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Abstract
Folding and processing of proteins in the endoplasmic reticulum (ER) are major impediments in the production and secretion of
proteins from Pichia pastoris (Komagataella sp.). Overexpression of recombinant genes can overwhelm the innate secretory
machinery of the P. pastoris cell, and incorrectly folded proteins may accumulate inside the ER. To restore proper protein
folding, the cell naturally triggers an unfolded protein response (UPR) pathway, which upregulates the expression of genes
coding for chaperones and other folding-assisting proteins (e.g., Kar2p, Pdi1, Ero1p) via the transcription activator Hac1p.
Unfolded/misfolded proteins that cannot be repaired are degraded via the ER-associated degradation (ERAD) pathway, which
decreases productivity. Co-expression of selectedUPR genes, along with the recombinant gene of interest, is a common approach
to enhance the production of properly folded, secreted proteins. Such an approach, however, is not always successful and
sometimes, protein productivity decreases because of an unbalanced UPR. This review summarizes successful chaperone co-
expression strategies in P. pastoris that are specifically related to overproduction of foreign proteins and the UPR. In addition, it
illustrates possible negative effects on the cell’s physiology and productivity resulting from genetic engineering of the UPR
pathway. We have focused on Pichia’s potential for commercial production of valuable proteins and we aim to optimize
molecular designs so that production strains can be tailored to suit a specific heterologous product.

Key points
• Chaperones co-expressed with recombinant genes affect productivity in P. pastoris.
• Enhanced UPR may impair strain physiology and promote protein degradation.
• Gene copy number of the target gene and the chaperone determine the secretion rate.

Keywords Pichia pastoris . Productivity of recombinant protein production . Folding and secretion . Unfolded protein response
(UPR) . Chaperone . Co-expression strategy

Introduction

The methylotrophic yeast Pichia pastoris (Komagataella
phaffii) is an established platform for applied research, specif-
ically for the biotechnological production of a wide range of
recombinant proteins. These include various intracellular,
membrane and surface-displayed proteins and, most impor-
tantly, recombinant proteins that are secreted in large quanti-
ties (Cereghino and Cregg 2000; Daly and Hearn 2005;
Gasser et al. 2013; Emmerstorfer et al. 2014; Spohner et al.
2015). The ability of P. pastoris to efficiently secrete recom-
binant proteins of unparalleled high quality (i.e., correctly
folded, and post-translationally modified, without contamina-
tion from other proteins) makes this yeast an appropriate host
for the industrial production of biopharmaceuticals or
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commercially valuable enzymes. Protein secretion is a multi-
step process, involving various cellular compartments (Fig. 1).
After the transcription of its recombinant gene in the nucleus,
the protein is synthesized, folded, and post-translationally
modified in the endoplasmic reticulum (ER). From there, it
is translocated in COPII vesicles to the Golgi apparatus
(Antonny and Schekman 2001), where the post-translational
modifications are finalized. The protein is then packed and
shipped in a vesicle towards its destination, which, in the case
of proteins intended for secretion, is towards the cell mem-
brane. The vesicles fuse with the cell membrane and the pro-
tein is finally released to the extracellular environment
(Puxbaum et al. 2015). It was found that in P. pastoris, re-
combinant proteins aimed for secretion, localized in the ER,
are inherited during cell division to buds, from whence exo-
cytosis of these soluble proteins predominantly occurs
(Puxbaum et al. 2016).

Information about secretory mechanisms in P. pastoris are
still mainly based on knowledge derived from the model yeast
S. cerevisiae. Nevertheless, information about the P. pastoris
cell factory has advanced over the last decade due to whole
genome characterization (De Schutter et al. 2009), available

omics analyses (Zahrl et al. 2017), and the development of
novel tools facilitating genomic engineering, such as
CRISPR-Cas9 technology (Weninger et al. 2016;
Raschmanová et al. 2018; Weninger et al. 2018). Based on
genomic comparisons of different yeast species and mammals,
it was shown that some patterns of P. pastoris’s secretory path-
way resemble those of mammalian cells rather than those of
S. cerevisiae (Delic et al. 2013). For example, structural orga-
nization of the Golgi compartment differs in S. cerevisiae and
P. pastoris; the Golgi apparatus in P. pastoris is arranged in
stacks and embedded in a ribosome-excluding matrix, which is
similar to mammalian and plant cells (Rossanese et al. 1999;
Mogelsvang et al. 2003). Also, some patterns of response to ER
stress observed in P. pastoris resemble those of mammalian
cells (Graf et al. 2008). These results indicate that valid conclu-
sions for P. pastoris cannot be generally drawn from the model
species S. cerevisiae. More intensive basic research on the se-
cretory pathway and its bottlenecks in P. pastoris is needed, to
effectively optimize the production/secretion of recombinant
proteins by this host.

Because of the complex character of the secretory pathway,
optimization of productivity of secreted proteins is
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Fig. 1 Approaches to enhance recombinant protein secretion in
P. pastoris. The production and secretion of recombinant protein can be
enhanced by different approaches, aimed at different stages of the
recombinant protein’s production and secretion. By improving the rate
of homologous recombination (HR), the integration of (multiple)
expression cassettes is enhanced. The expression level of the
heterologous gene is determined by the promoter used, and processing
and secretion of the protein can be improved by its codon optimization
and the choice of a suitable secretion signal sequence, respectively.
Correct glycosylation can be ensured in glycoengineered production

strains, and folding or building of disulfide bridges might be enhanced
by co-expressing chaperone or other helper genes. The intracellular
proteolytic degradation of the recombinant proteins can be avoided by
deletion of genes encoding proteases. The release of the proteins to the
extracellular environment may be enhanced by modifications of the cell
membrane and cell wall. Stability of the secreted protein in the
extracellular environment is preserved by the choice of appropriate
cultivation conditions (pH, temperature) and can be improved by the
deletion of genes encoding secreted proteases
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challenging and often requires a combinatorial approach. The
right optimization strategy seems not to be generally predict-
able, even for proteins of similar structures and properties
(Obst et al. 2017), so, unfortunately, it must be designed for
each protein specifically. Production/secretion might be gen-
erally optimized at various levels: the expression cassette (pro-
moter engineering, secretion signal sequences, codon optimi-
zation etc.), the host strain (co-/overexpression of chaperone
genes or genes of other folding-assisting proteins, co-
expression of transcription- and translation-enhancing ele-
ments, disruption of protease genes, modification of cell wall
properties etc.), the cultivation conditions (pH, temperature),
and the bioprocess strategy (specific growth rate of biomass
etc.) (Marx et al. 2006; Emmerstorfer et al. 2014; Looser et al.
2015; Barrero et al. 2018; Gidijala et al. 2018; Zepeda et al.
2018; Duan et al. 2019; Fischer and Glieder 2019; Liu et al.
2019; Naranjo et al. 2019) (Fig. 1).

An extensive effort has been mounted to increase protein
secretion by co-expression of different folding factor genes
involved in the UPR pathway. However, this strategy has
not been successful in all cases and rather, has been applied
on an ad hoc basis. In this review, we have analyzed published
data on co-expression strategies, with the aim of identifying
the best strategy to enhance recombinant protein production/
secretion in P. pastoris. Importantly, we also point out the
undesirable effects on strain physiology and production, po-
tentially resulting from the co-expression of folding factor
genes, i.e., an unbalancing of the UPR pathway by its genetic
engineering.

Secretion bottlenecks and unfolded protein
response (UPR) in P. pastoris

Proteins intended for secretion enter the lumen of the ER
through the Sec61 protein-translocation channel (Marsalek
et al. 2019). Integral membrane proteins (except for peroxi-
somal and mitochondrial membrane proteins) also enter the
secretory pathway, starting in the ER (Emmerstorfer et al.
2014). In the lumen of the ER, post-translational modifica-
tions and folding take place. Correct folding of the proteins
is ensured by folding-assisting proteins such as chaperones or
foldases (Zimmermann et al. 2011; Delic et al. 2013), and only
correctly folded proteins may leave the ER and proceed
through the secretory pathway. The formation of disulfide
bonds (Damasceno et al. 2012), protein folding (Helenius
et al. 1992), and/or the transport of folded proteins out of the
ER (Love et al. 2012) are considered to be the rate-limiting
steps of the secretory pathway in P. pastoris, as previously
shown for recombinant human serum albumin (Shen et al.
2012; Puxbaum et al. 2016) and Rhizopus chinensis lipase
(Sha et al. 2013b), or suggested for bovine lactoferrin (Sun
et al. 2019), penicillin-G-acylase (Borčinová et al. 2020), or

peptidoglycan recognition protein (Yang et al. 2016).
Inappropriate cultivation conditions or high levels of produc-
tion of recombinant proteins (Gasser et al. 2007a), especially
those that are surface-displayed, as well as membrane or com-
plex secreted proteins, may overwhelm the folding capacity of
the ER, where-upon misfolded/unfolded proteins begin to ac-
cumulate in the lumen of the ER. These proteins cause stress
to the cell and trigger the UPR (Graf et al. 2008), a signaling
cascade aimed at reducing the level of incorrectly folded pro-
teins in the ER, and thus eliminating the stress. The UPR
results in upregulation of the expression of genes encoding
chaperones and foldases, proteins ensuring correct post-
translational modifications, and genes encoding proteins in-
volved in protein translocation and ER quality control (Gasser
et al. 2007a; Vogl et al. 2014). At the same time, the expres-
sion of many genes involved in protein synthesis is downreg-
ulated (Vogl et al. 2014). If the proteins fail to fold correctly,
they are translocated back to the cytosol, ubiquitinated, and
degraded by the ER-associated degradation (ERAD) pathway
(Xie and Ng 2010). Upregulation of ERADmay also be a way
to decrease the protein load on the ER if the secretory capacity
of the cell is exceeded (Zahrl et al. 2018).

The regulatory mechanisms of UPR were first studied and
extensively described in S. cerevisiae (Cox and Walter 1996).
The key components of the UPR pathway are the following:
the kinase/RNase Ire1p, the transcription factor Hac1p, and
the chaperone Kar2p, which is a yeast homologue of the mam-
malian BiP (Casagrande et al. 2000). The Kar2p chaperone
resides in the lumen of the ER and, under non-stress condi-
tions, associates with the luminal domain of the monomeric
Ire1p. As soon as unfolded proteins occur in the lumen of the
ER, Kar2p dissociates from the luminal domain of Ire1p to
assist with proper folding (Sidrauski and Walter 1997;
Okamura et al. 2000). When Kar2p unbinds, Ire1p assembles
into dimers, which results in its phosphorylation and activa-
tion of the RNase function of the cytosolic domain of Ire1p
(Papa et al. 2003; Kimata et al. 2007). In S. cerevisiae, it was
demonstrated that besides Kar2p dissociation, there is an ad-
ditional mechanism of Ire1p activation, based on a direct in-
teraction of unfolded proteins with clustered Ire1p (Kimata
et al. 2004, 2007). The RNase domain of Ire1p then non-
conventionally (i.e., spliceosome-independent) splices the
HAC1 pre-mRNA (HAC1u mRNA) into its mature form
(HAC1i mRNA) (Cox and Walter 1996). The HAC1 pre-
mRNA is targeted to Ire1p via a stem-loop structure within
the 3′ UTR of the pre-mRNA (Aragon et al. 2009; Kohno
2010). After the excision of the intron from the HAC1
mRNA, the two exons are joined by tRNA ligase, encoded
by the RLG1 gene (Sidrauski et al. 1996). The mature HAC1i

mRNA is translated to the protein Hac1p, which is
translocated to the nucleus where it acts as a transcription
activator recognizing the so-called UPRE (unfolded protein
response element) sequence, and initiates the transcription of
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UPR-associated genes in the nucleus (Travers et al. 2000).
Besides genes of ER chaperones and proteins involved in
folding in P. pastoris, Hac1p also induces genes encoding
cytosolic chaperones, and genes involved in translation, ribo-
some biogenesis, organelle biosynthesis, intracellular mem-
brane expansion, protein glycosylation, and translocation
(Graf et al. 2008; Guerfal et al. 2010). The UPR was also
shown to play an important role in regulating lipid metabolism
in P. pastoris (Zhang et al. 2016; Adelantado et al. 2017), and
to affect the cytosolic redox balance, because redox processes
in the ER are counterbalanced by redox processes in the cy-
tosol (Delic et al. 2012). Imbalanced redox processes enhance
the likely development of folding-related diseases (e.g.,
Alzheimer’s or Parkinson’s).

UPR regulation by Ire1 and Hac1 is highly phylogenetical-
ly conserved in eukaryotes and is the main pathway that re-
sponds to ER-stress (Bernales et al. 2006; Ron and Walter
2007). Nevertheless, there are variations in the molecular
mechanism, and the physiological and stress-responsive roles
of the UPR between different yeast species (Hernández-Elvira
et al. 2018). The differences in UPR between P. pastoris and
S. cerevisiae include the sequence of UPRE (Mori et al. 1996;
Guerfal et al. 2010), the regulation of HAC1 mRNA splicing
(Guerfal et al. 2010; Baumann et al. 2011; Fauzee et al. 2020;
Raschmanová et al., in preparation), the length of the HAC1
intron (Mori et al. 2000; Guerfal et al. 2010), and the role of
UPR genes in inositol biosynthesis (Chang et al. 2004;
Raschmanová et al., in preparation). Recently, it was reported
that the basal level of ER stress (i.e., without external stressing
stimuli) inP. pastoris is higher than in S. cerevisiae, likely due
to the enhanced passage of endogenous N-glycosylated pro-
teins through the ER and the secretory pathway (Fauzee et al.
2020). It becomes evident that information about the UPR
cannot be solely adopted from S. cerevisiae, and more basic
research in this area is needed for P. pastoris in order to en-
gineer the UPR pathway effectively in terms of increasing
productivity. Moreover, general knowledge on chaperones in-
volved in membrane protein folding is limited in yeasts
(Emmerstorfer et al. 2014).

In P. pastoris, intracellular retention or aggregation of re-
combinant proteins, or even their intracellular degradation,
was observed, accompanied by the upregulation of UPR
and/or ERAD (Table 1). Intracellular degradation of the pro-
tein may account for up to 60% of the total product (Pfeffer
et al. 2011). Recombinant proteins triggering the UPR are of
different types, including various secreted proteins: antibody
fragments (Gasser et al. 2006, 2007a; Khatri et al. 2011;
Pfeffer et al. 2011; Delic et al. 2012; Pfeffer et al. 2012),
human interleukin (Zhong et al. 2014), human serum albumin
(Aw et al. 2017), different secreted enzymes (Resina et al.
2007; Tawde and Freimuth 2012; Lin et al. 2013; Sha et al.
2013a; Raschmanová et al. 2019), membrane proteins (Vogl
et al. 2014), and enhanced green fluorescent protein (EGFP)

(Liu et al. 2014). For example, human serum albumin (HSA)
is considered to be a well-secreted protein by P. pastoris, as
grams per liter of secreted HSA can be obtained (Kobayashi
et al. 2000), while heterodimeric antibody fragments are typ-
ically produced in only milligrams per liter (Gasser et al.
2006). Yet, both were shown to upregulate the UPR
(Table 1). To assign secretion capability (good vs. poor) of
the recombinant protein, a combination of several character-
istics should be considered (Raschmanová et al. 2019): titer
(e.g., grams of secreted protein per liter), specific productivity
(e.g., grams of secreted protein per liter and per gram of bio-
mass), intracellular protein accumulation/degradation, and
physiological state of the cells (e.g., compromised growth,
proportion of non-viable cells). However, all these character-
istics are rarely assessed and described in the available litera-
ture. Typically therefore, the distinction between a well and
poorly secreted protein is based solely on the titer achieved,
i.e., extracellular protein concentration.

It seems that the secretion is not predominantly determined
by the origin of the protein, in the sense of being naturally
secreted or cytosolic; typically, intracellular proteins can also
be successfully secreted by P. pastoris, e.g., human catalase
(0.55 g per liter) (Shi et al. 2007). Rather, the ease of secretion
and UPR upregulation seem to be the result of combined ef-
fects of the strength of expression (i.e., promoter), gene copy
number, protein thermostability, and cultivation conditions
used. In all the cases listed in Table 1, the heterologous genes
were expressed from strong promoters, either the constitutive
glyceraldehyde phosphate dehydrogenase (GAP) promoter, or
the methanol inducible alcohol oxidase 1 (AOX1) promoter.
Generally, the higher the copy number of the heterologous
gene, the more pronounced was the UPR (Table 1). In the
study performed by Love et al. (2012), increasing the copy
number of genes expressed from PAOX1 led to decreased rates
of secretion for three proteins with different folding complex-
ities: EGFP, and glycosylated and aglycosylated versions of a
human Fc fragment. Nevertheless, there are also proteins
whose secretion increases with high-copy number (Huang
et al. 2017). The relationship between protein thermostability,
secretion, and UPR/ERAD was studied (Whyteside et al.
2011). These authors showed that the production of mutation-
ally destabilized variants of human lysozyme led to higher
UPR and ERAD levels, and the protein was retained intracel-
lularly, i.e., poorly secreted and targeted for degradation, more
so than the stable variant of lysozyme (Whyteside et al. 2011).
Cultivation conditions such as specific growth rate of bio-
mass, temperature, or osmolarity regulate the UPR. An in-
creased specific growth rate of biomass upregulated the
UPR, while proteolytic degradation of secretory proteins
(ERAD) was downregulated (Rebnegger et al. 2014).
Reduction of the cultivation temperature from 30 to 20°C
upregulated UPR (Zhong et al. 2014), which probably led to
a more rapid processing of the recombinant product in the ER,

4400 Appl Microbiol Biotechnol (2021) 105:4397–4414



Ta
bl
e
1

E
R
-s
tr
es
s
du
ri
ng

pr
od
uc
tio

n
of

re
co
m
bi
na
nt

pr
ot
ei
ns

in
P
.p
as
to
ri
s

R
ec
om

bi
na
nt

pr
ot
ei
n

P
ro
m
ot
er

In
tr
ac
el
lu
la
r
ac
cu
m
ul
at
io
n/
de
gr
ad
at
io
n

E
R
-s
tr
es
s

R
ef
er
en
ce
s

S
ec
re
te
d
pr
ot
ei
ns

A
nt
ib
od
y
Fa
b
fr
ag
m
en
t

P
G
A
P

A
cc
um

ul
at
io
n

E
xp
re
ss
io
n
of

K
A
R
2,
P
D
I1
,R

O
T2

,E
R
O
1,
ca
ln
ex
in
,

SE
C
31
,S
E
C
53

↑
(G

as
se
r
et
al
.2
00
6;

G
as
se
r
et
al
.2
00
7a
)

A
nt
ib
od
y
Fa
b3
H
6
fr
ag
m
en
t

P
G
A
P

D
eg
ra
da
tio

n
E
xp
re
ss
io
n
of

K
A
R
2
↑
3.
5-
fo
ld
,L

H
S1

↑
1.
6-
fo
ld
,

pr
ot
eo
ly
tic

ac
tiv

ity
↑
by

m
or
e
th
an

20
%

(P
fe
ff
er

et
al
.2
01
1;

P
fe
ff
er

et
al
.2
01
2)

A
nt
i-
H
IV

an
tib

od
y
2F

5
Fa
b
fr
ag
m
en
t

P
G
A
P

N
ot

an
al
yz
ed

E
xp
re
ss
io
n
of

K
A
R
2,
E
R
O
1,
P
D
I1
,H

A
C
1
↑
2–
3-
fo
ld

(D
el
ic
et
al
.2
01
2)

Si
ng
le
-c
ha
in

an
tib

od
y
fr
ag
m
en
t(
sc
Fv

)
P
A
O
X
1

N
ot

an
al
yz
ed

E
xp
re
ss
io
n
of

K
A
R
2
↑
ap
p.
1.
6-
fo
ld
,P

D
Iu

nc
ha
ng
ed

(K
ha
tr
ie
ta
l.
20
11
)

H
ep
at
iti
s
B
vi
ru
s
su
rf
ac
e
an
tig

en
(8

co
pi
es
)

P
A
O
X
1

Po
te
nt
ia
ld

eg
ra
da
tio

n
(E
R
A
D
)

C
on
te
nt

of
Pd

i,
E
R
A
D
pr
ot
ei
ns

↑
(V

an
z
et
al
.2
01
2)

A
nt
i-
C
D
3
im

m
un
ot
ox
in

P
A
O
X
1
or

P
G
A
P

N
o,
bu
ts
lo
w
se
cr
et
io
n

C
on
te
nt

of
K
ar
2p

↑
1.
5–
3-
fo
ld

(L
iu

et
al
.2
00
5)

Sy
no
vi
al
sa
rc
om

a
X
br
ea
k
po
in
t2

P
A
O
X
1

A
cc
um

ul
at
io
n

E
xp
re
ss
io
n
of

K
A
R
2
↑
2.
3–
3.
5-
fo
ld

(H
ua
ng

et
al
.2
01
0)

H
um

an
in
te
rl
eu
ki
n-
10

(d
if
fe
re
nt

co
py

nu
m
be
r:

1,
5,
10
;d

if
fe
re
nt

te
m
pe
ra
tu
re
:2

0°
C
or

30
°C

)
P
A
O
X
1

A
cc
um

ul
at
io
n
(b
ot
h
im

m
at
ur
e

an
d
m
at
ur
e
pr
ot
ei
n)

20
°C

:E
xp
re
ss
io
n
of

H
A
C
1
↑
ap
p.
1.
5-
fo
ld
,K

A
R
2
↑

ap
p.
1.
9-
fo
ld
,E

R
O
1
↑
ap
p.
2.
4-
fo
ld

(c
om

pa
re
d
to

30
°C

)
5-
co
py

st
ra
in
:E

xp
re
ss
io
n
of

H
A
C
1
↑
ap
p.
2.
5-
fo
ld
,

K
A
R
2
↑
ap
p.
2.
5-
fo
ld
,E

R
O
1
↑
ap
p.
3.
8-
fo
ld

H
ig
he
r
le
ve
lo

f
E
R
-p
ha
gy

at
30
°C

th
an

at
20
°C

(Z
ho
ng

et
al
.2
01
4)

H
um

an
se
ru
m

al
bu
m
in
,n
in
e
di
ff
er
en
t

cl
on
es

(a
ll
si
ng
le
co
py
)

P
A
O
X
1

N
ot

an
al
yz
ed

E
xp
re
ss
io
n
of

H
A
C
1,
K
A
R
2,
an
d
P
D
I
↑,
↓
or

un
ch
an
ge
d,
de
pe
nd
in
g
on

th
e
cl
on
e

(A
w
et
al
.2
01
7)

R
ab
ie
s
vi
ru
s
gl
yc
op
ro
te
in

(2
–8

co
pi
es
)

P
A
O
X
1

A
cc
um

ul
at
io
n

E
xp
re
ss
io
n
of

H
A
C
1
↑
up

to
3-
fo
ld

(8
-c
op
y
st
ra
in
),

P
D
I1

↑
up

to
2.
8-
fo
ld

(7
-c
op
y
st
ra
in
),
K
A
R
2
↑
up

to
2.
8-
fo
ld

(7
-c
op
y
st
ra
in
),
E
R
A
D
ge
ne
s
H
R
D
1

an
d
C
D
C
48

un
ch
an
ge
d

(B
en

A
zo
un

et
al
.2
01
6a
)

R
ab
ie
s
vi
ru
s
gl
yc
op
ro
te
in

(1
–8

co
pi
es
)

P
G
A
P

A
cc
um

ul
at
io
n

E
xp
re
ss
io
n
of

H
A
C
1
↑
up

to
5.
1-
fo
ld
,P

D
I1

↑
up

to
4.
8-
fo
ld
,K

A
R
2
↑
up

to
5.
1-
fo
ld
,H

R
D
1
↑
up

to
2.
3-
fo
ld
,C

D
C
48

↑
up

to
1.
5-
fo
ld

(h
ig
he
st
fo
r
8-
co
py

st
ra
in
)

(B
en

A
zo
un

et
al
.2
01
6b
)

R
ab
ie
s
vi
ru
s
gl
yc
op
ro
te
in

(1
,2
,3
,5
,o
r
10

co
pi
es
)

P
A
O
X
1

D
eg
ra
da
tio

n
E
xp
re
ss
io
n
of

H
A
C
1
↑
up

to
4.
3,
IR
E
1
↑
up

to
3.
6-
fo
ld
,

P
D
I1

↑
up

to
3.
1-
fo
ld
,K

A
R
2
↑
up

to
3.
6-
fo
ld
,H

R
D
1

↑
up

to
7.
5-
fo
ld
,C

D
C
48

↑
up

to
6.
1-
fo
ld

(h
ig
he
st
fo
r

10
-c
op
y
st
ra
in
)

(B
en

A
zo
un

et
al
.2
01
7)

Po
rc
in
e
in
su
lin

pr
ec
ur
so
r
(P
IP
)

P
A
O
X
1

N
ot

an
al
yz
ed

6-
co
py

st
ra
in
:E

xp
re
ss
io
n
of

K
A
R
2
↑
1.
68
-f
ol
d,
P
D
I1

↑
1.
43
-f
ol
d.
18
-c
op
y
st
ra
in
:E

xp
re
ss
io
n
of

K
A
R
2

↑
5.
78
-f
ol
d,
P
D
I1

↑
2.
14
-f
ol
d

(Z
hu

et
al
.2
01
1)

In
su
lin

pr
ec
ur
so
r

P
A
O
X
1

A
cc
um

ul
at
io
n
le
ss

th
an

10
%

A
m
ou
nt

of
U
P
R
-
an
d
E
R
A
D
-p
ro
te
in
s
(K

ar
2p
,P

di
)
↓

(V
an
z
et
al
.2
01
4)

H
um

an
ly
so
zy
m
e
(n
in
e
m
ut
at
io
na
l

va
ri
an
ts
w
ith

di
ff
er
en
ts
ta
bi
lit
y)

P
A
O
X
1

A
cc
um

ul
at
io
n
(t
he

lo
w
er

st
ab
ili
ty
,

th
e
hi
gh
er

am
ou
nt
)

E
xp
re
ss
io
n
of

H
A
C
1
↑
up

to
6-
fo
ld
,K

A
R
2
↑
up

to
7.
5-
fo
ld
,

P
D
I1

↑
up

to
5-
fo
ld
,D

E
R
1
↑
up

to
1.
8-
fo
ld
,H

R
D
3
↑
up

to
1.
6-
fo
ld
,S
E
C
61

↑
up

to
1.
2-
fo
ld

T
he

lo
w
er

st
ab
ili
ty
,t
he

hi
gh
er

in
cr
ea
se

(W
hy
te
si
de

et
al
.2
01
1)

H
um

an
ly
so
zy
m
e
(v
ar
ia
nt

pr
on
e
to

in
tr
ac
el
lu
la
r
ag
gr
eg
at
io
n
I5
6T

an
d

m
is
fo
ld
ed

bu
ts
ec
re
ta
bl
e
va
ri
an
tT

70
N
)

P
A
O
X
1

A
gg
re
ga
tio

n
(2
0–
30
%

in
ca
se

of
T
70
N
,

up
to

60
%

in
ca
se

of
I5
6T

)
E
xp
re
ss
io
n
of

K
A
R
2
an
d
P
D
I1

↑
2-
fo
ld

tr
an
si
en
tly

(H
es
ke
th

et
al
.2
01
3)

H
um

an
tr
yp
si
no
ge
n

P
A
O
X
1
or

P
G
A
P

A
cc
um

ul
at
io
n

C
on
te
nt

of
K
ar
2p

↑
up

to
4-
fo
ld

4401Appl Microbiol Biotechnol (2021) 105:4397–4414



T
ab

le
1

(c
on
tin

ue
d)

R
ec
om

bi
na
nt

pr
ot
ei
n

P
ro
m
ot
er

In
tr
ac
el
lu
la
r
ac
cu
m
ul
at
io
n/
de
gr
ad
at
io
n

E
R
-s
tr
es
s

R
ef
er
en
ce
s

H
um

an
tr
yp
si
no
ge
n

P
A
O
X
1

N
ot

an
al
yz
ed

E
xp
re
ss
io
n
of

P
D
I1
,H

A
C
1,
E
R
O
1,
et
c.
↑

H
um

an
tr
yp
si
no
ge
n
(1
,2
,o
r
3
co
pi
es
)

P
A
O
X
1

N
ot

an
al
yz
ed

E
xp
re
ss
io
n
of

H
A
C
1,
K
A
R
2,
P
D
I,
E
R
A
D
ge
ne
s
↑

3-
co
py

st
ra
in
:E

xp
re
ss
io
n
of

H
A
C
1
↑
3–
4-
fo
ld

hi
gh
er

th
an

in
1-
co
py

st
ra
in

P
or
ci
ne

tr
yp
si
no
ge
n

P
G
A
P

N
ot

an
al
yz
ed

>
1-
co
py

st
ra
in
:E

xp
re
ss
io
n
of

K
A
R
2,

E
R
O
1,
P
D
I1
,

H
A
C
1
↑
2–
3-
fo
ld

(D
el
ic
et
al
.2
01
2)

Pr
ol
yl

en
do
pe
pt
id
as
e

P
A
O
X
1

D
eg
ra
da
tio

n
E
xp
re
ss
io
n
of

H
A
C
1
↑
up

to
ap
p.
4.
7-
fo
ld
,K

A
R
2
↑
up

to
ap
p.
5-
fo
ld
,a
nd

P
D
I1

↑
up

to
5.
7-
fo
ld

(W
an
g
et
al
.2
01
7)

E
nh
an
ce
d
gr
ee
n
fl
uo
re
sc
en
tp

ro
te
in

(1
–6

co
pi
es
)

P
A
O
X
1

A
cc
um

ul
at
io
n
(i
n
st
ra
in
s
w
ith

4
an
d
5
co
pi
es
)

E
xp
re
ss
io
n
of

K
A
R
2
↑
ap
p.
1.
5–
5.
5-
fo
ld
,P

D
I
↑
ap
p.

1.
5–
4-
fo
ld
.T

he
hi
gh
es
ti
nc
re
as
e
in

4-
co
py

st
ra
in

(L
iu

et
al
.2
01
4)

R
hi
zo
pu
s
or
yz
ae

lip
as
e

P
F
L
D
1

N
ot

an
al
yz
ed

S
ha
ke

fl
as
ks
:E

xp
re
ss
io
n
of

K
A
R
2
↑
ap
p.
4-
fo
ld
,

P
D
I
↑
ap
p.
5-
fo
ld

B
io
re
ac
to
rs
:E

xp
re
ss
io
n
of

K
A
R
2
↑
fr
om

0
to

2.
5
fm

ol
m
g−

1

to
ta
lR

N
A
,P

D
I
↑
fr
om

0
to

2
fm

ol
m
g−

1
to
ta
lR

N
A

(R
es
in
a
et
al
.2
00
7)

R
hi
zo
pu
s
ch
in
en
si
s
lip

as
e
(1
,3
,5
,o
r
6
co
pi
es
)

P
A
O
X
1

N
o

E
xp
re
ss
io
n
of

E
R
O
1
↑
up

to
1.
7-
fo
ld
,P

D
I1

↑
up

to
3.
7-
fo
ld

(h
ig
he
st
fo
r
6-
co
py

st
ra
in
)

(S
ha

et
al
.2
01
3a
)

A
ra
bi
do
ps
is
m
od
ul
ar

ce
llu
la
se
s
A
tG
H
9C

1
(C
1)

an
d
A
tG
H
9C

2
(C
2)

an
d
th
ei
r
tr
un
ca
te
d

ve
rs
io
ns

P
A
O
X
1

A
cc
um

ul
at
io
n
(t
ru
nc
at
ed

ve
rs
io
ns
)

E
xp
re
ss
io
n
of

K
A
R
2
↑
5–
15
-f
ol
d,
P
D
I1

↑
3–
6-
fo
ld

(T
aw

de
an
d
F
re
im

ut
h

20
12
)

X
yl
an
as
e
A
fr
om

B
ac
ill
us

ha
lo
du
ra
ns

(1
or

4
co
pi
es
)

P
A
O
X
1

N
ot

an
al
yz
ed

sp
ec
if
ic
al
ly

(o
nl
y
to
ta
l

in
tr
ac
el
lu
la
r
pr
ot
ei
n)
,p
ro
ba
bl
y

no
de
gr
ad
at
io
n

1-
co
py

st
ra
in
:E

xp
re
ss
io
n
of

H
A
C
1
↑
ap
p.
1.
5-
fo
ld
,E

R
O
1

un
ch
an
ge
d,
K
A
R
2
↓
ap
p.
0.
5-
fo
ld
,C

N
E
1
↓
ap
p.

0.
4-
fo
ld
,l
ev
el
s
of

pr
ot
ei
ns

in
vo
lv
ed

in
fo
ld
in
g
an
d

st
re
ss

re
sp
on
se

↓
4-
co
py

st
ra
in
:E

xp
re
ss
io
n
of

H
A
C
1
↑
2.
2-
fo
ld
,K

A
R
2
↑

1.
9-
fo
ld
,E

R
O
1
↑
1.
5-
fo
ld
,C

N
E
1
↑
1.
9-
fo
ld
,c
ha
pe
ro
ne

co
nt
en
t↑

(L
in

et
al
.2
01
3)

E
sc
he
ri
ch
ia

co
li
pe
ni
ci
lli
n
G
ac
yl
as
e
(E
cP
G
A
),

C
an
di
da

an
ta
rc
tic
a
lip

as
e
B
(C
aL

B
),

Th
er
m
om

yc
es

la
nu
gi
no
su
s
xy
la
na
se

A
(T
lX
yn
A
)

P
A
O
X
1

A
cc
um

ul
at
io
n
in

ca
se

of
E
cP
G
A

(5
0–
70
%
)

A
ct
iv
ity

of
P
K
A
R
2
↑
(6
0%

ce
lls

pr
od
uc
in
g
E
cP
G
A
,3
5%

ce
lls

pr
od
uc
in
g
C
aL

B
,a
nd

30
%

ce
lls

pr
od
uc
in
g
Tl
X
yn
A
),

ex
pr
es
si
on

of
K
A
R
2
↑
up

to
5.
6-
fo
ld

in
ca
se

of
E
cP
G
A

pr
od
uc
tio

n

(R
as
ch
m
an
ov
á
et
al
.

20
19
)

M
em

br
an
e
pr
ot
ei
ns

A
lte
rn
at
iv
e
ox
id
as
e
fr
om

P
.p
as
to
ri
s
(P
pA

od
p)
,

hu
m
an

C
M
P-
Si
a
tr
an
sp
or
te
r
(H

sC
st
p)
,c
op
pe
r

tr
an
sp
or
te
r
C
tr
3
fr
om

S.
ce
re
vi
si
ae

(S
cC

tr
3p
),

al
ll
in
ke
d
to

G
F
P

P
A
O
X
1

--
-

E
xp
re
ss
io
n
of

ge
ne
s
in
vo
lv
ed

in
st
re
ss

re
sp
on
se

(P
pA

od
p,
H
sC

st
p,
Sc
C
tr
3p
)
an
d
pr
ot
ei
n

fo
ld
in
g
(P
pA

od
p)

↑

(V
og
le
ta
l.
20
14
)

4402 Appl Microbiol Biotechnol (2021) 105:4397–4414



decreased levels of immature forms of the protein, and in-
creased product yield (Zhong et al. 2014).

Enhancing protein secretion
by overexpression of UPR genes

A possible strategy to enhance production and secretion of a
recombinant protein is to co-express a chaperone gene or other
genes involved in the UPR, assuming that the co-expressed
partner will assist and ensure correct protein folding.
Nevertheless, upregulation of the UPR is beneficial only in
the cases where protein folding, rather than its passage
through the secretory pathway, becomes rate-limiting (Love
et al. 2012). In P. pastoris, increased expression or secretion
of many different recombinant proteins resulted from co-
expression of the following: the ER-chaperone Kar2p or pro-
tein disulfide isomerase Pdi1 (Inan et al. 2006; Damasceno
et al. 2007; Sallada et al. 2019), enzymes involved in the ER
redox control and oxidative stress such as Ero1, Gpx1, Aha1,
or Ypt6 (Sha et al. 2013c; Ben Azoun et al. 2016a; Huangfu
et al. 2016; Sallada et al. 2019), the UPR transcription factor
Hac1p (Guerfal et al. 2010; Vogl et al. 2014; Li et al. 2015;
Krainer et al. 2016; Huang et al. 2017; Han et al. 2020; Liu
et al. 2020), the kinase/RNase Ire1p (Yu et al. 2020), or new
co-chaperones (Huangfu et al. 2016) (Table 2). Glycosylation
activity was also increased (Moon et al. 2015) or product
homogeneity and processing of the secretion α-factor were
improved (Guerfal et al. 2010). Recently, three novel folding
factors, Mpd1p (member of the PDI family), Pdi2p (protein
disulfide isomerase), and Sil1p (nucleotide exchange factor
for the ER lumenal Hsp70 chaperone Kar2p), were character-
ized and their genes co-expressed in P. pastoris (Duan et al.
2019). In this work, only Sil1p improved the specific extra-
cellular activity and the secretion ratio of one out of three
recombinant proteins tested (Duan et al. 2019).

In the vast majority of published works, the helper gene, as
well as the target gene of interest, was expressed from the
classic strong Pichia promoters, GAP or AOX1 (Table 2).
When co-expressing 1, 2, 4, 6, 8, or 11 copies of HAC1 from
the AOX1 promoter and additional 4, 6, 9, 10, 13, 17 copies of
HAC1 from the GAP promoter along with the raw-starch hy-
drolyzing enzyme, α-amylase, the best improvement of prod-
uct concentration was reached with 6 copies of HAC1
expressed from the AOX1 promoter and 17 copies of HAC1
expressed from the GAP promoter (Huang et al. 2017). In
another work, the effect of HAC1 overexpression on heterol-
ogous protein levels was stronger when HAC1 was expressed
from the inducible AOX1 promoter than from the constitutive
GAP promoter (Guerfal et al. 2010). As shown recently, it
might also be beneficial to examine alternative promoters.
The yield of bovine lactoferrin was improved by 109.5% by
HAC1i expressed from a novel methanol-inducible promoter

P0547, while it decreased when using the GAP promoter (Sun
et al. 2019). Recently, the UPR-inducible PDI1 promoter,
whose strength was found to be equivalent to 20–25% of the
GAP promoter and 4.5–5% of the AOX1 promoter, was used
for moderate expression of the Candida antarctica lipase B
gene (Prattipati et al. 2020).

Improved expression/secretion was also affected by the
copy number of the recombinant gene (Lin et al. 2013; Yang
et al. 2016; Sallada et al. 2019; Huang et al. 2020), as well as
of the co-expressed helper gene (Yang et al. 2016; Huang
et al. 2017). For example, while the amount of secreted
xylanase A from Bacillus halodurans increased 1.4-fold in a
4-copy strain by the co-expression of HAC1, it was not
changed in a co-expressing strain containing only one copy
of the xylanase A gene (Lin et al. 2013). A similar trend was
observed for the production of secreted Rhizomucor miehei
lipase; overexpression of PDI1 led to enhanced activity (2-
fold) in a 4-copy strain, whereas activity in the strain carrying
two copies of the lipase gene remained unchanged (Huang
et al. 2020). In a P. pastoris strain producing hydrophobin
HFBI, co-expression of KAR2 increased expression of
hydrophobin 14-fold in a 1-copy strain, 9.8-fold in a 2-copy
strain, and 22-fold in a 3-copy strain (Sallada et al. 2019). Co-
expression of other helper genes, PDI1 and ERO1, only in-
creased the expression of hydrophobin in the 3-copy strain
(7.8-fold and 30-fold, respectively) (Sallada et al. 2019).
Another example was the co-expression of PDI1 in
P. pastoris strains containing low-, medium-, and high-copy
numbers of the porcine peptidoglycan recognition protein
gene (Yang et al. 2016). Improvements in the amount of se-
creted product were more significant the higher the copy num-
ber, i.e., unchanged, 2.8-fold higher, and 5-fold higher in the
low-, medium-, and high-copy strains, respectively (Yang
et al. 2016). These results indicate that co-expression of helper
UPR genes is particularly helpful, or more pronounced, in
strains containing higher copy numbers of the heterologous
gene. In the end, this can lead to higher secretion by strains
containing a high-copy number of the heterologous gene than
by the low-copy strains, which originally, i.e., without the co-
expressed chaperone, secreted more product (Yang et al.
2016). The co-expression of multiple copies of the chaperone
genes improved the secretion of porcine peptidoglycan recog-
nition protein (high-copy strain) (Yang et al. 2016) or α-
amylase from Geobacillus sp. (Huang et al. 2017).

In addition, the origin (i.e., the homologue used) of the co-
expressed helper gene is important for the extent of its effect on
recombinant protein secretion (Bankefa et al. 2018). While the
specific activity of β-galactosidase produced with P. pastoris
was the most improved by co-expression of HAC1 from
Trichoderma reesei (by 81%), in the case of β-mannanase,
the best co-expression partner was the HAC1 homologue from
Homo sapiens (improvement of 49%), and for glucose oxidase,
the co-expression of P. pastoris HAC1 worked the best
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(improvement of 13%). These results indicate that the native
Hac1p or its homologue from a closely related species does not
necessarily have to be the best option generally for enhancing
the secretion of any protein (Bankefa et al. 2018).

An alternative strategy, based on regulating/engineering
the UPR, which may improve protein secretion in
P. pastoris, is inhibition of the proteasome, including ERAD
(Pfeffer et al. 2012). However, recent research revealed that
the disruption of proteasomal and ERAD components did not
increase the secretion of an antibody fragment produced by
P. pastoris and the authors proposed that the protein was
probably degraded prior to entering the secretory pathway
(Zahrl et al. 2018). Another approach enhancing recombinant
protein production might be deletion of certain chaperones; in
S. cerevisiae, deletion of CNE1, encoding the yeast homo-
logue of mammalian calnexin and calreticulin, increased the
production of human transferrin receptor (Prinz et al. 2003). In
another review, the strategy of improving the production of
recombinant G-protein coupled receptors (GPCR) in yeasts by
addition of GPCR-specific ligands or chemical chaperones,
such as DMSO, histidine, or glycerol, was discussed
(Emmerstorfer et al. 2014). These chemical chaperones are
involved in, e.g., gene regulation, modulating ER/Golgi trans-
port, cell wall integrity, membrane permeability, stabilizing
protein conformation, or supposedly acting as antioxidants
(Emmerstorfer et al. 2014). Other engineering approaches to
improve secretion by P. pastoris are reviewed elsewhere
(Ahmad et al. 2014; Puxbaum et al. 2015; Fischer and
Glieder 2019).

Pitfalls of engineering the UPR

It is apparent from the published studies that the effect of co-
expressed factors is product-specific (Table 2); in some cases,
the production/secretion of the recombinant proteins was un-
changed (Damasceno et al. 2007; Delic et al. 2012; Liu et al.
2013; Vogl et al. 2014; Ben Azoun et al. 2016a; Ben Azoun
et al. 2016b; Elena et al. 2016; Duan et al. 2019), and some-
times it was even reduced (Liu et al. 2013; Yang et al. 2016;
Bankefa et al. 2018; Duan et al. 2019; Sun et al. 2019). For
example, the secretion of A33 single-chain antibody fragment
was increased byKAR2 co-expression but was not changed by
the co-expression of PDI or simultaneous co-expression of
KAR2 and PDI (Damasceno et al. 2007). In contrast, PDI
co-expression increased secretion levels of an antibody Fab
fragment (Gasser et al. 2006), Necator americanus secretory
protein (different copy numbers) (Inan et al. 2006), or porcine
trypsinogen (Delic et al. 2012).

A decrease in protein secretion in P. pastoris was reported
for different membrane- and surface-displayed proteins after
co-expression of PpHAC1i from PAOX1 (Guerfal et al. 2010),
α-glucosidase from Aspergillus niger after co-expression ofT

ab
le
2

(c
on
tin

ue
d)

R
ec
om

bi
na
nt

pr
ot
ei
n
(s
ec
re
te
d,
if

no
ts
ta
te
d
ot
he
rw

is
e)

C
o-
ex
pr
es
se
d
he
lp
er

ge
ne

P
ro
m
ot
er

fo
r

re
co
m
bi
na
nt
/

he
lp
er

ge
ne

ex
pr
es
si
on

Pr
od
uc
tio

n/
se
cr
et
io
n-
re
la
te
d
ef
fe
ct
(s
)

R
ef
er
en
ce
s

S
pe
ci
fi
c
ac
tiv

ity
of

G
ox

↑
by

13
%

(P
pH

A
C
1)
,↑

by
10
%

(S
cH

A
C
1)
,↑

by
5%

(H
sX
B
P
1)
,↓

by
3%

(T
rH

A
C
1)

Y
ea
st
-e
nh
an
ce
d
gr
ee
n
fl
uo
re
sc
en
tp

ro
te
in

(y
E
G
FP

),
β
-g
al
ac
to
si
da
se

(G
al
),

ce
ph
al
os
po
ri
n
C
ac
yl
as
e
(S
E
C
A
)

P
D
I1
,K

A
R
2,

H
A
C
1,
M
P
D
1,

P
D
I2
,S
IL
1

P
A
O
X
1/
P
A
O
X
1

S
pe
ci
fi
c
ex
tr
ac
el
lu
la
r
fl
uo
re
sc
en
ce

of
yE

G
FP

↑
by

26
%

(P
D
I1
),
↑
by

14
%

(K
A
R
2)
,↑

by
99
%

(H
A
C
1)
,↓

(o
th
er
s)
,s
ec
re
tio

n
ra
tio

*7
un
ch
an
ge
d
(a
ll)

E
xt
ra
ce
llu

la
r
pr
od
uc
tio

n
of

G
al
↑
sl
ig
ht
ly

(P
D
I2
,

K
A
R
2)
,↓

dr
am

at
ic
al
ly

(o
th
er
s)

E
xt
ra
ce
llu

la
r
pr
od
uc
tio

n
of

SE
C
A
↑
3-
fo
ld

(S
IL
1,
H
A
C
1)
,

↓
or

un
ch
an
ge
d
(o
th
er
s)
,s
ec
re
tio

n
ra
tio

↑
2.
7-
fo
ld

(S
IL
1)

an
d
3.
2-
fo
ld

(H
A
C
1)

(D
ua
n
et
al
.2
01
9)

P
se
ud
om

on
as

ae
ru
gi
no
sa

el
as
ta
se

H
A
C
1i

P
A
O
X
1/
P
A
O
X
1

A
ct
iv
ity

↑
1.
8–
3.
9-
fo
ld
.N

eg
lig

ib
le
ef
fe
ct
on

N
-g
ly
co
sy
la
tio

n
(H

an
et
al
.2
02
0)

Zo
be
lli
a
κ-
ca
rr
ag
ee
na
se

K
A
R
2,
E
R
O
1,
P
D
I,
YA

P
1,

A
H
A
1,
YP

T6
,P

R
X
1,
R
P
N
4,
IR
E
1

P
A
O
X
1/
P
A
O
X
1

E
nz
ym

at
ic
ac
tiv

ity
un
ch
an
ge
d
(K
A
R
2,

P
D
I)
,

↑
1.
24
–1
.3
5-
fo
ld

(a
ll
ot
he
rs
)

(Y
u
et
al
.2
02
0)

*1
Sa
cc
ha
ro
m
yc
es

ce
re
vi
si
ae
,*

2
P
ic
hi
a
pa
st
or
is
,*

3
m
ou
se

in
te
rl
eu
ki
n,
*4

no
ve
lm

et
ha
no
l-
in
du
ci
bl
e
pr
om

ot
er
(X

u
et
al
.2
01
8)
,*

5
Tr
ic
ho
de
rm

a
re
es
ei
,*

6
H
om

o
sa
pi
en
s,
*7

se
cr
et
ed

to
to
ta
lp
ro
te
in
am

ou
nt

4406 Appl Microbiol Biotechnol (2021) 105:4397–4414



PpPDI1 from PAOX1 (Liu et al. 2013), bovine lactoferrin after
co-expression of PpHAC1i from PGAP (by 20.9%) (Sun et al.
2019), porcine peptidoglycan recognition protein after co-
expression of KAR2 from PGAP (Yang et al. 2016), or
Candida antarctica lipase B after co-expression of KAR2
from PAOX1 (0.7-fold) (Samuel et al. 2013). These negative
effects might be attributed to the use of a strong promoter for
the co-expression of the UPR gene, which induces the UPR to
an inappropriately high level and results in elevated ERAD,
re-translocation of the protein to the cytosol and its subsequent
degradation (Guerfal et al. 2010; Liu et al. 2013). The over-
expression of KAR2 increased the intracellular insoluble frac-
tion of a recombinant peptidoglycan recognition protein, and
the prolonged retention of the protein in the ER probably led
to its degradation via ERAD (Yang et al. 2016). Moreover,
excess Kar2p molecules in the ER, caused by KAR2 overex-
pression, might — even in the presence of unfolded proteins
— lead to sustained association of Kar2p with Ire1p, and thus
prevent activation of Ire1p and subsequent upregulation of the
UPR (Samuel et al. 2013). The efficiency of UPR regulation is
also determined by the source of the overexpressed HAC1
(Bankefa et al. 2018); the specific activity of β-galactosidase
from A. oryzae was decreased in the case of co-expression of
theHomo sapiens homologue ofHAC1 from PAOX1 (by 62%),
and the specific activity of β-mannanase from Bacillus was
decreased (by 41%) after co-expression of the S. cerevisiae
homologue ofHAC1 from PAOX1 (Bankefa et al. 2018). In the
case of β-mannanase, it was shown that overexpression of
ScHAC1 had little or even a negative effect on the expression
of chaperones, compared to theHAC1 homologue fromHomo
sapiens, which also increased the specific β-mannanase activ-
ity (Bankefa et al. 2018).

It is important to keep in mind that overexpression of the
UPR genes affects the UPR balance and other cellular pro-
cesses. Overexpression of PDI1 in P. pastoris producing an
antibody fragment (Fab) enhanced the secretion rate of Fab,
but did not reduce the UPR stress (Gasser et al. 2007a). In
addition, the constitutive expression of HAC1 activated
ERAD (Guerfal et al. 2010). Prolonged activation of the
UPR can result in so-called ER-phagy, when parts of the ER
are removed to relieve the ER stress and remove the misfolded
proteins (Kruse et al. 2006). In addition, a sustained activation
of UPR can impair cellular growth, as reported for different
yeasts (Cox et al. 1993; Kawahara et al. 1997; Chawla et al.
2011; Cheon et al. 2011; Miyazaki et al. 2013; Moon et al.
2015). In P. pastoris, slower growth was observed in the case
of co-expression of HAC1 in strains producing xylanase A
from Bacillus halodurans or human lysozyme (Lin et al.
2013; Liu et al. 2020), of PDI1 in a strain producing α-
glucosidase from Aspergillus niger (Liu et al. 2013), or of
ERO1 in a strain producing Rhizomucor miehei lipase
(Huang et al. 2020). Other authors reported a decreased (by
27%) maximum specific growth rate (μmax) of a P. pastoris

strain producing β-galactosidase, as a result of the co-
expression of KAR2, but a comparable final cell density
(Duan et al. 2019). Co-expression of PDI1 increased the final
cell concentration by 35% but did not affect the μmax of that
strain. The growth rate of a P. pastoris strain producing ceph-
alosporin C acylase was not affected by the co-expression of
PDI1, but was decreased by the co-expression of folding fac-
tors HAC1, KAR2,MPD1, PDI2, and SIL1, with SIL1 having
the most detrimental effect: μmax was decreased by 39%
(Duan et al. 2019). Nevertheless, in other works, no negative
effect of overexpression of PDI1 and/or KAR2 on the growth
of cells was observed (Damasceno et al. 2007; Guan et al.
2016), and the co-expression of HAC1i was even reported to
enhance cellular growth (Han et al. 2020). These results sug-
gest that the effect of the co-expressed gene on a strain’s
physiology and growth has to be determined individually for
each product. In this context, it is important to note that it is
not quite correct to evaluate the effect of the co-expressed
helper gene on protein production/secretion only by compar-
ing protein concentrations or activities. Knowing that co-
expression might influence the strain’s growth characteristics,
it is essential to also assess the biomass growth. To evaluate
the effect of the co-expression strategy, protein to biomass
yields (mass of protein produced per mass of biomass) or
specific productivities (mass of protein produced per mass of
biomass per hour) should be compared, instead of only protein
mass (mass of protein produced) or concentrations (mass of
protein per liter). This is, however, usually not taken into
account (Table 2).

Outcomes: Recommendations
for co-expression strategies

The correct folding and rate of secretion of a recombinant
protein are affected by the strength of expression of its gene,
gene copy number (Love et al. 2012), thermostability of the
protein (Whyteside et al. 2011), and cultivation conditions
(Rebnegger et al. 2014; Zhong et al. 2014). It seems that the
combination of these effects can outweigh the effect of the
protein’s origin (cytosolic vs. secreted) and character with
respect to its folding and secretion complexity. Low gene
copy number (Love et al. 2012; Yang et al. 2016), increased
thermostability of the protein (Whyteside et al. 2011), and
decreased cultivation temperature (Zhong et al. 2014) can en-
hance the folding and secretion rate by alleviating the UPR.

Based on the currently available information, it seems that
the effect of a co-expressed folding partner on recombinant
protein secretion cannot be predicted a priori. The most suit-
able folding partner must be verified experimentally for each
individual product. According to the literature search summa-
rized in Table 2, the most frequently used co-expression part-
ner genes employed to promote recombinant protein secretion
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in P. pastoriswere as follows:HAC1 encoding a transcription
factor of UPR genes, PDI1 encoding a protein disulfide isom-
erase, and KAR2 encoding an ER chaperone. In the case of
HAC1, the use of different promoters (PGAP, PAOX1, P0547, and
PHTX1) for its expression, different copy numbers, or different
homologues was investigated, which makesHAC1 the best so
far described co-expression partner in P. pastoris. As summa-
rized in Table 2, overexpression of yeast HAC1 (i.e., the ho-
mologue from P. pastoris or S. cerevisiae) enhanced recom-
binant protein production/secretion in approx. 60% of report-
ed cases (as reported in the literature) and co-expression of
PDI1 and KAR2 improved protein production/secretion in
approx. 73% and 53% of the published cases, respectively.
However, such a broad brush view should be taken with care:
The number of publications describing overexpression of
PDI1 and KAR2 was lower than those reporting HAC1 co-
expression (Table 2). We acknowledge that the number of
unpublished results, either negative or positive, is uncertain.
Nevertheless, this purely statistical view should be helpful
given the wide scientific interest in the UPR-topic.

There were only a few studies where the effects of HAC1,
PDI1, and KAR2 co-expression were compared for the same
product. For the antibody Fab fragment and lipase from ma-
rine Streptomyces sp., PDI1 co-expression resulted in a great-
er increase in secreted product than HAC1 and KAR2 co-
expression (Gasser et al. 2007b; Lan et al. 2016), while the
secreted amount of yeast-enhanced green fluorescent protein
(yEGFP) was increased the most significantly by HAC1 co-
expression (Duan et al. 2019). The extracellular production of
cephalosporin C acylase was improved by HAC1 co-expres-
sion, but not by PDI or KAR2 (Duan et al. 2019). Due to the
low number of studies comparing the effect of HAC1, PDI1,
and KAR2 co-expression, it is not possible to draw general
conclusions about which co-expression partner would be the
most suitable for any particular recombinant protein.
Additionally, it cannot be concluded whether constitutive or
inducible expression of the co-expressed helper gene would
be more suitable, as both were shown to result in improved,
but also unchanged or reduced secretion of recombinant pro-
teins. There is a lack of literature describing the effect of
chaperone gene co-expression on the production of membrane
and surface-displayed proteins; only Hac1p was tested as a
helper, and this improved the production of only some pro-
teins (Guerfal et al. 2010; Vogl et al. 2014). It might be ben-
eficial to employ promoters alternative to PGAP and PAOX1 for
expression of the helper gene, including weak to moderate
promoters for a better fine-tuning of the UPR. Failed co-
expression strategies were, in some cases, attributed to the
UPR having been upregulated to inappropriately high levels
by the co-expression of the UPR genes from strong GAP or
AOX1 promoters, which might have resulted in increased
ERAD (Guerfal et al. 2010; Liu et al. 2013). It is also neces-
sary to note that there might be many failed co-expression

experiments in P. pastoris that were never published, but
which might actually shed more light on the UPR mechanism
and expression fine-tuning.

The literature search for co-expression strategies that em-
ploy a UPR-involved gene to enhance recombinant protein
produc t ion in P. pas tor i s l ed to the fo l lowing
recommendations:

& Consider the copy number of the heterologous gene of
interest. Folding stress can be reduced, thus secretion en-
hanced, by reducing the copy number of the heterologous
gene (Love et al. 2012, Yang et al. 2016). However, co-
expression of a helper UPR gene might reverse this trend,
resulting in more enhanced secretion in strains with a
higher copy number of the heterologous gene than in
low-copy number strains (Yang et al. 2016).

& Use a combinatorial approach to optimize the co-
expression strategy. Try different co-expression helper
genes and promoters (also weak ones) for their expression,
different copy numbers of the helper gene, different ho-
mologues of the helper gene, simultaneous co-expression
of multiple helper genes etc. (Fig. 2).

& If an extensive combinatorial approach is not feasible, as a
minimum we recommend examining several different co-
expression partners; this might improve the chances of an
unknown bottleneck in protein processing in the ER being
overcome. We suggest the co-expression of the following:
(1) HAC1i as the transcription factor upregulating the en-
tire UPR, thus also increasing the expression of genes of
chaperones, foldases, and others; (2) PDI and/or ERO1,
which are involved in the formation of disulfide bonds and
oxidative stress in the ER; and (3) the ER lumenal chap-
erone KAR2 that assists in correct protein folding.

& For “one-shot” scenarios, when testing of several different
co-expression partners is not feasible, we suggest using
HAC1i as a co-expression partner, since it was shown to
improve the secretion of different types of proteins includ-
ing antibody fragments, transporter proteins, lysozyme, a
broad range of hydrolytic enzymes, and enhanced the pro-
duction of a surface-displayed protein (Table 2).
However, if the protein of interest is rich in disulfide brid-
ges (Sha et al. 2013c; Guan et al. 2016), the co-expression
of PDI1 or ERO1might be preferred (Gasser et al. 2007b;
Guan et al. 2016).

& Along with protein titer/productivity, we recommend
assessing the effect of the co-expressed helper gene on
the strain’s physiology and growth of the production strain
(Raschmanová et al. 2019), as these, and thus overall pro-
ductivity and robustness of a bioprocess may be impaired.
A negative effect on biomass growth was reported for all
of the three most frequently used co-expression partners,
Hac1p, Pdi1, and Kar2p.When evaluating protein produc-
tion/secretion, it is reasonable to calculate the specific

4408 Appl Microbiol Biotechnol (2021) 105:4397–4414



productivity (mass of product produced per mass of bio-
mass per hour), which reflects the effect of the co-
expressed gene on product secretion, as well as on bio-
mass growth. For difficult-to-secrete proteins, it is useful
to assess the proportion of secreted as well as intracellu-
larly retained protein (Duan et al. 2019; Borčinová et al.
2020), and calculate a secretion ratio, i.e., the ratio of
secreted to total protein, as a relevant characteristic
diffentiating between the effect of the co-expressed gene
on total production, versus its secretion (Duan et al. 2019).

Conclusions and outlook

A commonly used strategy to boost folding and protein process-
ing in the ER, and thus to overcome secretory bottlenecks in
P. pastoris, is the overexpression of genes encoding proteins
involved in the UPR, such as the transcription activator of
UPR genes, Hac1p, or chaperones and foldases, e.g., Kar2p,
Pdi1, or Ero1p. In this review, we comprehensively analyzed
the successes and failures of such co-expression strategies in
P. pastoris. Currently, as basic research about the UPR in
P. pastoris is limited and no general instructions that guarantee
enhanced protein secretion can be followed, it is necessary to
design and optimize a co-expression strategy for each individual
product, since different proteins may benefit from different

levels of UPR activity. Nevertheless, we have summarized rec-
ommendations on the best practices for co-expression strategies.
In terms of future prospects for recombinant protein production
and secretion, the application of novel folding-factors and pro-
moters weaker than the classic PGAP and PAOX1 for their co-
expression could promote folding and secretion of diverse re-
combinant proteins that require fine-tuning of the UPR.
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