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Abstract
Consolidated bioprocessing (CBP) featuring concomitant hydrolysis of renewable substrates and microbial conversion into
value-added biomolecules is considered to bring substantial benefits to the overall process efficiency. The biggest challenge in
developing an economically feasible CBP process is identification of bifunctional biocatalyst merging the ability to utilize the
substrate and convert it to value-added product with high efficiency. Yarrowia lipolytica is known for its exceptional performance
in hydrophobic substrates assimilation and storage. On the other hand, its capacity to grow on plant-derived biomass is strongly
limited. Still, its high potential to simultaneously overproduce several secretory proteins makes Y. lipolytica a platform of choice
for expanding its substrate range to complex polysaccharides by engineering its hydrolytic secretome. This review provides an
overview of different genetic engineering strategies advancing development of Y. lipolytica strains able to grow on the following
four complex polysaccharides: starch, cellulose, xylan, and inulin. Much attention has been paid to genome mining studies
uncovering native potential of this species to assimilate untypical sugars, as in many cases it turns out that dormant pathways are
present in Y. lipolytica’s genome. In addition, the magnitude of the economic gain by CBP processing is here discussed and
supported with adequate calculations based on simulated process models.

Key points
• The mini-review updates the knowledge on polysaccharide-utilizing Yarrowia lipolytica.
• Insight into molecular bases founding new biochemical qualities is provided.
• Model industrial processes were simulated and the associated costs were calculated.
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Introduction

Consolidated bioprocessing (CBP) featuring concomitant pro-
duction of hydrolases active toward polymeric substrates and
microbial conversion of the released consumable sugars into
value-added biomolecules in a single step holds promise for

cost-effective complex biomass conversion. The key prerequi-
site in realization of the CBP concept is identifying a biocatalyst
merging the two critical traits: (1) to decompose complex feed-
stock at high rates and (2) to produce desired compounds in a
commercially relevant manner. As the nature favors survival
rather than high-level production and abundance, one or both
of the traits have to be somehow engineered, by bioprocessing
and/or genetic engineering approaches. Typical industrial pro-
cesses relying on complex polysaccharides conversion support
the former critical trait by implementation of enzymatic cock-
tails facilitating rapid and complete substrate decomposition.
However, the cost of such enzymatic preparation may account
for approximately 30% of the capital costs (Sánchez and
Cardona 2008). To support this widely accepted and frequently
quoted statement with adequate numbers, we have prepared
two variants of a simulated process model and calculated
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associated costs for (A) a process conducted according to the
CBP concept, and (B) a process implementing the raw material
treatment with an enzymatic cocktail (Fig. 1; Tables S1–S4).
The process models use a renewable polysaccharide—inulin—
and citric acid as the target molecule. All the presumptions were
based on literature data on inulin-based bioprocesses, citric acid
synthesis from inulin (Han et al. 2017; Singh et al. 2018;
Rakicka et al. 2019), and market search for industrial materials
prices (MP). In comparison to the simulated CBP process, the
cocktail-based process encompasses additional procedure P1b
(Fig. 1) conducted at elevated temperature (50 °C) over 48 h
which is required for inulin hydrolysis. The P1b process reaches
maximally 90% of conversion (Singh et al. 2018), which con-
tributes to a proportional reduction in batch throughput by 10%
in kilograms MP/batch. But foremost, the CBP process, due to
elimination of the hydrolysis (P1b) procedure, is significantly
shorter (batch time is reduced by 1.63-fold; from ~ 10 to ~ 6

days), thus enabling execution of 410 batches per year (vs. 148
batches annually for a traditional process with a separate hydro-
lysis procedure). Lowered yield plus longer time per a single
batch renders the annual throughput of the traditional process
over 3-fold lower in kilograms/year than the CBP. Accordingly,
the additional P1b procedure renders the traditional process
more demanding in terms of required power input by nearly
15% in kilowatt-hours/batch. Finally, the cost of commercial
enzymatic cocktail enabling inulin decomposition into assimi-
lable sugars constitutes > 21% of total material cost in the
traditional process (Tables S3–S4). Together with the remain-
ing material constituents, the unit production cost of the tradi-
tional process is by > 40%higher than the CBP (8.49 vs. 6.03 in
$/kg MP) (Tables S3–S4).

Therefore, in order to relieve the complex polysaccharide-
based bioprocesses from the economic burden of the enzyme
purchase/production, efforts toward establishing consolidated

Fig. 1 Schematic representation of a model process executed via a CBP
concept vs. b enzymatic-cocktail-based process of inulin conversion into
citric acid by Y. lipolytica. The flowsheet of the model processes and all
the calculations were prepared with SuperPro Designer software. CA—
citric acid, P—process, V—vessel, S—stream, ST—sterilizer, FR—

fermenter, AF—air filtration unit, G—gas compressor, RVF—rotary vac-
uum filter, CR—crystallizer, RDR—rotary dryer, clock icon—equipment
operating in cycles, which can be exploited continuously. Blue dashes
indicate several bioreactors operating in time shifts for better exploitation
of the production line
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biocatalysts are being pursued. Providing that the second crit-
ical trait of a biocatalyst is fulfilled, the main challenge in
establishing consolidated biocatalyst is developing a strain
with highly active hydrolytic secretome, encompassing all
the enzymatic activities required for decomposition of the
complex substrate. To this end, microorganisms with highly
efficient translational-secretory machinery are of high interest
and importance.

Yarrowia lipolytica is a non-conventional yeast species of
high industrial relevance (Groenewald et al. 2014). It is mainly
known for its high capacity to assimilate hydrophobic sub-
strates and to produce an array of value-added products, like
organic acids (Rywińska and Rymowicz 2011; Rywinska
et al. 2012), erythritol (Mirończuk et al. 2016; Rakicka-
Pustułka et al. 2020), aromas (Celińska et al. 2013; Celińska
et al. 2019), and microbial lipids (Papanikolaou and Aggelis
2002; Beopoulos et al. 2008; Beopoulos et al. 2009). While
Y. lipolytica was proved to grow very efficiently on a variety
of different waste substrates, like crude glycerol
(Papanikolaou and Aggelis 2002; Rakicka et al. 2015;
Dobrowolski et al. 2016; Gajdoš et al. 2017), industrial wastes

of tallow (Papanikolaou et al. 2007), or olive-mill waste water
(Papanikolaou et al. 2008), its capacity to decompose renew-
able plant biomass is strongly limited (Barth and Gaillardin
1996; Kurtzman and Fell 2006). The innate ability of this
species to assimilate monomeric products of the polysaccha-
rides decomposition is also restricted, as the pathways for
cellobiose, sucrose, maltose, xylose, arabinose, and galactose
assimilation are either cryptic or absent from Y. lipolytica’s
genome. On the other hand, Y. lipolytica is known for its
exceptional capacity for overproduction of secretory proteins
(Theron et al. 2020) owing to its unusual secretory pathway
(Celińska and Nicaud 2018). Such a trait makes Y. lipolytica a
platform of choice for expanding its substrate range to com-
plex polysaccharides by engineering its hydrolytic secretome.
Indeed, significant efforts have been made to endow
Y. lipolytica strains with the ability to utilize complex poly-
saccharides, derived from renewable biomass.

The present paper provides an overview of different genetic
engineering strategies advancing development of Y. lipolytica
strains able to grow on the following four complex polysac-
charides: starch, cellulose, xylan, and inulin. Much attention

Fig. 1 continued.
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has been paid to investigations into native potential of this
species to assimilate products of such hydrolysis, as in many
cases it turns out that dormant pathways of untypical sugars
assimilations are present in Y. lipolytica genome. This review
updates the previous comprehensive article by Ledesma-
Amaro and Nicaud (2016) and expands the scope of another
excellent, recent paper (Spagnuolo et al. 2018) by focusing on
genetic engineering of hydrolytic secretome for development
of a consolidated biocatalyst strain.

Starch

Starch is one of the most abundant polysaccharides in nature,
composed of glucose monomers joined with alpha-glycosidic
bonds (α-(1,4), branch-points at α-(1,6)). For industrial appli-
cations, it is extracted from various agricultural raw materials,
including corn, potato, cassava, wheat, and other sources.
Depending on its biological origin, it may contain different
relative amounts of two isoforms—linear amylose and
branched amylopectin. In its native or processed form, it is
widely used in food and feed production, textile, pharmaceuti-
cal and paper industries or, more recently, for renewable bio-
polymer production.While gradually replaced by lignocellulos-
ic biomass (which is not competing with the food sector), starch
is still the most widely utilized substrate for biofuel production.
In addition, starch-rich food waste and by-product streams gen-
erated by bakery, confectionery, and wheat-milling plants
emerge as a potential feedstock for the synthesis of microbial
bioproducts (Tsakona et al. 2014; Tsakona et al. 2019).

While a variety of different amylolytic enzymes are distin-
guished based on specificity of action (including pullulanase,
alpha-amylase, and isoamylase), practically only two enzy-
matic activities are required for nearly complete decomposi-
tion of starch to simple sugars that are sufficient to support
growth of microorganisms. These are alpha-amylase, which is
an endoglucanase that catalyzes random hydrolysis of endo
α-(1,4) glycosidic bonds in starch, and glucoamylase, which
cleaves α-(1,4) glycosidic bond at the non-reducing end of
starch, as well as α-(1,6) glycosidic bonds at branch points
of amylopectin (Fig. 2). The origin of the majority of market
enzymatic preparations are fungi (in particular Aspergillus
spp.) and specif ic baci l l i , for example, Bacil lus
amyloliquefaciens. None of such amylases has been identified
in Y. lipolytica to date, and wild-type strains cannot degrade
starch polymer supplied in the culture medium.

Like the other fungi, Y. lipolytica is able to accumulate and
degrade intracellularly stored glycogen, which has the same
structure as amylopectin (the branched isoform of starch).
Glycogen synthesis in Y. lipolytica is executed by a single
non-essential gene (YALI0F18502g; GSY1) encoding glyco-
gen synthase (Bhutada et al. 2017). Mobilization of the stor-
age material takes place upon depletion of nutrients and under
stress conditions, as exemplified by nitrogen limitation condi-
tions (Bhutada et al. 2017). The genes responsible for glyco-
gen degradation were not systematically studied in
Y. lipolytica; however, identity search (blastp) of glycogen
phosphorylase (GPH1) and glucoamylase/glucan 1,4-α-glu-
cosidase (SGA1) from Saccharomyces cerevisiae against
Y. lipolytica proteome renders a single glycogen

Fig. 2 Simplified scheme of enzymatic decomposition of starch. Only those enzymatic activities that were engineered in Y. lipolytica (or the elements
studied in Y. lipolytica, like protein transporters) are depicted in this simplified scheme
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phosphorylase (YALI0F04169p) and a single six-hairpin gly-
cosidase-like protein (YALI0E05203p) with positives of 75%
and 48%. Nonetheless, amylolytic phenotype, understood as
the ability to decompose “starchy polymer” provided in the
culture medium into consumable sugars, was not reported for
wild-type Y. lipolytica. On the other hand, the literature review
showed that starch-decomposing enzymes were among the
first heterologous genes cloned in Y. lipolytica host, e.g., α-
amylase from rice (Oryza sativa) (Park et al. 1997) or thermo-
stableα-amylase from Thermobifida fusca (Yang et al. 2010).
At first, the purpose of the amylases cloning was to study
heterologous protein synthesis in Y. lipolytica and to use the
amylolytic activity as an easy-to-follow enzymatic reporter
(Park et al. 1997; Dulermo et al. 2017). The former report
on the plant α-amylase was followed by a series of papers
on advancing production of the heterologous protein in
Y. lipolytica by adopting different bioprocessing solutions (cy-
clic fed-batch, high cell density etc.), rather than to endow the
yeast with efficient starch-decomposing phenotype (Chang
et al. 1998a, b; Kim et al. 2000). Nevertheless, the information
gained from that research facilitated usage of the rice α-
amylase in the following studies where Y. lipolytica was ac-
tually transformed into a consolidated biocatalyst growing on
raw starch (Ledesma-Amaro et al. 2015). By combination of
the riceα-amylase with glucoamylase from Aspergillus niger,
the authors constructed the first Y. lipolytica strain able to
grow on starch. Both genes were expressed under control of
a strong, constitutive TEF promoter, and their native signal
peptides were replaced by a pre-signal sequence of the main
extracellular lipase, Lip2p, followed by three X-Ala motifs.
Systematical comparison of different signal peptides, includ-
ing Lip2p and Lip2p-3-X-Ala, proved superiority of the latter
(Celińska et al. 2018). The added value of that engineering
approach was that the hydrolytic secretome of the constructed
strain was active toward native, non-pretreated starch, which
is of great industrial importance. The substrates used in that
study were wheat starch and industrial product containing
starch (DZ starch) provided by Tereos Syral (Belgium). In
addition, when the “amylolytic phenotype expression cas-
sette” was transformed into “obese” strain background
(Y. lipolytica modified for enhanced accumulation of lipids
(Beopoulos et al. 2008; Beopoulos et al. 2012)), the strain
accumulated 27% of DCW as fatty acids directly from raw
starch.

A second series of studies on starch-digesting Y. lipolytica
differed from the previous one by the key biocatalyst α-amy-
lase, which initiates the process of starch decomposition and
thus it dictates its paste. In this second series, an insect gene
from a rice pest (Sitophilus oryzae) was cloned and expressed
in Y. lipolytica. The initial studies on feasibility of the insect
gene’s expression in Y. lipolytica (Celińska et al. 2015) were
followed by optimization of the enzyme synthesis in different
genetic background (Celińska et al. 2016a), manipulation with

signal peptides for improved secretion (Celińska et al. 2018),
developing fast and reliable screening methods for rapid eval-
uation of numerous strain variants (Borkowska et al. 2019;
Soudier et al. 2019), and to finally test different bioprocessing
solutions to improve heterologous production of the protein
(Celińska et al. 2017). Properties of the heterologous α-
amylase were analyzed to verify its raw starch digesting po-
tential (Celińska et al. 2016b) and compare it with commercial
preparations. The amylase was proved to act on rice, ama-
ranth, and pea starches in raw state and a broad panel of liq-
uefied starches of various plant origin. The knowledge gained
from those studies was applied in the following rationale-
driven optimization of Y. lipolytica–based consolidated bio-
catalyst through combinatorial cloning of different signal pep-
tides and changing positional order of the α-amylase and
glucoamylase genes in double gene expression cassettes
(Celińska et al. 2020). The aforementioned insect α-amylase
was cloned in tandem with Thermomyces lanuginosus
glucoamylase having industrially relevant characteristics
(Favaro et al. 2015). Feasibility of the T. lanuginosus
glucoamylase gene’s expression and secretion was tested in
advance (unpublished). As for the α-amylase, the
glucoamylase was also transcriptionally fused with ten differ-
ent signal peptides and efficiency of the enzyme secretion was
evaluated (Celińska et al. 2018). Combined expression of the
two genes endowed Y. lipolytica with amylolytic phenotype,
active on rice, potato, and corn starches in liquefied and native
form. Depending on the signal peptide, the order of genes
within the expression cassette, and the type of substrate, the
growth of the obtained recombinant strain differed significant-
ly. The level of microbial lipid accumulation from raw starch
in the best consolidated biocatalyst strain (the amylases fused
to a signal peptide of YALI0B03564p; glucoamylase in the
first position and α-amylase in the second position of the
expression cassette) was comparable with the typical values
obtained with wild-type Y. lipolytica strains cultured on as-
similable substrates, like glycerol or glucose, suggesting that
carbon provision was not the limiting factor. In addition, the
optimized strain was further used as a producer of a raw starch
digesting enzymatic preparation composed of the two enzy-
matic activities (Gęsicka et al. 2020). The production was
conducted in fed-batch bioreactor cultures on glycerol. A part-
ly purified preparation obtained from Y. lipolytica post-
culturing medium was proved operable in biotechnological
production of ethanol and lactic acid conducted according to
simultaneous saccharification and fermentation concept.

Cellulose

Cellulose is the main constituent of lignocellulosic biomass,
being a basic structural component of plants’ cell wall.
Cellulose is mainly provided to the market by processing of
wood pulp and cotton. The vast majority of marketed cellulose
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is used in papermaking and in food industry. In contrast to
starch, its usage in biotechnology does not raise concerns re-
garding competitions with the food sector. Due to its great
abundance, availability, and low price, it is considered a high-
ly attractive substrate for biotechnological transformations.

In raw lignocellulosic substrate, cellulose is accompanied
by hemicelluloses and lignins that tightly surround cellulosic
microfibrils, which typically account for ~ 60% of its dry
matter content. Cellulose is homogenous in terms of chemical
composition, as it is built solely of β-1,4-linked glucose res-
idues, but may exist in either amorphous or highly ordered
crystalline form. Condensed structure and complexity of lig-
nocellulosic material makes it recalcitrant to enzymatic treat-
ment in its raw state. Thus, prior to conversion of the cellulosic
fraction into fermentable sugars, the raw, complex biomass
must be first pretreated to break down the lignocellulose ma-
trix and release the cellulosic microfibrils. Once these are ob-
tained, a repertoire of enzymatic activities are required to de-
compose the polymer into monomers. The minimal enzymatic
set comprises endoglucanases (EGs; EGI and EGII), cleaving
internal bonds in the β-glucan chain, and cellobiohydrolases
(CBHs) that act at the polymer extremities and release
cellodextrins, i.e., cellobiose (dp2), which are then converted
into monomeric glucose by the action of β-glucosidases
(BGLs) (Fig. 3). The vast majority of cellulolytic preparations
are composed of Trichoderma reesei cellulolytic secretome’s
elements. Detailed studies conducted on this set of enzymatic
proteins revealed several key facts that were later on applied

upon engineering of the cellulose-degrading secretome in
Y. lipolytica. In was for example revealed that both EG activ-
ities (EGI and EGII) play important and complementary roles
in cellulose degradation, and they cannot be used interchange-
ably. In the following studies, it was revealed that EGI is more
active toward the most recalcitrant fractions of cellulose,
exhibiting twice the activity of EGII (Guo et al. 2017a).
CBHs are also represented by two activities (Cel7A and
Cel6A in T. reesei) being the major extracellular cellulases,
representing 50% and 20% of the total amount of the protein,
respectively (w/w) (Park et al. 2000).

Interestingly, Y. lipolytica’s genome bears several elements
of a dormant cellulose, or, more precisely, cellobiose degra-
dation pathway (Guo et al. 2015; Ryu et al. 2016). Literature
reported some examples of isolation of cellobiose-grown
Y. lipolytica strains (Kurtzman and Fell 2006). In addition,
laboratory strains can be adapted to cellobiose (and xylose)
utilization via repeated subculturing in these substrates (Ryu
et al. 2016). Y. lipolytica is not able to grow on polymeric
cellulose, as only terminal elements of the cellulose degrada-
tion cascade are present in the genome, without the elements
of hydrolytic secretome. Regarding the cellobiose assimilation
and degradation, it can follow one of two possible routes (Fig.
3): (1) extracellular BGLs hydrolyze cellobiose into two glu-
cose moieties which are imported into the cell via hexose
transporters, (2) cellobiose is directly transported into the cell
via specific cellobiose transporter, and intracellular BGLs
convert it to glucose. Genome mining analyses conducted by

Fig. 3 Simplified scheme of enzymatic decomposition of cellulose. Only those enzymatic activities that were engineered in Y. lipolytica (or the elements
studied in Y. lipolytica, like protein transporters) are depicted in this simplified scheme
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Guo et al. (2015) predicted six BGLs in Y. lipolytica’s ge-
nome, three intracellular (YALI0F16027g, YALI0D18381g,
YALI0B14289g) and three extracellular (YALI0B14333g,
YALI0E20185g, YALI0F01672g). The following work
(Ryu et al. 2016) predicted five additional BGLs,
YALI0B03564p, YALI0E33539p, YALI0E21109p,
YALI0F01947p, and YALI0F13299p, which were transcrip-
tionally responsive in the presence of cellobiose. Insightful
analysis at the transcriptional level demonstrated that in the
presence of cellobiose, only three intracellular BGL genes
we r e up r egu l a t e d— cy t o so l i c YALI0E20185g ,
YALI0F01672g, and nuclear YALI0F13299g—while none
of the extracellular BGLs nor three remaining intracellular
BGLs were responsive to those conditions. Those results
could suggest that in the wild-type Y. lipolytica, cellobiose is
assimilated solely intracellularly, and a specific cellobiose
transporter is involved in this process. According to analysis
conducted by Ryu et al. (2016), four putative cellobiose trans-
por te rs a re encoded in Y. l ipo ly t i ca ’s genome:
YALI0D01111g, YALI0C04730g, YALI0D00363g, and
YALI0B00396g . Func t iona l ove rexp res s ion o f
YALI0D01111g endowed the recombinant strains with the
ability to completely assimilate cellobiose and outperform
the parental strain, which assimilated the disaccharide with
low efficiency. Nevertheless, further analyses conducted by
those authors indicated that when Y. lipolytica was grown in
a mixture of cellobiose and xylose, most of the extracellular
and intracellular BGLs were induced, suggesting that native
Y. lipolytica strains could degrade cellobiose both intracellu-
larly and extracellularly (Ryu et al. 2016).

In terms of hydrolytic secretome engineering toward utili-
zation of cellulose/cellobiose by Y. lipolytica, the first studies
concerned cloning of individual genes, i.e., cellulases from
Aspergillus aculeatus and Humicola insolens (Muller et al.
1998). However, as in the case of initial works on the amylo-
lytic Y. lipolytica strains, the enzymes were cloned as the
reporting agents. The following work concerned high-level
overproduction of T. reesei EGI (TrEGI; Tr is for T. reesei),
which was an exemplification of Y. lipolytica’s potential as an
expression platform (Park et al. 2000). Comparative cloning
of T. reesei genes encoding EGII and CBHII was conducted to
quantitatively describe the level of the gene overexpression
from different DNA constructions and in different yeast hosts
(Boonvitthya et al. 2013). Likewise, the problem of low pro-
duction of TrCBHI was addressed by generating a fusion pro-
tein, led by easily processed TrEGII, and its expression in
three yeast expression platforms—S. cerevisiae, Y. lipolytica,
and Lipomyces starkeyi (Xu et al. 2018). While the fusion
protein approach alleviated low synthesis of CBHI in
L. starkeyi, in Y. lipolytica the TrCBHI (in fact a chimeric
protein T. reesei–Talaromyces emersonii TrTeCBHI) was
produced at higher amounts without the fusion partner.
Interestingly, digestion of pretreated corn stover with the

engineered secretomes of Y. lipolytica and L. starkeyi showed
that conversion was much better using Y. lipolytica secretome
(50% vs. 29%, respectively).

The chimeric TrTeCBHI was used earlier in a study on
individual cloning of T. reesei EGII, CBHII, and the
TrTeCBHI in Y. lipolytica (Wei et al. 2014). The concept
was to co-culture the three strains expressing complementary
activities, which indeed enabled consumption of cellulose
contained in the medium, however at moderate level (23%).
Nevertheless, the authors were the first to report on incompat-
ibility of T. reesei’s CBHI with Y. lipolytica expression sys-
tem, which, as noted there, can be expressed in a native form,
but its activity remains below expectation. Therefore, prior to
selection of the strains/activities to the final co-culture, the
authors tested the other CBHI genes—apart from native
CBHI from T. reesei, the CBHI from Chaetomium
thermophilum, Humicola grisea, and the aforementioned chi-
meric protein TrTeCBHI. As the chimera performed the best
toward recalcitrant cellulose (Avicell) and showed significant
synergism with EGII and CBHII in degrading cellulosic sub-
strates, it was chosen for the final tests with mixed superna-
tants and the three-strain co-culture. The chimeric TrTeCBHI
was also co-cloned under a strong constitutive promoter with
the remaining cellulose-degrading activities, EGII and CBHII
from T. reesei, as a single integrative expression cassette (Wei
et al. 2019). The DNA construction was cloned in a
“lipidogenic” strain’s background resulting in observable con-
version of consumed cellulose to lipids. Noteworthy, the au-
thors observed that high-level overexpression of heterologous
secretory proteins caused a drain in the ER (endoplasmic re-
ticulum; site of folding, maturation, and initiation of polypep-
tide secretion), leading to competition between the cellulase
formation and the lipid synthesis, which is also initiated in the
ER. It was then pointed that the intrinsic link between cellu-
lase co-expression/secretion and lipid accumulation may ham-
per generation of high-level lipid production from cellulose by
recombinant Y. lipolytica (Wei et al. 2019).

With the aim to boost the potential of Y. lipolytica to utilize
cellobiose, heterologous counterparts of a cellobiose trans-
porter (Nc_cdt-1) and the BGL activity (Nc_gh1_1; Nc—
N. crassa) from Neurospora crassa were overexpressed in
Y. lipolytica under a strong hybrid promoter (Lane et al.
2015). Apart from generating cellobiose-consuming strain,
the authors observed that Y. lipolytica can consume cellobiose
in the presence of glucose (so it is not subjected to carbon
catabolite repression in this regard), and, as it was also inves-
tigated and observed by Ryu et al. (2016), that cellobiose
transportation is the limiting step in the cellobiose assimilation
pathway. Native BGL gene activation was also recently con-
ducted using an innovative synthetic biology tool, namely
CRISPRa (CRISPR-dCas9 activation) (Schwartz et al.
2018). The authors constructed and validated a CRISPR-
based genome editing tool using a synthetic gene expression
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activator (VPR) and used it for activation of the dormant BGL
expression in Y. lipolytica, generating a strain with enhanced
growth on cellobiose.

Undoubtedly, the most comprehensive quest toward cellu-
lolytic Y. lipolytica was described by a French group in a
series of articles (Guo et al. 2015, 2017a, b, 2018). The first
paper out of this series aimed at awaking Y. lipolytica’s native
cellulolytic pathway, by overexpressing the six identified
BGLs (mentioned above). As the authors observed, only the
strains overexpressing two BGLs, YALI0F16027g (BGL1;
intracellular membrane bound) and YALI0B14289g (BGL2;
secreted), were able to degrade cellobiose, while the other four
did not display any detectable activity. The strain overexpress-
ing the two BGLs was further used as the background for
cloning of additional cellulolytic activities, i.e., TrEGI,
TrEGII, NcCBHI, and TrCBHII (Guo et al. 2017a), to gener-
ate a strain growing on cellulose. But before reaching the
consensus strain, multiple optimization studies were conduct-
ed. It was for example observed that CBHI from T. reeseiwas
not satisfactorily produced, so an alternative was chosen from
among PfCBHI and NcCBHI (Pf—Penicillium funiculosum).
By playing with the promoter strength (pTEF or hp4d), the
relative proportion of the extracellular activity was tailored to
optimally hydrolyze cellulose pulp (Organosolv). It was ob-
served that the use of a hybrid promoter instead of the initially
used TEF promoter procured four and eight times higher ex-
pression of NcCBHI and TrCBHII, respectively. While basic
expression level from pTEF was sufficient to ensure
recombinant’s growth on CMC cellulose, only strains opti-
mized in expression level of TrCBHII and NcCBHI grew
satisfactorily on Avicel and PASC. Nevertheless, the authors
concluded that the cellulase combinations used in that study
were insufficient for decomposition of crystalline cellulose.
That, most probably, inspired the following study, where, in
order to improve the conversion yield of recalcitrant cellulose,
the authors overexpressed accessory proteins, identified pre-
viously as enhancing efficiency of cellulose hydrolysis (Guo
et al. 2017b). The following three activities were chosen: (1)
lytic polysaccharide monooxygenase (LPMO from T. reesei)
that catalyzes oxidative cleavage of insoluble polysaccha-
rides; (2) xylanase (XYNII from T. reesei) breaking down
hemicellulose in lignocellulosic biomass, uncovering cellu-
lose microfibrils; (3) swollenin (SWO1 from T. reesei) which
is a non-enzymatic protein that disrupts organized structure of
crystalline cellulose. In addition, the ratio of the core cellu-
lases cloned previously was further optimized by placing all
the cellulases under the control of the strong hybrid promoter
(HTEF) except for EGII. Consequently, it was observed that
the expression of TrLPMOA greatly enhanced hydrolysis of
recalcitrant cellulose substrates, in contrast to TrSWO1, which
did not bring any measurable improvement. The resultant
strain, with optimized expression of the core cellulases (EGI,
EGII, CBHI, CBHII, BGL1, BGL2) and expression of

TrXYNII and TrLPMOA, was able to degrade an array of
different cellulosic substrates faster than commercial cellulo-
lytic cocktail. In the last work out of this series, stability of the
heavily modified strain was improved by changing the mode
of the subsequent genes cloning (Guo et al. 2018) as the pre-
viously generated strain tends to be unstable and the heterol-
ogous gene losses were observed. Along with improved sta-
bility, further optimization of the core cellulase expression
was conducted by, for example, enhancing expression of
BGLs. While the maximum specific growth rates were im-
paired by overexpression of the six required genes, the
cellulose-degrading strains were engineered for production
of three high-value products, lipase, lipids, and ricinoleic acid,
and successfully used in actual CBP processes with cellulosic
substrate (Guo et al. 2018).

Xylan

Xylan is the most abundant hemicellulose in lignocellulosic
biomass, from among the other hemicelluloses, including
glucuronoxylan, arabinoxylan, glucomannan, and xyloglucan.
Xylan’s backbone is composed of β-(1,4)-linked D-xylose res-
idues, and can be branched through β-(1,3)- or β-(1,3, 1,4)-
glycosidic bonds with D-xylose residues or the other carbohy-
drates, like D-arabinose, D-galactose, or acidified forms (glucu-
ronic acid and galacturonic acid). Xylans are highly abundant
in all types of lignocellulosic biomass, includingwood, grasses,
cereals, and herbs, making up to 35% of its dry weight content
(Binod et al. 2011; da Silva et al. 2012). As such, it would be
highly desired to use it as a bioconversion substrate in biotech-
nology, which would significantly increase the economics of
biomass utilization. Marketed xylan is mainly obtained from
straw, sorghum, sugarcane, corn stalks and cobs, and hulls and
husks from starch production, as well as pulping waste prod-
ucts from hardwoods and softwoods (da Silva et al. 2012).
Xylan gained attention as a substrate in production of packag-
ing films impenetrable to oxygen, food coatings and emulsifier,
in biomedical products for microencapsulation, as well as a
component of adhesives, thickeners, and as a plastic additive
(da Silva et al. 2012). Due to its abundance, low price, and no
competition with the food sector, hemicellulosic xylan holds
promise of sustainable substrate for biotechnological conver-
sions. Currently, there is no self-sufficient process or technol-
ogy available to process the lignocellulosic xylan into value-
added products and its hydrolysis into utilizable sugars is the
key stage that determines the overall process efficiency (Binod
et al. 2011). On the other hand, presence of hemicellulose in
lignocellulosic biomass impedes accessibility of cellulose to
enzymatic hydrolysis, hence, removal of xylan would be ben-
eficial for cellulose bioconversions.

Due to its heterogeneity and branched structure, enzymatic
degradation of xylan requires multiple different enzymatic
activities acting synergistically. For degradation of
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homopolymer chains (Fig. 4), endo-1,4-β-xylanase, which
cleaves internal glycosidic bonds releasing oligomers, and
β-xylosidase, acting on the non-reducing terminus of oligo-
s a c c h a r i d e s , a r e n e c e s s a r y . F u r t h e rmo r e , α -
arabinofuranosidase, α-glucuronidase, and acetyl xylan ester-
ase are needed to degrade the heteropolymer. Commercial
xylanase cocktails are mainly obtained from A. niger, T.
reesei, Bacillus spp., and H. insolens. No native ability to
degrade xylan has been reported for Y. lipolytica strains
(Duquesne et al. 2014). On the other hand, the genomemining
and the following experimentation revealed presence of a dor-
mant pathway for xylose (monomer of xylan) utilization in
Y. lipolytica’s genome (Ledesma-Amaro et al. 2016; Ryu
et al. 2016; Ryu and Trinh 2018). Native xylose utilization
genes in Y. lipolytica comprise xylose reductase (XYR/XYL1;
YALI0D07634g), xylose dehydrogenase (XDH/XYL2;
YAL I 0E1 24 6 3g ) , x y l u l o k i n a s e (XKS /XYL3 ;
YALI0F10923g), and a panel of 16 putative xylose trans-
porters which were shown to be highly induced in the pres-
ence of xylose (YALI0B21230g, YALI0F19184g,
YALI0A01958g, YALI0A08998g, YALI0F23903g,
YALI0C08943g, YALI0F18084g, YALI0B06391g,
YALI0D00132g, YALI0F06776g, YALI0B17138g,

YALI0F25553g, YALI0D01111g, YALI0C04730g,
YALI0D00363g, YALI0B00396g) (Ryu et al. 2016).
Noteworthy, a high level of synergistic cross-activation was
observed between identified putative transporters for glucose,
xylose, cellobiose, and arabinose (Ryu et al. 2016; Ryu and
Trinh 2018). Of high relevance to xylan assimilation is an
observation that Y. lipolytica can simultaneously utilize arab-
inose and xylose, and that the two sugars share transporters
and the other elements of the degradation pathway, like
xylitol/arabitol dehydrogenase (YALI0E12463g) (Ryu and
Trinh 2018). For details on C5 monosugar utilization by
Y. lipolytica, the reader is referred to a recent review paper
on this subject (Spagnuolo et al. 2018) and highly informative
original papers (Ryu et al. 2016; Ryu and Trinh 2018).

As in the case of the abovementioned polymeric substrates,
engineering of a xylan-utilization trait in Y. lipolyticawas in fact
initiated by using xylanases as enzymatic reporters. With this
aim, xylanase I fromH. insolens (Muller et al. 1998), XlnC from
A. niger (Dulermo et al. 2017), or XYN from bacterium
Thermobacillus xylanilyticus (Duquesne et al. 2014)were cloned
in Y. lipolytica. In the latter study, the protein was expressed
under oleic acid–induced promoter and anchored on the cell
surface using three different docking domains (CWP, Pir,

Fig. 4 Simplified scheme of enzymatic decomposition of xylan. Only those enzymatic activities that were engineered in Y. lipolytica (or the elements
studied in Y. lipolytica, like protein transporters) are depicted in this simplified scheme
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CBM). Of key importancewas the experiment on compromising
temperature and pH settings between the optima for the enzyme
and the yeast. Reaching consensus in this matter precludes ex-
ploitation of a recombinant cell as the consolidated biocatalyst.
For the bacterial XYN protein, the optimal was pH 6.0 and the
temperature of 60 °C, which is not feasible for Y. lipolytica. That
problem was considered also in the second study, where endo-
and exo-β-(1,4)-xylosidases were cloned in Y. lipolytica (Wang
et al. 2014). The key criterion for the heterologous enzymes
selection was similarity of growth optima between the source
organism and Y. lipolytica. Consequently, XynII from
Trichoderma harzianum and XlnD from A. niger were chosen
for the endo- and exo-acting xylanase, and were cloned separate-
ly. Strikingly, sole expression ofXynII inY. lipolytica enabled its
growth on mineral medium with birchwood xylan as the sole
carbon source. On the other hand, co-culturing of XynII- and
XlnD-expressing strains resulted in higher degree of xylan deg-
radation. Noteworthy, since no other genes were cloned and the
growth was supported, the native xylose-utilization pathway of
Y. lipolytica had to be spontaneously activated.

Inulin

Inulin is a water-soluble D-fructose polymer of polymerization
degree from 20 up to several thousand units linked by β-(2,1)

glycosidic bonds, typically bearing glucose linked through
α-(1,2) at a terminus. In the nature, inulin is produced by
different plants as a storage material in roots and tubers.
Among an array of different inulin-storing plants, like agave,
asparagus, coffee, chicory, dahlia, dandelion, garlic, and on-
ion, Jerusalem artichoke is gaining the biggest interest for
biotechnological conversions (Hughes et al. 2017). Inulin is
currently mainly used for the production of prebiotic fructo-
oligosaccharides that are in high demand worldwide. Agave
juice that is rich in inulin is used to produce tequila. Artichoke
inulin is exploited in production of fructose for further appli-
cations in the food industry. The processes are all executed
with microbial inulinases, usually originating from
Kluyveromyces, Penicillium, Aspergillus, Pseudomonas, or
Clostridium (Hughes et al. 2017).

Two types of enzymatic activities are required to decom-
pose polymeric inulin: endo-acting inulinase yielding fructo-
oligosaccharides and exo-inulinase that hydrolyzes terminal
bonds at a non-reducing end and releases monomeric fructose
(Fig. 5). Of high relevance to this review is that invertases
(typically known for their sucrose-hydrolyzing activity) also
have an exo-inulinase activity and hydrolyze fructooligosac-
charides of a low degree of polymerization. Direct impact of
S. cerevisiae’s SUC2 invertase on inulin hydrolysis rate was
clearly evidenced (Yang et al. 2015). No inulinase activity has

Fig. 5 Simplified scheme of enzymatic decomposition of inulin. Only those enzymatic activities that were engineered in Y. lipolytica (or the elements
studied in Y. lipolytica, like protein transporters) are depicted in this simplified scheme.
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been identified in Y. lipolytica (Kurtzman and Fell 2006).
Interestingly, Y. lipolytica shows high inter-strain variation
in terms of growth on fructose (inulin’s basic building block),
which is attributed to variation in hexokinase activity (Lazar
et al. 2014; Lazar et al. 2017). As revealed recently by genome
mining and experimentation, Y. lipolytica bears six hexose
transporters, with two having clearly defined role in fructose
transportation (YHT1/YHT4) (Lazar et al. 2017).

Although this review primarily concerns engineering ef-
forts toward endowing Y. lipolytica with polysaccharide-
degrading ability, it would suffer from lack of comprehensive-
ness if cloning of invertase SUC2 would not be briefly men-
tioned, due to the enzyme’s intrinsic exo-inulinase activity
mentioned above. Cloning of S. cerevisiae’s SUC2 was ini-
tially executed with the aim to use an acquired sucrose-
hydrolytic trait as a dominant marker (Nicaud et al. 1989) or
the enzymatic activity as a reporter (Hong et al. 2012), to grow
the recombinant strain on sucrose (Förster et al. 2007) or in
sucrose-richwaste stream—molasses (Lazar et al. 2011; Lazar
et al. 2013; Gajdoš et al. 2015; Rakicka et al. 2017). No in-
formation on testing the SUC2-overproducing Y. lipolytica
strains toward inulin were reported there. This issue was how-
ever raised in the following study (Han et al. 2017) showing
that this particular invertase (SUC2) produced by Y. lipolytica
shows only marginal specificity toward inulin and fructooli-
gosaccharides. It was determined that the hydrolytic activity
of the SUC2 invertase toward fructooligosaccharides was only
8.8% of that toward sucrose, and there was no detectable
hydrolytic activity toward inulin (Han et al. 2017).

The first report on cloning of an inulinase gene (INU1
from Kluyveromyces marxianus) in Y. lipolytica was con-
ducted in an environmental isolate strain (mutated to a ura-
form), known to be efficient in the production of citric acid
(Liu et al. 2010). Precise definition of the background strain
is highly relevant here, due to the inter-strain variation in
fructose assimilation capacity reported previously (Lazar
et al. 2014, 2017). The obtained recombinant strain,
displaying the INU1 enzyme on the cell surface, could effi-
ciently grow on inulin from Jerusalem artichoke, consume
the substrate at high rates, and produce substantial amounts
of citric acid (Liu et al. 2010) and lipids (Zhao et al. 2010).
The same strain was furthermodified to optimize production
of citric acid from inulin; however, the modifications were
related toTCAcycle and to the substrate utilization improve-
ment (Liu et al. 2013). The K. marxianus’ gene INU1 was
also cloned in another background—the high citric acid pro-
ducer AWG7 strain, isolated from a Polish lineage strain
Y. lipolyticaA-101-1.31 after its exposure to UV irradiation
(Rakicka et al . 2016). The inul inase enzyme was
immobilized on the cell surface as well. The obtained
inulinase-hydrolyzing strain was first used for the produc-
tion of erythritol and citric acid in inulin/glycerol co-
substrate medium, resulting in high amounts of the target

products (Rakicka et al. 2016). In the following study, seven
INU1-bearingY. lipolytica sub-clones, presumably differing
in genomic integration site of the INU1-expression cassette,
were compared in terms of inulin consumption rate (Rakicka
et al. 2019).While the recombinant (and the parental) strains
did not differ in terms of fructose utilization, which is of high
importance for inulin utilization tests, they differed signifi-
cantly in termsof inulin degradation capacity.Thebest inulin
consumer was forwarded to bioprocess intensification stud-
ies finally yielding over 200 g/L of citric acid from inulin
(Rakicka et al. 2019). Y. lipolytica’s high capacity to synthe-
size secretory protein was used to overproduce inulinases
excreted to the culture medium with the aim to obtain
inulinolytic enzymatic preparation. Initially, the genes
encoding exo-inulinase from K. marxianus and endo-
inulinase from A. nigerwere cloned separately in a laborato-
ry Po1h strain (Liu et al. 2016). Obviously, solely for over-
productionof enzymaticprotein, the strain’s backgroundand
the associated fructose assimilation capacity lacks impor-
tance, as the two proteinswere purified from the supernatant.
The two proteins were overproduced separately and their
activities were analyzed independently and in combination,
demonstrating high synergy in their action (Liu et al. 2016).
The same expression host was used in another study, where
two copies of A. niger endo-inulinase were cloned and
overexpressed under strong growth-phase-dependent pro-
moter (Han et al. 2017). However, in this approach, the host
system was actually used in situ for inulin decomposition,
which was executed by a two-stage approach. The first stage
was oriented toward overproduction of the enzyme until the
culture reached stationary phase, and subsequently, industri-
al substrate rich in inulinwas added to the culture.During this
stage, the heterologous endo-inulinase activity hydrolyzed
thematerial to fructooligosaccharides, whichwere the target
product. Notably, in the latter stage, the temperature was
raised from initial 28 to 35 °C, which is more suited for the
enzyme’s action. Consequently, the authors developed a
highly efficient process of fructooligosaccharide produc-
tion, using recombinant Y. lipolytica strain overproducing
two fungal endo-inulinases, and SU2 invertase (Po1h back-
ground), which removed any non-prebiotic saccharides gen-
era ted during the process (Han et al . 2017) . The
abovementioned previous studies on inul inolyt ic
Y. lipolytica (Zhao et al. 2010; Liu et al. 2016) were finalized
byaworkonconstructionof a strainoverproducingbothexo-
and endo-inulinase simultaneously, able to accumulate
48.13% (g/gDCW) from inulin (Shi et al. 2018). The double
recombinant was compared in terms of exerted inulinase ac-
tivity with the previously constructed strain (exo-inulinase
INU1 solely) and was shown to bear over 2.5-fold higher
hydrolytic activity toward inulin than the latter, which well
corresponds with the finding on synergistic activity of exo-
and endo-inulinases (Liu et al. 2016).
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Summary and outlook

Over decades of intensive worldwide effort, Y. lipolytica has
been turned into a versatile consolidated biocatalyst, with nu-
merous areas of applications. The discussed above studies
aimed at expanding native substrate range of the species to
highly abundant polysaccharides, i.e., starch, cellulose, xylan,
and inulin. Due to the review capacity, at least several highly
promising issues had to be neglected, like acquired capacity to
decompose pectins by overexpression of polygalacturonase
(Muller et al. 1998), or glucomannan, through surface display
of mannosidase (Moon et al. 2013). Based on conducted lit-
erature search and own experience, the key challenge in de-
veloping Y. lipolytica–based consolidated biocatalysts is
balancing optimal conditions for the host growth and the en-
zyme activity. The bioprocesses are typically conducted under
conditions facilitating the host growth, neglecting the enzy-
matic catalyst requirements. As demonstrated in the series of
works on cellulolytic Y. lipolytica by the French group, con-
sideration of accessory enzymatic and non-enzymatic proteins
may importantly advance the generation of a truly efficient
consolidated biocatalyst. Likewise, optimization of multi-
hydrolyses-producing strains, in terms of a respective activity
abundance, seems to be the key point, enabling generation of
strains tailored for a specific substrate.
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