolism. The interac-
tion between A. muciniphila, bile metabolism and camu camu
might be related to the anti-obesity effect. The increase in A.
muciniphila and the change in bile metabolism were observed
by the treatment of white kidney bean (Phaseolus vulgaris L.)
(Neil et al. 2019). Saponins from Agave salmiana also modu-
late bile acids and cholesterol transport systems in the liver of
mice and increased A. muciniphila (Leal-Díaz et al. 2016). As
described above in this review, UDCA treatment can increase
the abundance of A. muciniphila in mice (Van den Bossche
et al. 2017). Our group showed that DCA increased the
growth of A. muciniphila in vitro and its bile acid-resistant
metabolism (Hagi et al. 2020). These studies indicate that
the change in bile acids, especially UDCA, by the treatment
of camu camu could increase the abundance of A.
muciniphila, and the interaction between secondary bile acids
and A.muciniphilamight affect the host bile acid metabolism.
The modulation of mucus layer by diets, such as capsaicin,
puerarin in the root of Pueraria lobate and wild blueberry
proanthocyanidins (Rodríguez-Daza et al. 2020; Shen et al.
2017; Wang et al. 2019), may cause the increase in A.
muciniphila. The stimulation of IECs by rhubarb extract also
might contribute to the increase in A. muciniphila (Neyrinck
et al. 2017). In other reports, flavonoids from apple
(procyanidin) and hops (prenylflavonoids) could stimulate
the growth of A. muciniphila leading to the improvement of
metabolic syndrome (Fukizawa et al. 2020; Hamm et al. 2019;
Masumoto et al. 2016). Polyphenol derived from cranberry
and green tea (synergistic effect with annatto-extracted
tocotrienols) is also a key component in a diet that stimulates

the growth ofA.muciniphila (Anhê et al. 2015; Elmassry et al.
2020). Polyphenols such as catechin have antibacterial activ-
ities (Ikigai et al. 1993). The antibacterial activity might re-
shape gut microbiota, which is favourable for A. muciniphila.
In addition to the phytochemicals described above, soy oil
also could affect the abundance of A. muciniphila (Patrone
et al. 2018).

Conclusions

In conclusion, this article reviewed the effects of several fac-
tors such as host-derived substance, bacteria and diets on the
growth of A.muciniphila. Mucin is a sole carbon and nitrogen
source for A. muciniphila. Mucin production-stimulated fac-
tors, inulin and secondary bile acid may be related to the
bloom of A. muciniphila. The growth of A. muciniphila also
depends on a host-derived substance such as bile acids,
microRNA and oligosaccharides. Gut bacteria and probiotic
bacteria (especially bifidobactera and lactobacilli) also could
affect the growth of A. muciniphila. To boost the growth of A.
muciniphila in the gut, recent studies have investigated the
effect of diet on its growth. Polysaccharides and inulin known
as prebiotics could increase the abundance of A. muciniphila.
This result may be associated with the change in gut environ-
ment by prebiotics resulting in the improvement of beneficial
bacterial growth such as bifidobacteria and lactobacilli. In
addition to bacterial interaction, bile acids are also considered
one of the growth modulating factors of A. muciniphila be-
cause it is associated with gut bacterial composition, and sec-
ondary bile acid metabolism could be affected by diet camu
camu. Altogether, these pieces of knowledge should help
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develop future treatment strategies to modulate health through
increasing abundance and activity ofA.muciniphila in the gut.
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