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Abstract
Tobacco smoking is still the leading cause of preventable diseases and death in the USA and throughout the globe. Under
Section 904(a)(3) of the US Federal Food, Drug, and Cosmetic Act, tobacco manufacturing companies need to report on
quantities of harmful and potentially harmful constituents (HPHCs) in all tobacco products. While the extensive HPHC list of
2012 includes 93 chemicals, which are categorized as carcinogenic, respiratory, cardiovascular, or reproductive toxicants or
addictive compounds, it fails to include microorganisms (bacteria and fungi) that have been shown to contribute to adverse health
outcomes among tobacco users. Nevertheless, over the last 50 years, researchers have studied microorganisms in a variety of
tobacco products using both culture-based and culture-independent techniques. In this mini-review, we provide an overview of
this body of research, detailing the bacterial and fungal microbiomes residing in commercial tobacco products. Overall, studies
have characterized over 89 unique bacterial genera and 19 fungal genera in cigarettes, cigars, cigarillos, hookah, and smokeless
tobacco. The most predominant bacterial genera are Bacillus, Pseudomonas, and Staphylococcus. Fungal genera identified have
included Aspergillus, Penicillium,Mucor, Alternaria, Cladosporium, Streptomyces, and Candida, to name a few.While some of
the identified microorganisms are known human pathogens, others are potential opportunistic pathogens. Given the vast array of
microorganisms that are present across diverse types of tobacco products, future research should be focused on the viability of
these microorganisms, as well as their ability to transfer to the user’s respiratory tract, potentially contributing to adverse health
outcomes.

Key points
• Commercial tobacco products harbor diverse bacterial and fungal communities.
• Some of these microorganisms are known or opportunistic human pathogens.
• Research on their viability and transmission to users’ respiratory tracts is needed.
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Introduction

Tobacco smoking remains the leading cause of preventable
disease and death (Healthy People 2020). According to the
Centers for Disease Control and Prevention’s Morbidity and
Mortality Report, about 49.1 million American adults in 2018
used some sort of tobacco products (Creamer 2019), including
any combustible product (41.2 million), electronic cigarettes
(e-cigarettes) (8.1million), cigars (9.6million), and smokeless
tobacco (5.9 million). As a result, tobacco use remains a major
public health concern and is responsible for approximately 7
million deaths worldwide each year (WHO 2017). In the
United States, approximately 480,000 deaths per year are
due to cigarette smoking and secondhand smoke (CDC
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Tobacco Free 2018). Tobacco companies regularly modify
constituents of their existing products (e.g., nicotine concen-
trations, flavoring, additives) (Kreslake et al. 2008; Kostygina
et al. 2016) and introduce novel products (such as the new
generation of electronic nicotine delivery systems) to the mar-
ket to appeal to and attract users (de Andrade et al. 2013).
Tobacco products are available in various forms: (1) tradition-
al combustible products including cigarettes and cigars; (2)
water pipe/hookah; (3) noncombustible smokeless tobacco
(like snuff, snus, etc.); and (4) other electronic nicotine deliv-
ery systems such as electronic cigarettes (e-cigarettes).

Tobacco products, irrespective of their production method,
typically are known to contain over 4000 chemicals
(Konstantinou et al. 2018), including nicotine, carcinogens,
and other toxicants, many of which play a key role in the
development of adverse health effects among users
(Konstantinou et al. 2018). In 2012, under the Food, Drug,
and Cosmetic Act (FD&C Act), the US Food and Drug
Administration (U.S. FDA 2020a) established a list of 93
harmful and potentially harmful constituents (HPHC) in to-
bacco and tobacco smoke. Tobacco manufacturing companies
must comply with this act and report on quantities of these
HPHCs in all tobacco products. The HPHC list comprises
chemicals that are categorized as carcinogens (or potential
carcinogens), as well as respiratory, cardiovascular, reproduc-
tive, and developmental toxicants. However, the list is ignor-
ing an entire group of tobacco constituents that could be crit-
ically important with regard to users’ health: microorganisms.

Tobacco, being an agricultural product, is rich in microor-
ganisms that naturally colonize the plants. In addition, these
microorganisms are key to curing tobacco, a process neces-
sary to prepare tobacco leaves for consumption. Tobacco
users are, therefore, chronically exposed to these microorgan-
isms as they use tobacco products. And yet, microbiological
constituents of tobacco, as well as their potential associated
health impacts, have received little scientific or regulatory
attention in the past 50 years despite multiple studies demon-
strating their presence across all tobacco products.

This mini-review aims to provide a broad overview of the
studies conducted over the past 50 years (1970–2020) that
have focused on the microbiological constituents in combus-
tible tobacco products (cigarettes, little cigars, and cigarillos),
water pipe tobacco/hookah, and smokeless tobacco products
(Fig. 1). We summarize the vast array of bacterial and fungal
communities that reside within these commercially available
tobacco products, as well as the effect of additives and flavors
on these communities, without claiming to put forth an ex-
haustive compilation. Additionally, we address the current
gaps in this body of literature and provide a glimpse into
future studies that are required to better understand the
microbiome of tobacco products, especially newer products
on the market such as e-cigarettes that claim to be less harmful
to users.

Bacterial constituents of tobacco products

Combustible tobacco products: cigarettes, little cigars,
and cigarillos

The most prevalent traditional combustible tobacco products
include cigarettes, little cigars, and cigarillos. Irrespective of
the differences in their size, shape, and appearance, all of these
products have been shown to harbor diverse bacterial species,
including human pathogens (Table 1). Using culture-based
approaches, early studies identified species of Actinomycetes
(Kurup et al. 1983), Erwinia (Larsson et al. 2008), Bacillus
(Rooney et al. 2005), Kurthia (Rooney et al. 2005), and
Mycobacterium (Eaton et al. 1995) in tobacco particles,
smoked filters, and cigarette filters (Eaton et al. 1995).

Due to the very small percentage of bacteria that can be
cultured in the laboratory, culture-based approaches are limit-
ed in determining the vast array of microorganisms present in
tobacco products. One of the earliest studies to focus on
culture-independent techniques to identify bacterial species
in commercially available cigarette products was by Sapkota
et al. (2010). In this study, a 16S rRNA gene-based taxonomic
microarray, along with cloning and sequencing, were used to
identify bacteria, including Acinetobacter, Bacillus,
Burkholderia, Clostridium, Klebsiella, Amaracoccus,
Legionellales, Methylobacterium, Nostoc, Paracoccus,
Pseudomonas aeruginosa, P. chlororaphis, P. cichorii, and
Serratia, in most of the tested cigarette products (Sapkota
et al. 2010). Other potentially pathogenic bacteria detected
included Campylobacter, Enterococcus, Proteus, and
Staphylococcus.

Further studies based on next-generation sequencing from
multiple groups have revealed the presence of more than 89
unique bacterial genera in commercial cigarettes (Table 1).
The top three bacterial phyla identified across all of these
studies are Proteobacteria, Actinobacteria, and Firmicutes,
and the most predominant bacterial genera are Bacillus,
Pseudomonas, and Staphylococcus. Since some of the species
within these genera are also known opportunistic pathogens,
their high relative abundance in cigarettes could be a cause of
potential health concern among smokers. For example,
Pseudomonas species have been associated with chronic lung
infections and cystic fibrosis among smokers (Erb-Downward
et al. 2011; Fodor et al. 2012). Recently, Wu et al. (2018)
demonstrated that nicotine, an active component in cigarettes,
enhances biofilm formation in Staphylococcus epidermis (a
common bacterial colonizer of the human skin and mucous
membranes) (Wu et al. 2018). S. epidermis has also been
identified in cigarettes by Sapkota et al. (2010) and has been
associated with nosocomial infections in recent years (Götz
2002; Zschiedrich et al. 2016). Multiple Bacillus species
(B. pumilus, B. cereus, and B. subtilis) have been identified
in commercial cigarettes by several researchers (Rooney et al.
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2005; Sapkota et al. 2010; Chopyk et al. 2017a, b; Malayil
et al. 2020), which have also been associated with respiratory
infections and pneumonia among smokers (Rooney et al.
2005). Apart from human pathogens, thermophiles such as
Anoxybacillus, Schlegella, and Silanimonas have also been
identified in cigarette tobacco (Chopyk et al. 2017a). The
presence of these thermophiles raises concerns given their
ability to withstand high temperatures such as those taking
place during cigarette combustion.

Sequencing-based studies also have revealed that the dif-
ferences in bacterial community composition across com-
bustible tobacco products are dependent on the specific
brands, flavors, and lots (Chopyk et al. 2017b; Malayil
et al. 2020). Chopyk et al. (2017a) demonstrated significant
differences in bacterial community composition between
cigarette brands (Camel and Newport), with Pseudomonas,
Bacillus, and Pantoea showing the highest relative abun-
dance in all samples tested. Moreover, core microbiomes of
more than 15 bacterial operational taxonomic units (OTUs)
were identified for each cigarette brand, while 11 OTUs were
shared among all brands irrespective of incubation condition
(Chopyk et al. 2017a). Similar results were found between
the top two selling U.S. brands (Newport and Marlboro) of
cigarettes (Malayil et al. 2020), which are the most popular
among adolescents and young adults (CDC Tobacco Free
2020). Along with significant differences in bacterial com-
munities between the two brands, Malayil et al. (2020) also
showed significant differences between the two varieties of
mentholated Newport cigarettes (menthol box and menthol
gold). It is noteworthy that all of the abovementioned studies
evaluated bacterial communities residing within commer-
cially available cigarettes. Yet, since the chemical constitu-
ents of these products vary across products, it is almost im-
possible to assess the effects of specific chemical compo-
nents, such as nicotine and menthol, on the bacterial com-
munities of commercial products.

This knowledge gap is critical, as these two chemicals
have been shown to significantly affect multiple bacterial
species. For example, nicotine has been shown to stimulate
Streptococcus gordonii planktonic cell growth, biofilm
formation, and gene expression of binding proteins, all of
which could contribute to subsequent attachment of path-
ogens to tooth surfaces and development of periodontal
disease in cigarette smokers (Huang et al. 2014). On the
other hand, menthol has been shown to possess antibacte-
rial activity against Gram-positive and Gram-negative bac-
teria as well as fungal species (Schelz et al. 2006; Shapira
and Mimran 2007; Patel et al. 2007) although bacterial
adaptation to menthol has been observed (Landau and
Shapira 2012). Ongoing work in our group is addressing
these issues by evaluating the impact of differing nicotine
and menthol levels on the bacterial communities of
SPECTRUM research cigarettes, for which levels of these
constituents are known.

Given the vast array of bacterial species residing in
combustible tobacco products and the established fact of
the negative effects of smoking on user’s health, two major
questions arise to bridge a potential causal relationship
between tobacco bacterial communities and adverse health
effects among users. (1) Are these tobacco-associated bac-
teria viable? And (2) are the bacteria originating from the
unburnt region of cigarettes/cigars during smoking able to
be transferred to users via mainstream smoke and contrib-
ute to oral and lung microbiome dysbiosis, potentially
impacting the users’ health? Previous studies have demon-
strated the presence of viable bacteria in the filters of
smoked cigarettes (e.g., Mycobacterium avium) (Eaton
et al. 1995), as well as the presence of other microbial
constituents, including lipopolysaccharides, peptidogly-
cans, and fungal biomass in mainstream smoke (Pauly
and Paszkiewicz 2011). These data suggest that bacteria
and fungi can survive the temperatures and gases produced

Fig. 1 Schematic representation
of microbial (bacteria and fungi)
communities residing within
commercially available tobacco
products
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Table 1 A list of studies describing bacterial profiles in tobacco products

Phylum Genus Species Studies, products tested, and methods

Actinobacteria Actinomycetes Kurup et al. (1983) (commercial cigarettes)—culture; Larsson et al. (2008) (commer-
cial cigarettes)—culture

Bifidobacterium Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Actinobacteria Brachybacterium Chattopadhyay et al. (2019) (little cigars and wrappers)—sequencing

Actinobacteria Brevibacterium B. aureum Malayil et al. (2020) (commercial tobacco) sequencing

Actinobacteria Corynebacterium C. xerosis Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

C. stationis Malayil et al. (2020) (commercial cigarettes)—sequencing;
Chattopadhyay et al. (2019) (little cigars and cigarillos)—sequencing

Actinobacteria Atopobium Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Actinobacteria Mycobacterium M avium Eaton et al. (1995) (commercial cigarettes and smoked cigarette filters)—culture

Actinobacteria Propionibacterium P. acnes Hani et al. (2018) (hookah)—sequencing

Actinobacteria Streptomyces Smyth et al. (2017) (smokeless tobacco)—sequencing; Chopyk et al. (2017a, b)
(commercial tobacco)—sequencing

Bacteroidetes Barnesiella Hani et al. (2018) (hookah)—sequencing

Bacteroidetes Flavobacterium Hani et al. (2018) (hookah)—sequencing

Candidatus Puniceispirillum Tyx et al. (2020) (smokeless tobacco)—sequencing

Cyanobacteria Chlorogloeopsis Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Cyanobacteria Nostoc Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Cyanobacteria Lyngbya Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Cyanobacteria Microcystis Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Cyanobacteria Gloeothece Tyx et al. (2020) (smokeless tobacco)—sequencing

Deinococcus-
Thermus

Deinococcus Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Thermus T. geothermalis Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

T. scotoductus Chopyk et al. 2017a, b(commercial cigarettes)—sequencing

Firmicutes Megasphaera Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Firmicutes Aerococcus Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Firmicutes Anoxybacillus A. flavithermus Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Firmicutes Atopostipes Tyx et al. (2020) (smokeless tobacco)—sequencing

Firmicutes Atopococcus A. tabaci Collins et al. (1992) (smokeless tobacco)—sequencing; Chattopadhyay et al. (2019)
(little cigars and cigarillos)—sequencing

Firmicutes Bacillus B. thuringiensis Kaelin and Gadani (2000) (cured tobacco leaves)—culture; Kaelin et al. (1994)
(cured tobacco leaves and dried tobacco residues)—culture

B. cereus Rooney et al. (2005) (commercial cigarettes)—culture; Chopyk et al. (2017a, b)
(commercial cigarettes)—sequencing

B. licheniformis Rubinstein and Pedersen (2002) (smokeless tobacco)—culture; Han et al. (2016)
(smokeless tobacco)—culture; Chopyk et al. (2017a, b) (commercial cigarettes)—
sequencing

B. clausii Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing; Malayil et al. (2020)
(commercial cigarettes)—sequencing; Chattopadhyay et al. (2019)
(little cigars and cigarillos)—sequencing

B. coagulans Malayil et al. (2020) (commercial cigarettes)—sequencing; Chattopadhyay et al.
(2019) (little cigars and cigarillos)—sequencing

B. novalis Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

B. pumilus Rooney et al. (2005) (commercial cigarettes)—culture; Sapkota et al. (2010) (com-
mercial cigarettes)—microarray, cloning, and sequencing; Chopyk et al. (2017a, b)
(commercial cigarettes)—sequencing; Rubinstein and Pedersen (2002)
(smokeless tobacco)—culture; Han et al. (2016) (smokeless tobacco)—culture

B. thermoamylovorans Chattopadhyay et al. (2019) (little cigars wrapper)—sequencing
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Table 1 (continued)

Phylum Genus Species Studies, products tested, and methods

B. flexus Malayil et al. (2020) (commercial tobacco)—sequencing

B. subtilis Rooney et al. (2005) (commercial cigarettes)—culture; Dygert (1957)
(smokeless tobacco)—culture; Rubinstein and Pedersen (2002) (smokeless tobac-
co)—culture; Han et al. (2016) (smokeless tobacco)—culture

B. brevis Rubinstein and Pedersen (2002) (smokless tobacco)—culture

B. megaterium Rubinstein and Pedersen (2002) (smokless tobacco)—culture

B. safensis Han et al. (2016) (smokeless tobacco)—culture

Firmicutes Carnobacterium Han et al. (2016) (smokeless tobacco)—culture; Chattopadhyay et al. (2019)
(little cigars and cigarillos)—sequencing

Firmicutes Clostridium Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Firmicutes Dialister Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Firmicutes Desemzia Tyx et al. (2020) (smokeless tobacco)—sequencing

Firmicutes Enterococcus E. cecorum Chattopadhyay et al. (2019) (little cigars wrapper)—sequencing

E. gallinarum Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Firmicutes Facklamia Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Firmicutes Faecalibacterium Hani et al. (2018) (hookah)—sequencing

Firmicutes Geobacillus Han et al. (2016) (smokeless tobacco)—sequencing

Firmicutes Jeotgalicoccus Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Firmicutes Kurthia Rooney et al. (2005) (commercial cigarettes)—culture;
Smyth et al. (2017) (smokeless tobacco)—sequencing
Smyth et al. (2017) (smokeless tobacco)-sequencing
Chattopadhyay et al. (2019) (little cigars wrapper)-sequencing

Firmicutes Lactobacillus L. plantarum Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

L. salivarius Chattopadhyay et al. (2019) (little cigars wrapper)—sequencing

L. delbrueckii Smyth et al. (2017) (smokeless tobacco)—sequencing

L. agilis Chattopadhyay et al. (2019) (little cigars wrapper)—sequencing

Firmicutes Lentibacillus Chattopadhyay et al. (2019) (little cigars wrapper)—sequencing

Firmicutes Lysinibacillus Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing; Tyx et al. 2020
(smokeless tobacco)—sequencing

Firmicutes Oceanobacillus O. caeni Han et al. (2016) (smokeless tobacco)—sequencing

Firmicutes Paenibacillus P. amylolyticus Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

P. montaniterrae Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

P. barengoltzii Malayil et al. (2020) (commercial cigarettes)—sequencing; Chattopadhyay et al.
(2019) (little cigars and cigarillos)—sequencing

Firmicutes Saccharibacillus S. kuerlensis Malayil et al. (2020) (commercial tobacco)—sequencing

Firmicutes Staphylococcus S. sciuri Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing;
Chattopadhyay et al. (2019) (little cigars and cigarillos)—sequencing

S. aureus Dygert (1957) (smokeless tobacco)—culture

S. equorum Malayil et al. (2020) (commercial cigarettes)—sequencing; Chattopadhyay et al.
(2019) (little cigars and cigarillos)—sequencing

S. saprophyticus Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

S. epidermis Sapkota et al. (2010) (commercial cigarettes)-microarray, cloning, and sequencing;
Dygert (1957) (smokeless tobacco)—culture

S. cohnii Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing;
Smyth et al. (2017) (smokeless tobacco)—sequencing

Firmicutes Sporosarcina Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Firmicutes Solibacillus Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Firmicutes Tetragenococcus T. halophilus Han et al. (2016) (smokeless tobacco)—sequencing; Chattopadhyay et al. (2019) (little
cigars and cigarillos)—sequencing
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Table 1 (continued)

Phylum Genus Species Studies, products tested, and methods

T. osmophilus Smyth et al. (2019) (little cigars and cigarillos)—sequencing

Firmicutes Terribacillus Malayil et al. (2020) (commercial tobacco)—sequencing

Firmicutes Ureibacillus Chattopadhyay et al. (2019) (little cigars and cigarillos)—sequencing

Firmicutes Vagococcus Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Firmicutes Fonticella Smyth et al. (2017) (smokeless tobacco)—sequencing

Proteobacteria Acetobacter Smyth et al. (2017) (smokeless tobacco)—sequencing

Proteobacteria Acinetobacter A. baumannii Chopyk et al. (2017) (commercial cigarettes)—sequencing

A. calcoaceticus Larsson et al. (2008) (commercial cigarettes)—sequencing; Chopyk et al. (2017a,
b) (commercial cigarettes)—sequencing

A. rhizosphaerae Malayil et al. (2020) (commercial cigarettes); Chattopadhyay et al. (2019)
(little cigars and cigarillos)—sequencing

A. schindleri Malayil et al. (2020) (commercial cigarettes)—sequencing; Chattopadhyay et al.
(2019) (little cigars and cigarillos)—sequencing

Proteobacteria Achromobacter Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Proteobacteria Aeromonas Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Proteobacteria Agrobacterium A. tumefaciens Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Proteobacteria Aurantimonas A. altamirensis Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Proteobacteria Azospirillum A. irakense Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Proteobacteria Bacteriovorax Zhao et al. (2007) (flue cured tobacco leaves)—16S rDNA PCR-DGGE technology

Proteobacteria Burkholderia Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing;
Smyth et al. (2017) (smokeless tobacco)—sequencing

Proteobacteria Campylobacter Sapkota et al. (2010) (commercial cigarettes)-microarray, cloning, and sequencing

Proteobacteria Comamonas C. testosteroni Sapkota et al. (2010) (commercial cigarettes)-microarray, cloning, and sequencing

Proteobacteria Cedecea Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Proteobacteria Escherichia E. coli Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing;
Haque et al. (2017) (smokeless tobacco)—sequencing

Proteobacteria Enterobacter E. amnigenus Larsson et al. (2008) (commercial cigarettes)—culture

E. cancerogenus Larsson et al. (2008) (commercial cigarettes)—culture

Proteobacteria Erwinia E. chrysanthemi Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

E. agglomerans Malayil et al. (2020) (commercial tobacco)—sequencing

E. dispersa Malayil et al. (2020) (commercial cigarettes)—sequencing; Chattopadhyay et al.
(2019) (little cigars and cigarillos)—sequencing

Proteobacteria Gallibacterium Smyth et al. (2017) (smokeless tobacco)-sequencing

Proteobacteria Halomonas Han et al. (2016) (smokeless tobacco)—sequencing

Proteobacteria Herbaspirillum H. huttiense Smyth et al. (2019) (little cigars and cigarillos)—sequencing

Proteobacteria Klebsiella K. oxytoca Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Proteobacteria Leptothrix Chattopadhyay et al. (2019) (little cigars wrapper)—sequencing

Proteobacteria Massilia Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing; Tyx et al. (2020)
(smokeless tobacco)—sequencing

Proteobacteria Methylobacterium M. adhaesivum Malayil et al. (2020) (commercial tobacco)—sequencing; Sapkota et al. (2010) (com-
mercial cigarettes)—microarray, cloning, and sequencing

Proteobacteria Novosphingobium N. aromaticivorans Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Proteobacteria Pantoea P agglomerans Larsson et al. (2008) (commercial cigarettes)—culture; Chattopadhyay et al. (2019)
(little cigars and cigarillos)—sequencing

Proteobacteria Pectobacterium P. carotovorum Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Proteobacteria Proteus P. mirabilis Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

P.vulgaris Dygert (1957) (smokeless tobacco)—culture
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in a lit cigarette and be transferred from the unburnt region
of these products to the upper respiratory system via main-
stream smoke, potentially influencing respiratory health.
Ongoing studies in our lab provide evidence of viable bac-
teria in both tobacco products and the mainstream smoke
of cigarettes, through the use of both culture-based ap-
proaches and DNA labeling coupled with sequencing
(manuscript under review). For example, Bacillus,
Paenibacillus, Terribacillus, and Desulfotomaculum have
been isolated from mainstream cigarette smoke extract, in-
dicating that viable tobacco-associated bacteria can poten-
tially be transferred to the oral cavity via smoke particles
(manuscript under review).

With reductions in cigarette smoking over the past 50 years
(CDC 2019), the use of cigars, little cigars, and cigarillos have
gone up in the USA (CDC Tobacco Free 2018). Although the
chemical constituents of these alternative products have not
been studied extensively, recent studies (Klupinski et al.

2016) identified more than 5000 chemicals in the mainstream
smoke from the top-selling little cigars in the USA. To our
knowledge, there are only a couple of studies that have fo-
cused on detailed characterization of bacterial communities
found in little cigars’ tobacco. Chattopadhyay et al. (2019)
and Smyth et al. (2019) identified the predominant bacterial
species as Lactobacillus, Bacillus, Staphylococcus, and
Pseudomonas. Moreover, Chattopadhyay’s study revealed
that bacterial species significantly differed between that in
the tobacco product and the wrapper. While the cigar wrapper
was predominated by Lactobacillus and Bacillus, cigar tobac-
co had a higher relative abundance of Pseudomonas and
Staphylococcus. Several potential pathogens were also identi-
fied in the little cigars: Pseudomonas pseudoalcaligenes and
Staphylococcus sciuri in cigar tobacco and Pantoea
agglomerans, Shewanella algae, and Acinetobacter schindleri
in the wrappers.

Table 1 (continued)

Phylum Genus Species Studies, products tested, and methods

Proteobacteria Pseudomonas P. aeruginosa Dygert (1957) (smokeless tobacco)—culture; Sapkota et al. (2010)
(commercial cigarettes)-microarray, cloning, and sequencing

P. stutzeri Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

P. fulva Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

P. oryzihabitans Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

P. putida Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

P. pseudoalcaligenes Malayil et al. (2020) (commercial cigarettes)—sequencing; Chattopadhyay et al.
(2019) (little cigars and cigarillos)—sequencing

P. viridiflava Malayil et al. (2020) (commercial cigarettes)—sequencing; Chattopadhyay et al.
(2019) (little cigars and cigarillos)—sequencing

P. veronii Malayil et al. (2020) (commercial tobacco)—sequencing

P. chlororaphis Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

P. cichorii Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

P. thermotolerans Chattopadhyay et al. (2019) (little cigars wrapper)—sequencing

Proteobacteria Petrobacter P. succinatimandens Chattopadhyay et al. (2019) (little cigars wrapper)—sequencing

Proteobacteria Pseudoxanthomonas P. taiwanensis Chattopadhyay et al. (2019) (little cigars wrapper)—sequencing

Proteobacteria Ralstonia Smyth et al. (2017) (smokeless tobacco)—sequencing

Proteobacteria Salmonella Haque et al. (2017) (smokeless tobacco)—sequencing

Proteobacteria Sphingomonas S. multivorum Malayil et al. (2020) (commercial tobacco)—sequencing

Proteobacteria Schlegelella Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Proteobacteria Silanimonas Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Proteobacteria Stenotrophomonas S. maltophilia Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing;
Chopyk et al. (2017a, b) (commercial cigarettes)—sequencing

Proteobacteria Serratia Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing

Proteobacteria Shewanella S. algae Chattopadhyay et al. (2019) (little cigars and cigarillos)—sequencing

Proteobacteria Vibrio Haque et al. (2017) (smokeless tobacco)—sequencing

Proteobacteria Xanthomonas X. axonopodis Malayil et al. (2020) (commercial tobacco)—sequencing

Proteobacteria Paracoccus Sapkota et al. (2010) (commercial cigarettes)—microarray, cloning, and sequencing
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Effect of mentholation

In accordance with the “Special Rule for Cigarettes” in 2009,
FDA now has the authority to ban flavors in traditional ciga-
rettes that allure the younger population, such as strawberry,
vanilla, and cinnamon, but these flavors still remain largely
available in the market for other tobacco products like cigars,
hookah, and e-cigarettes (U.S. FDA2020b). While no study
has looked into the effects of flavoring on bacterial commu-
nities in hookah tobacco and e-liquids, data from our lab dem-
onstrate a significant effect of flavors on the bacterial
microbiome of the top two brands of hookah (manuscript
under review). In 2018, FDA stated that it will seek to ban
the use of menthol in combustible tobacco products, but to
date, no such step has been taken by FDA to curtail the sale
and use of menthol and tobacco flavors in tobacco products
(Commissioner 2020).

Menthol is a simple monoterpene, used widely in tobacco
manufacturing to create a cooling sensation, thereby reducing
the harshness of tobacco smoke for a more pleasing smoking
experience. Antimicrobial properties of menthol have been
shown to inhibit a number of human and plant pathogenic
bacteria (Işcan et al. 2002). Recent research on the effects of
mentholation on the cigarette tobacco microbiome shows a
significant difference in overall bacterial diversity in mentho-
lated tobacco compared to its non-menthol counterpart, but
these differences are brand specific and are characterized by
temporal shifts (Chopyk et al. 2017b; Malayil et al. 2020).
While in some brands (e.g., Camel King), non-mentholated
tobacco showed significantly higher bacterial diversity com-
pared to “user-mentholated” tobacco (Chopyk et al. 2017a),
brands like Newport and Marlboro showed higher or similar
bacterial diversity in the commercially mentholated product
type when compared to non-mentholated product types
(Malayil et al. 2020). One explanation that Chopyk et al.
(2017a, b) provide for this finding is that the degree and rate
of menthol exposure in “user-mentholated” products vary
from that in commercially mentholated products. This re-
search also points out that mentholated products tend to harbor
bacterial genera that are able to persist in harsh environments
such as Anoxybacillus and Deinococcus. From these studies,
other bacterial genera that were shown to be present at a sig-
nificantly higher relative abundance in mentholated tobacco
compared to non-mentholated tobacco were Thermus,
Vagococcus, Silanimonas, Schlegelella, Sphingobacterium
multivorum, Bacillus clausii, B. flexus, Methylobacterium
adhaesivum, Erwinia dispersa, Xanthomonas axonopodis,
and Acinetobacter schindleri.

Similar effects of mentholation were observed in little ci-
gars. Chattopadhyay et al. (2019) compared Cheyenne full
flavor non-menthol tobacco to Cheyenne menthol box and
found significant decreases in bacterial diversity in both the
tobacco and wrapper of the mentholated Cheyenne menthol

box compared to the non-mentholated Cheyenne full flavor
product. Specifically, menthol tobacco showed a significantly
higher relative abundance of Ureibacillus, Lactobacillus,
Bacillus, Corynebacterium, and Brachybacteriumwhen com-
pared to non-menthol tobacco.

Water pipe/hookah

Unlike cigarettes, little cigars, and cigarillos, the process by
which the tobacco is burned is different in water pipe/hookah/
shisha smoking. Since tobacco smoke passes through a water
bowl before being inhaled by the user, the majority of hookah
smokers consider this process to be less harmful to their lungs
than smoking a traditional combustible tobacco product
(Schubert et al. 2011). Given the unique nature of smoke
inhalation through a water pipe/hookah, very few studies have
focused on the bacteria that might be present in the hookah
tobacco products. There are several studies that have looked at
the bacterial diversity in the hookah apparatus like the water
bowl and mouthpiece (Safizadeh et al. 2014; Javadi et al.
2016). Hani et al. (2018) compared three different shisha to-
bacco products along with the various parts of the whole
smoking apparatus. The authors reported some pathogenic
bacteria (Halomonas, Staphylococcus, and Pseudomonas)
and less than 1% of the gut commensal, Faecalibacterium,
as well as Streptophyta, Shewanella, and Propionibacterium,
in shisha tobacco (Hani et al. 2018). The two major studies
that have evaluated the presence of bacteria in hookah tobacco
have identified several bacterial species including
Streptophyta, Halomonas, Pseudomonas viridiflava,
Paenibaci l lus lautus , Propionibacter ium acnes ,
Staphylococcus , Shewanel la , Novosphingobium ,
Sph ingomonas mu l t i vo rum , Faeca l i bac t e r i um ,
Methylobacterium adhaesivum, Flavobacterium, Bacillus
c e r e u s , B . c l a u s i i , B . f l e x u s , T e r r i b a c i l l u s ,
Janthinobacterium, Agrobacterium, and Variovorax
paradoxus (Hani et al. 2018) (manuscript under review).

Smokeless tobacco/chewing tobacco

Unlike combustible tobacco products, smokeless tobacco
(e.g., chewing tobacco, snuff, snus, dissolvable tobacco, and
dip) is chewed, sniffed, or sucked by the user in order to
absorb nicotine. The impacts of smokeless tobacco have more
significantly been studied with regard to the development of
oral cancers, oral lesions, and other related dental diseases,
with less focus on the microbial communities residing within
these products.

However, culture studies have identified Bacillus
megaterium, B. pumilus, B. brevis, B. licheniformis, and
B. subtilis in popular USA chewing tobacco brands
(Rubinstein and Pedersen 2002; Han et al. 2016). Han et al.
(2016) also demonstrated the presence of Oceanobacillus,
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Staphylococcus, and Tetragenococcus through culture work.
But very few studies have considered the bacterial diversities
of smokeless tobacco products using next-generation se-
quencing technologies. Tyx et al. (2016) compared U.S. dry
and moist snuff products with Swedish snus and Sudanese
toombak using Ion Torrent PGM (Thermo Fisher Scientific
Inc.; Waltham, MA) sequencing. Bacillus, Corynebacterium,
Staphylococcus, Pseudomonas, and Tetragenococcus domi-
nated the tested smokeless tobacco products (Tyx et al.
2016). A similar study by Smyth et al. (2017) using 454 py-
rosequencing found that the prevalent bacterial phyla in
smoke l e s s t obacco p roduc t s we r e Fi rm i cu t e s ,
Proteobacteria, Actinobacteria, and Bacteroidetes.Both stud-
ies showed dry snuff products to harbor higher bacterial di-
versity than moist snuff and Swedish snus. Additional species
identified included Acetobacter, Burkholderia, and
Streptomyces (Smyth et al. 2017) and Tetragenococcus,
Carnobacterium, Lactobacillus, Geobacillus, Bacillus, and
Staphylococcus (Han et al. 2016). Al-Hebshi et al. (2017)
compared bacterial communities in Swedish snus and
Yemeni shammah. Tyx et al. (2020) identified a high relative
abundance of Bacillus, Paenibacillus, and Oceanobacillus in
Ame r i c a n s nu f f a nd Pseudomona s , Mas s i l i a ,
Propionibacterium, Puniceispirillum, and Gloeothece in
Swedish snus.While Sudanese toombak had a higher relative
abundance of Facklamia, Desemzia, Atopostipes, and
Lysinibacillus, and Yemeni shammah exclusively contained
Bacillus (Al-hebshi et al. 2017).

Other common forms of chewing tobacco in Southeast
Asia are betel leaf (commonly known as paan), gutka, khaini,
and zarda. Culture studies have identified Escherichia coli,
Salmonella, Vibrio, Bacillus, and Staphylococcus from paan
(Haque et al. 2017), Klebsiella from gutka, and Bacillus from
khaini and zarda (Shetty and Hegde 2015; Mehra et al. 2020).
A South African pilot study on local smokeless tobacco prod-
ucts also showed the presence of Bacillus in three traditional
tobacco mixes and two industry-produced tobacco mixes
(Taxi and Ntsu) (Ayo-Yusuf et al. 2005).

Electronic cigarettes

Unlike conventional tobacco products, for which FDA man-
dates that health warnings must be placed on products, there is
no clear regulation or warnings on e-cigarette packaging, and
their long-term use and resulting health effects remain largely
unknown. Subsequently, there are limited studies concerning
the microbiomes of e-cigarette liquids and cartridges. Although
no studies show direct evidence of the presence of inflamma-
tory bacterial endotoxin or fungi in e-liquids, a recent study
(Lee et al. 2019) detected the presence of bacterial endotoxin
and fungal cell wall glucan in 23% and 81% of the tested
products, respectively. Endotoxin concentrations were found
to be 3.2 times higher in the cartridges than that in the e-liquids.

Glucan concentrations in tobacco and menthol flavored e-
liquids were 10 and 3.5 times higher than that in fruit flavored
e-liquids, respectively. Gilpin et al. (2019) demonstrated a sig-
nificant effect of e-cigarette vapor on lung pathogens’ biofilm
formation and cytokine secretion, potentially increasing lung
inflammation. E-cigarette smoker’s oral microbiome also
showed significantly higher bacterial OTUs (species) and sig-
nificantly different bacterial communities when compared to
that in nonsmokers (Pushalkar et al. 2020). The bacterial taxa
in the saliva were closely associated with the nicotine intake
among the e-cigarette users, and oral bacterial infection was
significantly accelerated with exposure to e-cigarette aerosols.

Fungal constituents of tobacco products

Unlike bacteria, a detailed characterization of the fungal com-
munity in tobacco products is almost completely lacking. As
early as the 1970s, researchers have been studying the fungal
microbiome of tobacco products (Table 2). Early culture study
in cigarettes (Papavassiliou et al. 1971) showed the presence
of Aspergi l lus , Penici l l ium , Mucor , Alternaria ,
Cladosporium, Streptomyces, Candida, Geotrichum,
Cephalosporium, and Scopulariopsis. Strains of Aspergillus
were isolated from commercial cigarettes and pipe tobacco
pointing towards the potential allergenic complications devel-
oping from smoking these products (Kurup et al. 1983).
Studies on Nigerian cigarettes showed the presence of ther-
mophilic fungal pathogens such as Thermoascus aurantiacus,
Mucor pusillus, and M. miehei, in addition to Chaetomium
thermophile , Humicola insolens , H. lanuginosa ,
Malbranchea pulchella, Talaromyces duponti, and
Thermoascus crustaceus (Ogundero 1980). A total of 42 spe-
cies including Aspergillus flavus, A. flavus var. columnaris,
A. fumigatus, A. niger , Penicillium chrysogenum ,
P. funiculosum, Fusarium moniliforme, F. oxysporum, and
F. solani were identified through culture work in cigarettes
from Egypt (El-Maghraby and Abdel-Sater 1993). Fungal
contamination with A. fumigatus, Fusarium, Acremonium,
Rhizopus, and Scedosporium were identified in 14 brands of
cigarettes but were absent in the cigarette smoke (Verweij
2000). The presence of ergosterol (a biomarker for fungal
biomass) was detected in cigarettes, and an increase in con-
centration was observed when the cigarettes were stored under
different humidity conditions (Larsson et al. 2008).

Early culture studies on 14 snuff products in the USA also
showed the presence of thermophilic Humicola lanuginosa,
Thielavia albomyces, M. pulchella var. sulfurea, and
Talaromyces thermophilus growing from three of the tested
products (Tansey 1975). Aspergillus, Penicillium, Mucor,
Sepedonium, and Trichophyton were present in 600 samples
of smokeless tobacco products collected from Pakistan
(Saleem et al. 2018). Meanwhile, a culture study and identifi-
cation based on morphology identified Aspergillus fumigatus,
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along with Bacillus andKlebsiella in gutka (Shetty and Hegde
2015).

Conclusions and future directions

In the past decade, the tobacco microbiome has received in-
creasing scientific attention, and multiple studies have charac-
terized the bacterial communities that colonize a variety of
smoked and smokeless tobacco products. Nevertheless, there
exist gaps in our understanding of the complex bacterial

communities in these products, as well as their potential ad-
verse effects on users’ oral and lung microbiomes and overall
health.

One of the most important questions that require additional
research is whether or not these bacteria are viable and are able
to transfer to the user’s respiratory tract via mainstream
smoke. Another area that remains largely unexplored is the
fungal communities present in tobacco products. Multiple
fungal genera are known human pathogens that are responsi-
ble for causing oral and lung associated diseases.

In addition, there is a lack of research focused on charac-
terizing the potential microbiome of electronic liquids.

Table 2 A list of culture-based studies describing fungal profiles in tobacco products

Division Genera Species Studies and products tested

Ascomycota Aspergillus A. fumigatus Papavassiliou et al. (1971) (commercial cigarettes); Larsson et al. (2008) (fresh leaves, commercial
cigarettes, and smoke); Kurup et al. (1983) (commercial cigarettes);

El-Maghraby and Abdel-Sater (1993) (commercial cigarettes); Verweij et al. (2000) (commercial
cigarettes); Shetty and Hegde (2015) (smokeless tobacco)

A. flavus Welty (1972) (flue cured tobacco); El-Maghraby and Abdel-Sater (1993) (commercial cigarettes)

A. niger Welty (1972) (flue cured tobacco); El-Maghraby and Abdel-Sater (1993) (commercial cigarettes)

A. repens Welty (1972) (flue cured tobacco)

Ascomycota Alternaria Bogden et al. (1981) (commercial cigarettes);Forgacs and Carll (1966) (commercial cigarettes,
cigars, and pipe tobacco)

A. alternata Welty (1972) (flue cured tobacco)

Ascomycota Acremonium Verweij et al. (2000) (commercial cigarettes)

Ascomycota Penicillium P. cyclopium Welty (1972) (flue cured tobacco)

P. chrysogenum El-Maghraby and Abdel-Sater (1993) (commercial cigarettes)

P. funiculosum El-Maghraby and Abdel-Sater (1993) (commercial cigarettes)

Zygomycota Mucor M. pusillus Ogundero (1980) (commercial cigarettes, cured tobacco leaves)

M. miehei Ogundero (1980) (commercial cigarettes, cured tobacco leaves)

Ascomycota Cladosporium Papavassiliou et al. (1971) (commercial cigarettes)

Ascomycota Geotrichum Papavassiliou et al. (1971) (commercial cigarettes)

Ascomycota Scopulariopsis Papavassiliou et al. (1971) (commercial cigarettes)

Ascomycota Chaetomium C. thermophile Ogundero (1980) (commercial cigarettes, cured tobacco leaves)

Ascomycota Humicola H. insolens Ogundero (1980) (commercial cigarettes, cured tobacco leaves)

H. lanuginosa Ogundero (1980) (commercial cigarettes, cured tobacco leaves); Tansey (1975) (smokeless tobacco)

Ascomycota Malbranchea M. pulchella Ogundero (1980) (commercial cigarettes, cured tobacco leaves); Tansey (1975) (smokeless tobacco)

Ascomycota Talaromyces T. duponti Ogundero (1980) (commercial cigarettes, cured tobacco leaves)

T. thermophilus Tansey (1975) (smokeless tobacco)

Ascomycota Thermoascus T. crustaceus Ogundero (1980) (commercial cigarettes, cured tobacco leaves)

T. aurantiacus Ogundero (1980) (commercial cigarettes, cured tobacco leaves)

Ascomycota Fusarium F. moniliforme El-Maghraby and Abdel-Sater (1993) (commercial cigarettes)

F. oxysporum El-Maghraby and Abdel-Sater (1993) (commercial cigarettes)

F. solani El-Maghraby and Abdel-Sater (1993) (commercial cigarettes)

Mucoromycota Rhizopus Verweij et al. (2000) (commercial cigarettes)

Ascomycota Scedosporium Verweij et al. (2000 ) (commercial cigarettes)

Ascomycota Thielavia T. albomyces Tansey (1975) (smokeless tobacco)

Ascomycota Sepedonium Saleem et al. (2018) (smokeless tobacco)

Ascomycota Trichophyton Saleem et al. (2018) (smokeless tobacco)
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Multiple studies have focused on the physical and chemical
constituents of these liquids and cartridges. Previous studies
have shown that flavors or additives in tobacco products have
significantly affected bacterial diversity. However, there is a
lack of data on the effects of the multiple flavors of hookah
that are available in the market on the tobacco microbiome.
Specifically, the effects of mint and menthol remain to be
explored.

Studying the viral and protozoan communities of tobacco
products has also been largely ignored. However, of note, a
recent study (de Bernardis and Busà 2020) suggested the role
of tobaccomosaic virus (TMV) as an immunological mediator
for resistance against the SARS-CoV-2 virus. Given the cur-
rent global pandemic crisis, it may be even more important
than ever to study the potential viral communities of tobacco
products, as well as their effects on users’ overall health.
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