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Abstract
Rapid screening of infected people plays a crucial role in interrupting infection chains. However, the current methods for
identification of bacteria are very tedious and labor intense. Fast on-site screening for pathogens based on volatile organic
compounds (VOCs) by ion mobility spectrometry (IMS) could help to differentiate between healthy and potentially infected
subjects. As a first step towards this, the feasibility of differentiating between seven different bacteria including resistant strains
was assessed using IMS coupled to multicapillary columns (MCC-IMS). The headspace above bacterial cultures was directly
drawn and analyzed byMCC-IMS after 90 min of incubation. A cluster analysis software and statistical methods were applied to
select discriminative VOC clusters. As a result, 63 VOC clusters were identified, enabling the differentiation between all
investigated bacterial strains using canonical discriminant analysis. These 63 clusters were reduced to 7 discriminative VOC
clusters by constructing a hierarchical classification tree. Using this tree, all bacteria including resistant strains could be classified
with an AUC of 1.0 by receiver-operating characteristic analysis. In conclusion, MCC-IMS is able to differentiate the tested
bacterial species, even the non-resistant and their corresponding resistant strains, based on VOC patterns after 90 min of
cultivation. Although this result is very promising, in vivo studies need to be performed to investigate if this technology is able
to also classify clinical samples. With a short analysis time of 5 min, MCC-IMS is quite attractive for a rapid screening for
possible infections in various locations from hospitals to airports.

Key Points
• Differentiation of bacteria by MCC-IMS is shown after 90-min cultivation.
• Non-resistant and resistant strains can be distinguished.
• Classification of bacteria is possible based on metabolic features.
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Introduction

Infectious pathogens pose a significant challenge not only to
the medical sector but also globally. The worldwide travel

rapid global spreading of infectious pathogens within a
few days (Olsen et al. 2003; Khan et al. 2009). Besides
viruses, spreading of multi-resistant bacteria from one
country to another has been reported as well (Molton
et al. 2013). In the Netherlands, every admitted foreign
patient is screened for multi-resistant bacteria to prevent
nosocomial infections (Gunnink et al. 2021). Such control
policy has contributed to low incidence of methicillin-
resistant Staphylococcus aureus (MRSA) infections in
Netherlands. Consequently, new rapid tests are extremely
sought after to screen for infected subjects on site.

Currently, the standard diagnostic testing of bacteria is
based on cultivation and molecular biological methods.
Cultivation techniques belong to the core methodology for
diagnosis of bacterial infections but it takes days until the
results are available (Laupland and Valiquette 2013). To
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minimize the testing time, genome-based methods like PCR,
next-generation-sequencing, and proteome-based matrix-
assisted laser desorption ionization-time of flight mass spec-
trometry (MALDI-TOF-MS) have been developed (van
Belkum et al. 2013). Despite the short testing time ranging
from 1 h up to 1 day, these tests are still time-consuming
and are usually not performed at the point of care.
Moreover, these methods are cost-intensive and require many
consumables which render them unusable on a grand scale.
Consequently, there is an extreme demand for a cost-effective
and sensitive analytical device as point of care tool which can
detect relevant infections within only some minutes.

On the metabolic level, infectious diseases can be identified
based on volatile organic compounds (VOCs) in exhaled
breath (Ruszkiewicz et al. 2020; Kunze-Szikszay et al.
2019). VOCs are emitted as gaseous metabolites during the
metabolism and provide information about the physiological
condition of an organism (Shirasu and Touhara 2011).
Recently, many in vitro as well as in vivo studies have proven
that different pathogens or diseases result in characteristic
combination of VOCs (Hong-Geller and Adikari 2018).
Hence, there is a high chance to detect disease-specific
VOCs as biomarkers even before the first symptoms occur
(Traxler et al. 2018).

Various analytical techniques have been applied for in-
vestigating VOCs. The most widely used method is mass
spectrometry. Gas chromatography coupled to mass spec-
trometry (GC-MS) is the gold standard but is quite elaborate
in analysis, bulky and requires experts with high expertise
(Mathew et al. 2015). In contrast, electronic noses are por-
table and easy to use. They consist of chemical sensors,
which technically imitate the smelling. However, they are
limited in quantification precision due to cross reactivity
and suffer from sensor ageing (Wilson 2015). Ion mobility
spectrometry (IMS) on the other hand has many advantages
for diagnostics. It is fast and very sensitive with detection
limits of down to parts-per-trillion (ppt) (Westhoff et al.
2009; Hong-Geller and Adikari 2018). In addition, it is al-
ready used as on-site tool for the detection of chemical war-
fare agents, explosives, and drugs at airports (Hopfgartner
2019). Coupling IMS with gas chromatographic columns
such as multi-capillary columns (MCC) enhances the sepa-
ration of complex gas mixtures and provides higher discrim-
inatory power (Cumeras et al. 2015). Due to easy handling
and portability, IMS is an ideal candidate for on-site breath
analysis. Although laborious, it is even possible to chemi-
cally identify the analytes if reference measurements are
available. Chemical identification may facilitate a causal in-
terpretation of the results by giving further information about
underlying metabolic processes. Nevertheless, pattern recog-
nition may be sufficient for the identification of diseases if
the chemical identity of VOCs as biomarkers is known
(Westhoff et al. 2009).

While many studies on infection- or pathogen-related
VOCs were performed with mass spectrometry technologies,
only a few studies have been conducted with ion mobility
spectrometry. A differentiation between different bacterial
strains and controls in headspace above cultures could be
achieved from 2 up to 24 h of incubation (Jünger et al.
2012; Kunze et al. 2013; Steppert 2013; Drees et al. 2019).
Slowly growing mycobacteria could be detected with differ-
ential ion mobility spectrometry (DMS) after 1 week of culti-
vation. Compared to that the identification of mycobacteria
using classical culturing techniques takes about 6 weeks
(Purkhart et al. 2017). In an in vivo study, Sahota et al. revealed
that patients with tuberculosis could be differentiated from the
healthy control group with a sensitivity and specificity of about
80% based on VOCs in exhaled breath by field asymmetric ion
mobility spectrometry (FAIMS) (Sahota et al. 2016).

The goal of our research is to develop an IMS-based meth-
od for the rapid identification of infectious pathogens that can
be used for on-site breath analysis. As a first step towards this
goal, this study investigated bacterial cultures in vitro due to a
better reproducibility compared to in vivo tests. Within this
study, the general feasibility to differentiate several bacterial
strains with MCC-IMS should be proven. Besides five bacte-
rial strains from different genera and families, two resistant
strains were included to analyze if these can be differentiated
from their corresponding sensitive strain. The successful dif-
ferentiation of in vitro cultures will allow subsequent studies
with more complex clinical samples and breath from infected
patients.

Materials and methods

Bacterial strains and sample preparation

This study includes five bacterial species which are commonly
found in infections. These are E. coli (DSM 1576), S. aureus
(DSM 346), P. aeruginosa (DSM 1117), K. pneumoniae
(DSM 30104), and A. baumannii (DSM 30007). For investi-
gating the differences in VOC patterns between non-resistant
and resistant bacteria, this study includes two antibiotic-
resistant strains, methicillin-resistant S. aureus (DSM
13661), and extended-spectrum beta-lactamase (ESBL) pro-
ducing K. pneumoniae (DSM 26371). Both resistant strains
are used as reference strains for testing antimicrobial resis-
tance according to Clinical and Laboratory Standards
Institute (CLSI), and thus, they were used in this study.
Resistance in this MRSA strain DSM 13661 is regulated by
the gene mecA located in the staphylococcal cassette
chromosome mec (SCCmec) which codes for a modified
penicillin-binding protein (PBP2a) with low affinity for
beta-lactam antibiotics (Kwiatkowski et al. 2020;
Peacock and Paterson 2015).
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All bacterial strains were cultivated overnight on tryptic
soy agar plates at 37 °C. Afterwards they were sub-cultured
in 30-ml tryptic soy broth (TSB) (Oxoid Limited, Hamphire,
UK) and incubated for 20 h with constant agitation at 37 °C.
On the day of the MCC-IMS measurements, starting cultures
with an initial bacterial concentration of 0.1 optical density at
600 nm (OD600) were gained from subcultures. An amount of
5 ml of the starting cultures were transferred into 20-ml
autoclaved headspace vials (Macherey-Nagel, Düren,
Germany) and sealed with autoclaved PTFE/silicone septum
caps (Macherey-Nagel, Düren, Germany). Headspace vials
with 5-ml pure TSB were prepared as control samples. All
filled headspace vials were incubated at 37 °C in a heating
block for 90min until the start of the analysis withMCC-IMS.

To ensure the reproducibility of the method, the sample
preparation and MCC-IMS measurements were performed
for each non-resistant strain and control at three different days
(day 1, n = 5; day 2, n = 3; and day 3, n = 3). Ten replicates of
each resistant strain were used.

MCC-IMS analysis

The VOCs emitted by bacteria into the headspace above cul-
tures were analyzed with an ion mobility spectrometer
coupled to a multi-capillary column (MCC-IMS) from STEP
(Sensortechnik und Elektronik Pockau GmbH, Pockau,
Germany). This device contains an internal gas circulation
with a filter, which is regulated by a circulation pump to pro-
vide filtered ambient air as drift gas (400 ml/min) as well as
analysis gas (20 ml/min). The whole experimental set up for
this study is visualized in Fig. 1.

From the headspace of each sample vial, 10 ml were drawn
via a 30-cm PTFE tube into a heated 0.7-ml sample loop (50
°C) by an internal pump with a flow rate of 200 ml/min.
Therefore, the septum of the headspace vial was punctured
with two cannulas. One cannula was used for VOC sampling
and the other for pressure equalization in the headspace vial.
The latter cannula is connected to an activated carbon filter to
avoid interfering organic substances. After sampling, the gas-
eous analytes were pre-separated by the isothermally heated
(40 °C) multi-capillary column (OV-5, 20 cm, Multichrom
Ltd., Novosibirsk, Russia) and finally migrated into the IMS
unit based on their retention times. There, they were initially
ionized by a radioactive tritium source (99 MBq). Afterwards,
the generated charged ions were accelerated by an electrical
field (400 V/cm) towards the heated detector (60 °C) against
the drift-gas flow. Due to collisions with drift gas mol-
ecules, ions were separated based on their mobility mea-
sured as drift time. The IMS can record positive or
negative ions. For this study, the positive ion mode
was applied. The basic working principle of IMS has
been described in Stach and Baumbach (2002).

MCC-IMS data analysis

The entire dataset consists of 86 measurements. During each
measurement, 253 raw IMS spectra were recorded, i.e., one
IMS spectrum at each second of MCC retention time. Within
this time, all relevant headspace VOCs could be expected to
be detected (Jünger et al. 2012; Kunze et al. 2013). All raw
spectra together form a two-dimensional matrix where peaks
are depicted as signal intensity in volts (V) depending on the

Fig. 1 Schematic drawing of the setup for sampling and IMS measurement of bacterial cultures in headspace vials (modified from the manual, version
10.2017, of the used IMS device)
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retention time in seconds (s) on the y-axis and drift time in
milliseconds (ms) on the x-axis as seen in Fig. 2. For data
analysis, the pattern of peaks was considered. Thus, dimers
and trimers have not been taken into account. All peaks to-
gether form the VOC pattern of the sample.

To differentiate between different bacterial strains based on
their distinct VOC patterns, the raw MCC-IMS spectra of all
measurements were processed with a proprietary cluster-
analysis software. The analysis principle of this software is
described in Purkhart et al. (2011), Purkhart (2010), and
Becher et al. (2012). In brief, this software integrates data
pre-processing steps (background adjustment, smoothing),
peak detection based on local maxima calculation, and a hier-
archical clustering algorithm to account for varying peak po-
sitions of the same VOC in different measurements (Purkhart
et al. 2011; Purkhart 2010; Becher et al. 2012). This is based
on the assumption that every cluster represents one VOC. The
generated clusters can be used as a parameter for comparing
sample groups as well as for statistical analysis. In this study,
only peaks with a signal intensity higher than 0.05 V were
registered.

Statistical analysis

The resulting VOC clusters were analyzed using descriptive
and multivariate statistical methods (IBM SPSS Statistics,
Version 26.0, IBM Corp., Armonk, NY, USA; Stata
Statistical Software: Release 11, StataCorp LP, College
Station, TX, USA). Signal intensities in volt (V) of the VOC
clusters were used as variables in this statistical analysis. The
first step involved picking relevant VOC clusters of non-

resistant and resistant bacterial strains. A VOC cluster was
considered relevant if at least 80% of replicates had the peak
and the median signal intensity was greater than control. To
identify VOC clusters significantly differentiating each bacte-
rial strain from control, Wilcoxon rank-sum test was applied.
Values of p ≤ 0.05 were considered significant. With these
significant VOC clusters, a canonical discriminant analysis
(CDA) was performed. CDA was chosen because it is a wide-
ly used classification technique for IMS data and focuses on
differences between groups (Szymańska et al. 2016). For vi-
sualization of differences, a three-dimensional (3D) scatterplot
was created (Origin, Version 2018, OriginLab Corporation,
MA, USA).

In order to investigate if each bacterial strain can be classi-
fied based on only some specific peaks, a hierarchical classi-
fication tree was constructed. This tree could be used to sep-
arate bacterial classes based on specific VOC clusters. The
receiver-operating characteristic (ROC) curve analysis was
applied to find classifiers (VOC clusters) for separation of
bacterial classes for the classification tree. Variables used for
the ROC analysis were the VOC clusters for which each bac-
terial strain showed a higher signal intensity compared to con-
trol medium (Wilcoxon rank-sum test with p ≤ 0.05) and at
least 80% of their replicates had the peak. The performance of
the classifier is determined by the area under curve (AUC).
The higher the AUC, the better is the prediction of the classi-
fier. The VOC clusters with highest AUC were selected as
classifiers, or decision nodes in the tree. Additionally, differ-
ent candidate threshold values of signal intensity [V] for a
classifier could be obtained by ROC analysis. The threshold
value with the highest sensitivity and specificity was used as
cut point value for branching in the hierarchical tree.

Results

The headspace of non-resistant bacterial strains and the con-
trol was investigated by applyingMCC-IMS on three different
days to ensure the reproducibility of the method. A number of
90 VOC clusters from resistant and non-resistant bacterial
strains as well as controls had a signal in at least 80% of
replicates and were considered further. Subsequently, VOC
clusters with a significantly higher signal in bacteria samples
compared to the control were selected assuming that these
VOCs were produced by the bacteria. As a result, 63 VOC
clusters were identified. Their retention and drift times are
listed in Table 1 and their positions in the two-dimensional
plot in supplemental Figure S1.

The contribution of each single VOC cluster to the differ-
entiation between non-resistant and resistant bacterial strains
is shown in Table 1. It is evident that all seven bacterial strains
can be distinguished based on these 63 VOC clusters. Most
VOC clusters were found for resistant strains, ESBL

Fig. 2 An exemplary MCC-IMS heatmap of positive charged compo-
nents of volatile bacterial metabolites. Volatile components are depicted
as peaks in signal intensity in volts (V) depending on the retention time in
seconds (s) on the y-axis and drift time in milliseconds (ms) on the x-axis.
The red-brown line (see arrow) at a drift time of 4.14 ms represents the
reactant ion peak which originates from ions from the drift gas and does
not correspond to analytes
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Table 1 List of 63 VOC clusters for which non-resistant and resistant
bacterial strains show a significantly higher signal intensity compared to
control medium (Wilcoxon rank-sum test with p ≤ 0.05) and at least 80%
of their replicates have the peak. The VOC clusters are listed with their

retention time (RT) in seconds (s) and drift time (td) in milliseconds (ms)
as well as their occurrence (x) in the investigated seven different bacterial
strains

Non-resistant bacterial strains Resistant bacterial strains

VOC cluster RT (s) td (ms) EC MSSA PA KP AB MRSA KP ESBL

c_1 2 5.28 x

c_2 6 4.49 x x x

c_3 8 5.01 x x x x

c_4 9 4.75 x

c_5 11 5.37 x x

c_6 12 5.75 x x

c_7 13 6.18 x

c_8 17 6.04 x x x x

c_9 17 6.33 x x x x

c_10 17 6.88 x x

c_11 18 7.02 x x x

c_12 20 5.62 x x x x

c_13 21 4.55 x x x x

c_14 27 5.20 x

c_15 27 6.88 x

c_16 32 6.30 x

c_17 34 4.75 x x x x

c_18 39 5.20 x

c_19 39 6.01 x x

c_20 42 6.44 x x

c_21 43 6.29 x

c_22 43 6.87 x

c_23 43 7.31 x

c_24 43 7.88 x

c_25 44 5.73 x x

c_26 46 5.20 x

c_27 49 4.47 x x x

c_28 53 7.69 x

c_29 57 4.97 x x

c_30 57 6.66 x x

c_31 60 6.78 x

c_32 60 7.14 x x

c_33 62 5.95 x

c_34 67 5.54 x

c_35 75 4.96 x

c_36 79 7.13 x

c_37 83 5.54 x x x

c_38 88 5.94 x

c_39 90 6.66 x

c_40 91 7.13 x

c_41 93 6.23 x

c_42 96 5.56 x x x

c_43 98 7.14 x

c_44 106 5.55 x x

c_45 111 8.15 x
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producing K. pneumoniae (29) and methicillin-resistant
S. aureus (26). Non-resistant K. pneumoniae (18) and E. coli
(18) generated more VOCs compared to the other non-resistant
strains methicillin-sensitive S. aureus (8), A. baumannii (7), and
P. aeruginosa (6). Some VOC clusters, e.g., c_52 and c_55,
could be assigned to only one strain but others like c_2, c_8,
and c_10 to several strains, respectively. Interestingly, E. coli
shared several VOC clusters with the two strains of
K. pneumoniae that are not present in the headspace of control
or the other bacterial strains (see supplemental Figure S2).

To determine the discrimination between the seven bacte-
rial strains, a canonical discriminant analysis was performed.
To visualize the results, a three-dimensional plot (Fig. 3) was
created for the first three canonical functions using the select-
ed 63 VOC clusters. In this plot, bacterial strains and controls
are represented as colored data points (one data point for each
replicate). The presented three canonical functions explain a
variance of 99.1%. Figure 3 displays a clear differentiation
between all seven bacterial strains including two resistant
strains from the control medium. Within the bacterial strains,
a separation with highest distances was found for E. coli as
well as for both strains of K. pneumoniae. In contrast, the data
points of S. aureus (MSSA) and resistant S. aureus (MRSA)
are in closer proximity. Based on the classification model, all
bacterial strains can be assigned to their group 100% correctly
by using leave-one-out cross-validation (see supplemental
Table S1).

Table 1 (continued)

Non-resistant bacterial strains Resistant bacterial strains

VOC cluster RT (s) td (ms) EC MSSA PA KP AB MRSA KP ESBL

c_46 115 4.98 x

c_47 134 6.96 x

c_48 135 5.64 x x

c_49 145 5.55 x

c_50 162 5.22 x x

c_51 191 5.23 x

c_52 208 6.82 x

c_53 212 5.60 x x

c_54 223 5.57 x x

c_55 223 8.15 x

c_56 225 6.53 x x

c_57 229 5.54 x x x

c_58 236 5.53 x x

c_59 238 4.98 x x

c_60 239 5.23 x

c_61 243 5.23 x

c_62 243 5.54 x x

c_63 245 4.97 x x

Fig. 3 All 86 measurements from the different bacterial strains and the
control are displayed as single data points in a three-dimensional space
spanned by the first three canonical functions. These functions are linear
combinations of the selected 63 VOC clusters and are explaining already
99.1% of the variance (first, second, and third canonical function: 92.1%,
3.9%, and 3.1%, respectively). The plot shows a clear discrimination
between non-resistant and resistant bacterial strains. Ctrl Control, EC E.
coli, MSSA methicillin-sensitive S. aureus, PA P. aeruginosa, KP
K. pneumoniae, AB A. baumannii, MRSA methicillin-resistant
S. aureus, KP ESBL extended-spectrum beta-lactamase producing
K. pneumoniae
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Alternatively, to the canonical discriminant functions, a
hierarchical classification tree was constructed. This classifi-
cation tree can be used to separate the investigated bacterial
classes based on specific VOC clusters, which were selected
from the 63VOC clusters presented in Table 1. By ROC curve
analysis the separation of the different bacterial strains could
be achieved with an AUC of 1.0. For several bacterial strains,
more than one VOC cluster could be used for the dichotomi-
zation (see supplemental material). The resulting hierarchical
tree with seven VOC clusters (Fig. 4) allows a classification of
all bacterial strains. Using cluster c_8 with a cut point of 1.63
V, two classes, the staphylococci and the gram-negative bac-
teria, were differentiated. Depending on the cluster 2 with a
cut point of 1.47 V, gram-negative bacteria could be separated
into fermenting (E. coli,K. pneumoniae, and ESBL producing
K. pneumoniae) and non-fermenting bacteria (A. baumannii
and P. aeruginosa). Furthermore, the classification into sub-
sequent classes could be performed by specific VOC clusters
according to Fig. 4. In Fig. 5, seven VOC clusters are shown
as boxplots that enable classification of certain bacterial
strains by using ROC curve analyses.

Discussion

This study shows that seven bacterial strains including resis-
tant strains can be differentiated by applyingMCC-IMS in the
headspace of liquid cultures after 90-min incubation. The 63
VOC clusters listed in Table 1 were used as input variables for
a canonical discriminant analysis. The discriminant analysis

separated and classified the clusters correctly with a success
rate of 100%. Moreover, using seven VOC clusters, a hierar-
chical classification tree was able to distinguish all investigat-
ed bacterial strains with an AUC of 1.0 by ROC curve analy-
sis. Nevertheless, it has to be considered that the classification
tree is prone to overfitting and might not be suitable for real
and unknown data as only one strain per species was investi-
gated. Therefore, the results need to be validated on patient
derived samples.

Only few studies used IMS to explore the feasibility of fast
bacteria identification. Drees et al. (2019) investigated VOCs
emitted by E. coli, S. aureus, and P. aeruginosa in headspace
of blood cultures using GC-IMS hourly for up to 8 h of incu-
bation. Their results revealed that the best differentiation could
be achieved after 6 h of incubation. Kunze et al. (2013) studied
the VOCs related to the growth of E. coli and P. aeruginosa in
lysogenic broth as a culture medium using MCC-IMS. The
differences between them were observed in the logarithmic
and stationary phase. Compared to these two studies, we
achieved a differentiation as early as 90 min after
inoculation. It can be assumed that a higher concentration of
bacteria may lead to an earlier occurrence of VOCs and
therefore to an earlier differentiation by headspace analysis
with IMS. Unfortunately, Drees et al. (2019) and Kunze
et al. (2013) did not specify the start concentration of the
bacteria cultures, although it is apparent that both studies used
an initial bacteria suspension with a much lower OD.
Therefore, the differentiation in such an early stage in our
study might be due to the high initial bacteria concentrations.
In addition, the OD value of 0.1 used in our study results in a

Fig. 4 Hierarchical classification tree with seven VOC clusters. This tree
allows for a classification of the investigated bacterial strains using
specific VOC clusters. Grey boxes present the VOC clusters with cut
point value in volt (V) serving as decision variable for splitting

respective classes into sub-classes. Ctrl. Control, EC E. coli, MSSA
methicillin-sensitive S. aureus, PA P. aeruginosa, KP K. pneumoniae,
AB A. baumannii, MRSA methicillin-resistant S. aureus, KP ESBL
extended-spectrum beta-lactamase producing K. pneumoniae
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quite high bacteria concentration and might not reflect cell
numbers in clinical settings.

With IMS positive and negative ions can be detected. We
used the positive ion modes only. The need for negative ions
may depend on the amount of VOCs present after different
incubation times. For the differentiation of 15 different human
pathogenic bacteria after 24 h of incubation, Jünger et al.
(2012) required the negative ion mode in addition to the pos-
itive one. Our restriction to positive ion mode is in line with
the study of Drees et al. (2019) where only one VOC in neg-
ative ion mode could be detected for E. coliwithin the first 8 h
of incubation. This aspect could be confirmed by an earlier

study (Steppert 2013) in which the negative ion mode rarely
delivered information compared to the positive ion mode.
Moreover, this study showed that the number of bacterial
VOCs dropped drastically after 6 h of incubation (Steppert
2013). It may be assumed that after 24 h of incubation, there
was a substrate depletion leading to lower concentration of
VOCs.

This study focused on VOCs, which are produced by the
bacteria. Therefore, only VOC clusters with a higher intensity
in bacterial samples compared to the culture medium control
were included. There might be even more relevant VOC clus-
ters if clusters would have been considered that exhibit a lower

Fig. 5 Boxplots of seven VOC
clusters that allow a classification
of different bacterial strains by
using classification tree approach.
EC E. coli, MSSA methicillin-
sensitive S. aureus, PA
P. aeruginosa, KP
K. pneumoniae, AB
A. baumannii, MRSAmethicillin-
resistant S. aureus, KP ESBL
extended-spectrum beta-
lactamase producing
K. pneumoniae
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intensity in bacterial samples than control samples indicating
consumption of culture medium components.

Our data demonstrated that some VOCs are released not
only by one but also by different bacterial strains. Our
findings are in accordance with Boots et al. (2014) who
revealed that one specific VOC may not be sufficient for
distinguishing different bacterial species. Moreover, the
released bacterial VOCs might also depend on available
nutrients or growth medium (Küntzel et al. 2016; Ratiu
et al. 2017). Thus, for a reliable differentiation, further
studies need to be performed.

The obtained hierarchical classification tree supports the
hypothesis that the differentiation by VOCs depends on the
metabolic features of the different bacteria. Thus, we as-
sume that the use of bacterial VOCs for species identifica-
tion can be applied similar to the principle of the analytical
profile index (API) system. The API system relies on clas-
sifying bacteria based on metabolic characteristics in an
array of biochemical tests. For example, the differentiation
between Enterobacteriaceae and non-Enterobacteriaceae
within gram-negative rods depends on the presence or ab-
sence of oxidase and therefore on the fermentation ability
of sugars. In our study, several distinct VOCs appeared
that differ between fermenters and non-fermenters.
However, the presented classification tree applies only
for the bacterial species investigated in this study. In order
to confirm the above-mentioned hypothesis, more mem-
bers of different bacteria families will have to be
investigated.

Several studies that have been published as conference
abstracts only could also show that even resistant strains
can be differentiated from non-resistant strains by IMS
(Steppert et al. 2018; Becher et al. 2016). The discrimina-
tion of resistant bacteria by means of their VOCs was also
confirmed by other studies with mass spectrometry (Boots
et al. 2014; Rees et al. 2018). It remains unclear, if the
difference of VOC patterns originates from metabolic shift
induced by the resistance mechanism itself or from using
two different strains for resistant and susceptible bacteria
with different metabolic features. To clarify this, other ap-
proaches than VOC pattern recognition should be consid-
ered since the knowledge of the identity of the differenti-
ating VOCs might help if these could be connected to cer-
tain metabolic processes. However, chemical identification
with IMS is laborious and reference measurements are
needed. Nonetheless, similar results in several studies im-
ply that the VOC difference between MSSA and MRSA as
well as K. pneumoniae versus extended-spectrum beta-
lactamase producing K. pneumoniae may be based on an
altered metabolism triggered by the resistance mechanism.
In the other studies (Steppert et al. 2018; Becher et al.
2016; Steppert 2013), this was consistently found in clin-
ical isolates. It can be assumed that different resistant

mechanisms like cleaving of antibiotics may also produce
different volatile metabolites compared to non-resistant
strains (Tenover 2006). To answer this question conclu-
sively, studies with strains before and after transfections
of resistance genes should be undertaken. Therefore, the
VOC pattern recognition approach might even be suffi-
cient without the need of substance identification, although
the latter still might give more background information.

In most VOC analysis studies, offline methods like solid
phase microextraction (SPME) and desorption tubes are
used to sample VOCs (Wilde et al. 2019; Pereira et al.
2014). With regard to on-site screening, those methods
are quite elaborate due to a long enrichment period of
about 30 min and require an additional thermal desorption
unit to release VOCs for analysis. Therefore, we chose
direct analysis by drawing the VOCs into the system by
an internal pump. Altogether, sampling and analysis took
only 4 min. In addition, this method does not require expert
knowledge and is convenient due to easy handling and a
low waiting time required to receive the results. Compared
to other IMS devices, the utilized STEP-IMS device does
not need synthetic gases. This reduces consumables and
enables on-site analyses.

Compared to Drees et al. (2019) and Jünger et al. (2012),
we did not perform mass spectrometry in addition to IMS to
identify the VOCs chemically, although this might be helpful
to explain the origin of the VOCs. However, at this stage, the
aim of the study was to show the identification of bacteria
based on VOC patterns. There are successful attempts to train
animals like dogs and rats to smell infections of resistant bac-
teria and tuberculosis, respectively (Koivusalo et al. 2017;
Fiebig et al. 2020). Identification of VOCs by animals relies
on the recognition of VOC patterns or a number of specific
VOCs of this pattern that are responsible for the scents. Hence,
it should be possible to show the identification of bacteria
based on certain compositions of VOC clusters in the form
of patterns without knowing the substance identity of each
single VOC.

To support a reliable analysis with MCC-IMS, we measured
the same bacterial strain several times on three different days in
order to obtain themost distinctiveVOC clusters and to eliminate
random influences. Nevertheless, only reference strains in small
sample sizes were investigated which constitutes a limitation of
this study. Moreover, the clinical relevance of these reference
strains is limited. Further investigations on clinical isolates of
different bacterial species on a greater scale should be conducted
to confirm the ability of MCC-IMS method to identify specific
species based on VOC patterns.

In conclusion, this study demonstrates that MCC-IMS was
able to differentiate reference strains of seven different bacte-
rial species including resistant species based on VOC patterns
after 90 min of incubation by applying canonical discriminant
analysis. Sampling and MCC-IMS- analysis took only 4 min.
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Moreover, the study shows that discriminative VOCs can be
assigned to specific species based on their metabolic charac-
teristics using a classification tree, even without knowing the
substance identity.

MCC-IMSmay become a reliable, cost-effective, and rapid
on-site screening tool for infectious pathogens. In future stud-
ies, not only different bacterial species but also viruses as well
as breath should be investigated under the influence of differ-
ent methodological factors.
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