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Abstract
The objective of this study is to better quantify the occurrence, intake, and potential risk from Hg in fungi traditionally foraged in
SW China. The concentrations and intakes of Hg were measured from 42 species including a “hard” flesh type polypore fungi
and a” soft” flesh type edible species that are used in traditional herbal medicine, collected during the period 2011–2017. Three
profiles of forest topsoil from the Zhenyuan site in 2015 and Changning and Dulong sites in 2016 were also investigated. The
concentrations of Hg in composite samples of polypore fungi were usually below 0.1 mg kg−1 dry weight (dw) but higher levels,
0.11 ± 0.01 and 0.24 ± 0.00mg kg−1 dw, were noted inGanoderma applanatum and Amauroderma niger respectively, both from
the Nujiang site near the town of Lanping in NW Yunnan. Hg concentrations in Boletaceae species were usually well above
1.0 mg kg−1 dw and as high as 10 mg kg−1 dw. The quality of the mushrooms in this study in view of contamination with Hg
showed a complex picture. The “worst case” estimations showed probable intake of Hg from 0.006 μg kg−1 body mass (bm)
(“hard” type flesh) to 0.25 μg kg−1 bm (“soft” flesh) on a daily basis for capsulated products, from 17 to 83 μg kg−1 bm (“soft”
flesh) in a meal (“hard” type flesh mushrooms are not cooked while used in traditional herbal medicine after processing), and
from 0.042 to 1.7 and 120 to 580 μg kg−1 bm on a weekly basis, respectively.

Key points
• Polypore species were slightly contaminated with Hg.
• Hg maximal content in the polypore was < 0.25 mg kg−1 dry weight.
• Many species from Boletaceae family in Yunnan showed elevated Hg.
• Locals who often eat Boletus may take Hg at a dose above the daily reference dose.
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Introduction

Mushrooms (Macromycetes), dried and powdered or in the
form of extracts, are traditionally popular in Chinese herbal
medicine and elsewhere in Asia and are also considered
functional foods (Bhatt et al. 2018; Wang et al. 2013;
Wasser 2010). This traditional use of wild mushrooms as
medicines has survived in other parts of the world, includ-
ing Mexico (Nnorom et al. 2019; Santiago et al. 2016;
Yongabi 2019). In the past, mushrooms were also used in
folk medicine in Europe but this tradition has practically
disappeared there (Gründemann et al. 2020; Grzywnowicz
2001, 2007). However, scientific evidence supporting the
use of mushrooms in the treatment of disease is questioned
or considered premature (Money 2016). Traditionally
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foraged edible species of fungi are valued in traditional
herbal medicines largely due to active organic compounds
and an example can be species from the genus Fomitopsis
and Ganoderma, while much less is information on min-
erals and heavy metal contaminants (Bhatt et al. 2018;
Nnorom et al. 2013; Zaidman et al. 2005).

Data shows that many mushrooms are vulnerable to
contamination with mercury (Hg) compounds that are
absorbed by the mycelia of the fungi and efficiently
bioconcentrated in fruiting bodies both from the field and
controlled experimental studies (Bressa et al. 1988; Crane
et al. 2010; Falandysz et al. 2007). This characteristic has
been associated to species-specific genetic features in con-
nection to soil bedrock geochemical anomalies and anthro-
pogenic pollution (Falandysz 2016; Melgar et al. 2009;
Nasr and Arp 2011). The genetic, species-specific suscep-
tibility of fungi to accumulation of Hg and their vulnera-
bility to contamination with this element can be explained
in part by the type and quantity of sulfur (S) and also
selenium (Se)-containing ligands that they produce
(Kavčič et al. 2018, 2019; Nasr et al. 2012). Mushrooms
found in different regions of China can be substantially
contaminated with geogenic Hg absorbed from back-
ground soil from the mineral belt (Falandysz et al.
2015b). Continental Asia, and also some other continents,
have areas with bedrock and soils enriched in mercury that
occurs largely in the mineral, cinnabar (HgS), from the vast
region of the Circum-Pacific Mercuriferous Belt (Gustin
et al. 1999). Cinnabar mining at the Lanmuchang site in
Gùizhōu in southwestern China, and the use of HgS as red
pigment vermilion and as a sedative in traditional herbal
medicine, has an over 2000-year-old history in China
(Wang 1944; Young et al. 2002).

Geogenic Hg is well dispersed on the land and oceans and due
to degassing is subject to a specific global biogeochemical circu-
lation (Ariya et al. 2015; Falandysz et al. 2020d). Regions with a
mineral belt can be abundant not only in HgS, but also in ores
bearing other elements such asAs, F, Pb, Ag,Mo,Ni, Au, Re, Se,
V, and Zn. The occurrence of Hg is also associated with anthro-
pogenic activities such as copper-bearing shales (Kijewski 1989).
Forest soils can act as a long-term sink of airborne Hg from
anthropogenic emissions due to ongoing use of Hg and its com-
pounds, legacy sources, gold mining, combustion of fossil fuels,
and thermal processes and China is the major emitter of Hg from
anthropogenic sources at both the regional and global scales
(Chen et al. 2019; Suchara and Sucharova 2002).

Elevated and occasionally high concentrations of Hg in
forest topsoils in several remote and rural areas in the
Yunnan province in China strongly indicate the overriding
role of geogenic sources of Hg in local mushrooms, but an-
thropogenic pollution in the forest topsoil is a source (in the
0-–10-cm layer of soil in Dayingjie in Yuxi up to 3.4 mg kg−1

dw) that cannot be neglected (Falandysz et al. 2015b). The

organic layer of soil in forests efficiently retains airborne Hg
from direct deposition, trough fall, and litter fall, and this
makes a significant contribution to its absorption by mycelia
and accumulation in the flesh of fruiting bodies (Demers et al.
2007; Falandysz et al. 2014). Mycelia are able to colonize and
take up minerals from relatively large volumes of soil sub-
strate including different layers of the soil horizon in which
they grow. Some mushroom species also produce
rhizomorphs and mycelial cords, which act as organs of ab-
sorption and translation of nutrients and water absorption and
translocation, and colonization of substrates (Yafetto 2018).
Therefore, the elemental contaminants contained in the mush-
room’s fruiting bodies—regardless of the uptake, transloca-
tion, and accumulation mechanisms or competition between
the elements—present an integral picture of the local environ-
mental conditions in view of the physiology and adaptiveness
of a particular species.

The Yunnan is home to a biological diversity of fungi spe-
cies that grow within a vast mountainous terrain (Yunnan has
area of 394,000 sq. km and the average elevation is 1980 m
and a highest point has 6740 m a.s.l. at Kawagebo) that is
characterized by canyons and large rivers (Nu, Yangzi, and
Mekong rivers), as well as areas of polymetallic soils that are
naturally enriched in As and Hg, and other hazardous ele-
ments to combined diversity in species and terrains present a
challenge to the study of the local fungi (Li and Wang 2008;
Wen and Chi 2007).

Additionally, knowledge and data on the occurrence of
Hg in mushrooms that are popular in Chinese medicine are
largely absent. Mercury and its compounds are highly toxic
and especially relevant in foods including edible mush-
rooms is their contamination with neurotoxic mono-
methylmercury (MeHg) (Fernandes e t a l . 2020;
WHO 2011; Stijve and Roschnik 1974). It has to be empha-
s ized tha t wi ld-g rowing mushrooms ef f i c i en t ly
bioconcentrate Hg from soil currently contaminated with
this element both due to geological processes and from an-
thropogenic depositions (Falandysz 2002, 2016; Kavčič
et al. 2019; Nasr and Arp 2011; Saba et al. 2016a). In result,
and due to high capacity of mushrooms to accumulate Hg,
the edible wild-growing species accumulate the largest
amount of Hg (Falandysz et al. 2015b; Melgar et al. 2009).

The current study addresses this knowledge gap by inves-
tigating the fruiting bodies of 42 commercially important spe-
cies of mushrooms from 23 sites in the Province of Yunnan
collected during the period, 2011–2017 (Fig. 1). The collec-
tion sites were usually located in regions were mushrooms
from the wild are intensively foraged, along with places where
local markets for mushrooms exist. In parallel, samples of
topsoil layers from three different forested locations spatially
distantly distributed across the province (Figs. 1 and 2) were
also collected in order to get some information on the Hg
content in the soil substrata in Yunnan.
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Materials and methods

Forest topsoil

Forest topsoil layers were collected in 2015 from undisturbed
rural locations in Yunnan, at the Zhenyuan site (coordinates:

24°26′45″ N and 100°33′36″ E) at Mt. Ailao in the Pu’er
prefecture at an altitude of circa 1400 m above sea level, from
the Changning site (24°43′44″ N and 99°45′4″ E) at an alti-
tude of 1950 m a.s.l., and from the Dulong site (22°53′21″ N
and 104°32′52″ E) at an altitude of 915 m a.s.l. in 2016 (Figs.
1 and 2).

Fig. 1 Localization of the
sampling sites of mushrooms and
topsoil from Yunnan

Fig. 2 Mercury concentration (Hg mg kg−1 dw) profiles of the forest soil cores taken from Changning, Dulong, and Zhenyuan–Pu’er in the Yunnan
province
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The soil layers at the sites were taken from different depth
(Fig. 2) using a stainless steel slicer after the soil horizon was
uncovered. Litter covering soil surface was removed before
sampling. The sections of soil horizons sampled weighed circa
100 g each. If necessary, soils were freed from visible plant
roots on site, and placed into brand new sealed polyethylene
bags. At the laboratory, samples were air dried at room temper-
ature for 8–10 weeks under dry and clean conditions to obtain
aerially dry material. Dried soils were powdered in a porcelain
mortar, sieved through a pore size of a 2-mm plastic sieve (a
plastic sieve each time washed, well rinsed with deionized wa-
ter, and dried before re-use), transferred into brand new sealed
polyethylene bags, and kept until analysis for up to 1 week in
tightly closed plastic containers under dry condition.

Fungi

The wild mushroom species included genera such as
Baorangia , Boletus , Butyriboletus , Caloboletus ,
Catathelasma , Fomes , Fomitops i s , Ganoderma ,
Ischnoderma, Lactarius, Leccinum, Lentinus, Neoboletus,
Retiboletus, Rubroboletus, Suillellus, Suillus, Sutorius,
Thelephora, Tylopilus, Tyromyces, and Xerocomus sp. In to-
tal, 42 species of medicinal edible fungi were collected, in-
cluding: Agaricus blazeiMurrill, Baorangia bicolor (Kuntze)
G.Wu, Halling & Zhu L. Yang, Boletus auripes Peck, Boletus
bainiuganDentinger, Boletus calopus (Pers.) Vizzini, Boletus
speciosus Frost, Boletus tomentipes Earle, Butyriboletus
regius (Krombh.) D. Arora & J.L. Frank, Butyriboletus
subsplendidus (W.F. Chiu) Kuan Zhao, G. Wu & Zhu L.
Yang, Caloboletus calopus (Pers.) Vizzini, Catathelasma
ventricosum (Peck) Singer, Fomes rufolaccatus Lloyd,
Fomitopsis pinicola (Swartz.:Fr), Fomitopsis ulmaria
(Sor.:Fr.) Bond. et Sing., Ganoderma applanatum (Pers.)
Pat, Ganoderma capense (Lloyd) Teng, Ganoderma
japonicum (Fr.) Lloyd, Ganoderma kunmingense Zhao,
Ganoderma lingzhi Sheng H.Wu, Y.C.Dai & Y.Cao,
Ganoderma lucidum (Leyss. ex Fr.) , Ganoderma
luteomarginatum Zhao, Xu et Zhang, Ganoderma philippii
(Bres. & Henn. ex Sacc.) Bres, Ganoderma ramosissimum
Zhao, Ganoderma sinense Zhao, Xu et Zhang, Ganoderma
tsugae Murr, Ischnoderma resinosum (Schaeff.: Fr.) Karst.,
Lactarius deliciosus (L.) Gray, Leccinum extremiorientale
(Lj.N. Vassiljeva) G. Wu & Zhu L. Yang, Lentinula edodes
(Berk.) Pegler, Neoboletus brunneissimus (W.F. Chiu) G. Wu
& Zhu L. Yang, Retiboletus griseus (Frost) Manfr. Binder &
Bresinsky, Retiboletus ornatipes (Peck) Manfr. Binder &
Bresinsky, Rubroboletus sinicus (W.F. Chiu) Kuan Zhao &
Zhu L. Yang, Suillellus luridus (Schaeff.) Murrill, Suillus
bovinus (L.) Roussel, Sutorius magnificus (W.F. Chiu) G.
Wu & Zhu L. Yang, Thelephora ganbajun Zang, Tylopilus
chromapes (Frost) A.H. Sm. & Thiers, Tylopilus felleus
(Bull.:Fr.) Karst, Tyromyces albidus (Schaeff ex Secr.)

Donk, and Xerocomus sp. The composite samples (n > 1)
contained up to 100 individual fruiting bodies per species
(Table 1) and location (Fig. 1).

At collection sites, mushrooms were cleaned from any vis-
ible foreign matter using a ceramic knife and a plastic brush.
For some species, the whole fruiting bodies were used and for
others, each individual fruiting body was separated into cap
and stipe, and the individual samples were pooled accordingly
(Table 1). The fungal materials were dried at 65 °C to constant
mass (Ultra FD1000 dehydrator, Ezidri, Australia) (Kojta
et al. 2015). The dried, fungal materials were ground in a
porcelain mortar to a fine powder, passed through an 80-
mesh sieve and stored in a screw-sealed plastic (low-density
polyethylene) bags under dry conditions.

Determination of Hg

The analytical methodology for Hg determination in fungal and
soil materials has been presented in detail before but a summa-
rized description is given below (Jarzyńska and Falandysz
2011; Saba et al. 2016c). Double distilled water was used for
the preparation of the solutions. Amercury standard solution of
1.0 mg Hg mL−1 was obtained from the 10 mg mL−1 standard
stock solution (Merck). Blanks and 25, 50, 100, 150, and
200 μL (high mode) and 3, 5, 10, 15, and 20 μL (low mode)
of 1.0 mg mL−1 Hg standard solutions were injected into the
Hg analyzers for the construction of calibration curves.

The determinations of Hg content were performed using
cold-vapor atomic absorption spectroscopy (CV-AAS) by di-
rect sample thermal decomposition coupled with gold wool
trap and amalgamation of Hg vapor and Hg desorption and
quantitative measurement at a wavelength of 253.7 nm. The
instruments used were the MA-2000 mercury analyzers
(Nippon Instruments Corporation, Takatsuki, Japan), both,
with and without auto sampler and operated respectively in
high (25 to 150 ng Hg per sample) and low (3 to 20 ng Hg per
sample) modes (Jarzyńska and Falandysz 2011).

Quality assurance and quality control measures included
the analysis of procedural blanks and certified reference ma-
terials as described before (Falandysz et al. 2015b; Jarzyńska
and Falandysz 2011; Saba et al. 2016c). Two certified refer-
ence materials were analyzed: CS-M-2 (dried Agaricus
campestris) with declared concentration of Hg at 0.164 ±
0.004 mg kg−1 and determined concentration of Hg at 0.16
± 0.01 mg kg−1 (n = 8; recovery 98%), and CS-M-3 (dried
Boletus edulis) with declared concentration of Hg at 2.849 ±
0.104 mg kg−1 and determined concentration of Hg at 2.8 ±
0.0 mg kg−1 (n = 5; recovery 98%). The number of replicates
was 2–3 for the material with relatively high Hg content, while
2–4 for thematerial with relatively lowHg content. Two blank
samples were included with each sample studied and four
subsamples of certified reference materials were analyzed
with each set of 8 real samples.
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Table 1 Contents of Hg (mg kg−1 dry weight; arithmetic mean and standard deviation) in the wild-growing and cultivated medicinal mushrooms from
China

Species and year Sampling site Hg QC/S

Caps Stipes Whole fruiting bodiesb

Agaricus blazei (100)*a 2015 Longyang, Baoshan [1#] 0.085 ± 0.001 0.042 ± 0.001 0.064 2.0

Amauroderma bataanense (15) 2014 Eshan, Yuxi [2] 0.065 ± 0.001 0.041 ± 0.001 WD 1.6

Amauroderma guangxiense (/) 2011 Laiyanghe, Pu′er [3] WD WD 0.041 ± 0.001 WD

Amauroderma niger (/) 2012 Lanping, Nujiang [4] WD WD 0.24 ± 0.00 WD

Baorangia bicolor (56) 2017 Tadian, Yuxi [5] 3.1 ± 0.1 1.3 ± 0.0 2.2 2.4

Baorangia bicolor (13) 2017 Yaoan, Chuxiong [6] 5.0 ± 0.0 2.7 ± 0.0 3.9 1.8

Baorangia bicolor (5) 2017 Donggua, Chuxiong [7] 2.8 ± 0.1 1.3 ± 0.1 2.1 2.1

Baorangia bicolor (9) 2017 Midu, Dali [8] 0.76 ± 0.04 0.37 ± 0.02 0.57 2.0

Baorangia bicolor (22) 2017 Luohe, Yuxi [9] 8.6 ± 0.4 3.6 ± 0.2 6.1 2.4

Baorangia bicolor (5) 2017 Donggua, Chuxiong [7] 2.8 ± 0.1 1.3 ± 0.1 2.1 2.1

Baorangia bicolor (18) 2017 Liujie, Yuxi [10] 4.9 ± 0.2 4.3 ± 0.2 4.6 1.1

Baorangia bicolor (43) 2017 Midu, Dali [8] 1.5 ± 0.1 0.91 ± 0.03 1.2 1.6

Boletus auripes (12) 2017 Tadian, Yuxi [5] 0.93 ± 0.02 0.58 ± 0.00 0.76 1.6

Boletus bainiugan (14) 2017 Yaoan, Chuxiong [6] 5.6 ± 0.2 2.8 ± 0.1 4.2 2.0

Boletus bainiugan (6) 2017 Longyang, Baoshan [1] 6.1 ± 0.3 2.1 ± 0.1 4.1 2.9

Boletus bainiugan (22) 2017 Donggua, Chuxiong [7] 14 ± 0 6.0 ± 0.2 10 2.3

Boletus bainiugan (11) 2017 Longyang, Baoshan [1] 11 ± 0 4.8 ± 0.0 7.9 2.3

Boletus bainiugan (18) 2017 Midu, Dali [8] 1.0 ± 0.0 0.64 ± 0.03 0.82 1.6

Boletus speciosus (23) 2017 Longyang, Baoshan [1] 5.3 ± 0.2 3.2 ± 0.1 4.3 1.7

Boletus speciosus (2) 2017 Tadian, Yuxi [5] 2.3 ± 0.1 1.5 ± 0.0 1.9 1.5

Boletus speciosus (273) 2017 Longyang, Baoshan [1] 6.4 ± 0.1 4.0 ± 0.1 5.2 1.6

Boletus speciosus (15) 2017 Liujie, Yuxi [10] 4.8 ± 0.0 1.6 ± 0.1 3.2 3.0

Boletus speciosus (12) 2017 Luohe, Yuxi [9] 5.4 ± 0.3 3.6 ± 0.1 4.5 1.5

Boletus tomentipes (21) 2017 Liujie, Yuxi [10] 5.6 ± 0.1 1.1 ± 0.4 3.4 5.1

Butyriboletus regius (9) 2017 Luohe, Yuxi [9] 4.6 ± 0.1 2.3 ± 0.1 3.5 2.0

Butyriboletus subsplendidus (10) 2017 Longyang, Baoshan [1] 12 ± 1 5.2 ± 0.0 8.6 2.3

Caloboletus calopus (11) 2017 Longyang, Baoshan [1] 5.9 ± 0.0 1.7 ± 0.1 3.8 3.5

Caloboletus calopus (10) 2017 Yaoan, Chuxiong [6] 4.1 ± 0.1 1.1 ± 0.0 2.6 3.7

Caloboletus calopus (4) 2017 Longyang, Baoshan [1] 2.9 ± 0.0 1.2 ± 0.0 2.1 2.4

Caloboletus calopus (13) 2017 Anhua, Yuxi [11] 1.6 ± 0.1 1.1 ± 0.0 1.4 1.5

Caloboletus calopus (11) 2017 Longyang, Baoshan [1] 5.9 ± 0.0 1.7 ± 0.1 3.8 3.5

Caloboletus calopus (10) 2017 Luohe, Yuxi [9] 9.8 ± 0.3 8.4 ± 0.0 9.1 1.2

Caloboletus calopus (3) 2017 Tadian, Yuxi [5] 1.3 ± 0.0 0.70 ± 0.00 1.0 1.9

Catathelasma ventricosum (6) 2014 Eshan, Yuxi [2] 5.5 ± 0.0 1.4 ± 0.1 3.9 3.9

Fomes rufolaccatus (1) 2014 Zhengyuan, Pu′er [14] WD WD 0.069 ± 0.001 WD

Fomes rufolaccatus (1) 2014 Jiuxi, Yuxi [15] WD WD 0.12 ± 0.00 WD

Fomitopsis pinicola (1) 2014 Lushui, Nujiang [12] WD WD 0.024 ± 0.001 WD

Fomitopsis pinicola (1) 2014 Lushui, Nujiang [12] WD WD 0.027 ± 0.000 WD

Fomitopsis pinicola (1) 2014 Yongsheng, Lijiang [13] WD WD 0.035 ± 0.002 WD

Fomitopsis pinicola (1) 2014 Lushui, Nujiang [12] WD WD 0.018 ± 0.001 WD

Fomitopsis ulmaria (1) 2014 Lanping, Nujiang [4] WD WD 0.13 ± 0.00 WD

Ganoderma applanatum (/) 2012 Lanping, Nujiang [4] WD WD 0.11 ± 0.01 WD

Ganoderma capense (/) 2012 Pingbian, Honghe [16] WD WD 0.19 ± 0.01 WD

Ganoderma japonicum (10) 2014 Huaning, Yuxi [17] 0.088 ± 0.002 0.047 ± 0.00 0.080 1.9

Ganoderma kunmingense (15) 2012 Xiaoshao, Kunming [18] WD WD 0.012 ± 0.002 WD

Ganoderma lingzhi (8) 2013 Xiaoshao, Kunming [18] 0.086 ± 0.004 0.088 ± 0.00 0.087 0.98
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Table 1 (continued)

Species and year Sampling site Hg QC/S

Caps Stipes Whole fruiting bodiesb

Ganoderma lingzhi (25) 2014 Xiaoshao, Kunming [18] 0.10 ± 0.00 0.077 ± 0.003 0.095 1.3

Ganoderma lingzhi (17) 2015 Xiaoshao, Kunming [18] 0.088 ± 0.00 0.042 ± 0.002 0.079 2.1

Ganoderma lingzhi (/) 2012 Dayingjie, Yuxi [19] WD WD 0.096 ± 0.004 WD

Ganoderma lingzhi (6) 2013 Yuanjiang, Yuxi [20] 0.10 ± 0.00 0.081 ± 0.004 0.096 1.2

Ganoderma lingzhi (10) 2013 Lanping, Nujiang [4] 0.086 ± 0.00 0.053 ± 0.002 0.079 1.6

Ganoderma lucidum (7) 2012 Huaning, Yuxi [17] 0.085 ± 0.001 0.074 ± 0.004 0.083 1.1

Ganoderma luteomarginatum (10) 2012 Huaning, Yuxi [17] 0.18 ± 0.00 0.095 ± 0.003 0.16 1.9

Ganoderma philippii (10) 2011 Laiyanghe, Pu′er [3] WD WD 0.022 ± 0.001 WD

Ganoderma philippii (/) 2011 Laiyanghe, Pu′er [3] WD WD 0.033 ± 0.001 WD

Ganoderma ramosissimum (10) 2012 Huaning, Yuxi [17] WD WD 0.059 ± 0.003 WD

Ganoderma sinense (8) 2013 Lanping, Nujiang [4] WD WD 0.20 ± 0.00 WD

Ganoderma tsugae (/) 2012 Lanping, Nujiang [4] WD WD 0.085 ± 0.002 WD

Ischnoderma resinosum (1) 2014 Nanhua, Chuxiong [21] WD WD 0.060 ± 0.000 WD

Lactarius delicious (30) 2017 Longyang, Baoshan [1] 1.2 ± 0.0 0.83 ± 0.04 1.1 1.4

Leccinum extremiorientale (23) 2017 Yimen, Yuxi [22] 6.1 ± 0.5 2.2 ± 0.1 3.6 2.8

Leccinum extremiorientale (12) 2017 Luohe, Yuxi [9] 3.7 ± 0.1 1.2 ± 0.0 2.1 3.1

Leccinum extremiorientale (10) 2017 Donggua, Chuxiong [7] 3.3 ± 0.1 1.4 ± 0.2 2.1 2.4

Leccinum extremiorientale (9) 2017 Luohe, Yuxi [9] 3.6 ± 0.2 1.3 ± 0.1 2.1 2.8

Lentinula edodes (70) 2015 Wuding, Chuxiong [22] 0.039 ± 0.002 0.029 ± 0.001 0.034 1.3

Lentinula edodes (100) 2015 Longyang, Baoshan [1] 0.015 ± 0.001 0.015 ± 0.001 0.015 1.0

Neoboletus brunneissimus (6) 2017 Liujie, Yuxi [10] 2.8 ± 0.0 0.95 ± 0.03 1.9 2.9

Retiboletus griseus (46) 2017 Zixi, Chuxiong [23] 1.1 ± 0.0 0.72 ± 0.01 0.91 1.5

Retiboletus griseus (10) 2017 Dayingjie, Yuxi [19] 2.3 ± 0.0 1.4 ± 0.1 1.8 1.6

Retiboletus ornatipes (10) 2017 Liujie, Yuxi [10] 1.4 ± 0.0 1.5 ± 0.1 1.5 0.93

Retiboletus ornatipes (9) 2017 Donggua, Chuxiong [7] 2.8 ± 0.2 1.0 ± 0.0 1.9 2.8

Rubroboletus sinicus (4) 2017 Liujie, Yuxi [10] 2.6 ± 0.1 3.1 ± 0.0 2.9 0.68

Suillellus luridus (7) 2017 Liujie, Yuxi [10] 2.6 ± 0.0 1.1 ± 0.0 1.9 2.4

Suillus bovinus (8) 2017 Hongta, Yuxi [24] 0.4 ± 0.0 0.07 ± 0.01 0.30 5.7

Sutorius magnificus (19) 2017 Midu, Dali [8] 4.3 ± 0.3 1.8 ± 0.0 3.0 2.4

Sutorius magnificus (6) 2017 Tadian, Yuxi [5] 4.1 ± 0.0 2.8 ± 0.1 3.4 2.3

Sutorius magnificus (6) 2017 Liujie, Yuxi [10] 2.0 ± 0.0 1.6 ± 0.1 1.8 1.2

Thelephora ganbajun (1) 2013 Cangyuan, Lincang [25] WD WD 0.13 ± 0.00 WD

Thelephora ganbajun (1) 2014 Jiuxi, Yuxi [15] WD WD 0.13 ± 0.02 WD

Tylopilus chromapes (32) 2017 Tadian, Yuxi [5] 3.3 ± 0.0 2.0 ± 0.0 2.7 1.6

Tylopilus felleus (5) 2017 Donggua, Chuxiong [7] 7.2 ± 0.4 3.1 ± 0.0 5.1 2.3

Tyromyces albidus Donk. (1) 2014 Ailao Mountain, Yuxi [26] WD WD 0.024 ± 0.01 WD

Tyromyces albidus Donk. (1) 2014 Jiuxi, Yuxi [15] WD WD 0.046 ± 0.001 WD

Xerocomus sp. (8) 2017 Luohe, Yuxi [9] 6.8 ± 0.3 5.1 ± 0.1 6.1 1.3

WD without data

*Number of fruiting bodies in a composite sample

/Number of fruiting bodies unknown
a Cultivated
# ID of a site (see Fig. 1)
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Results

Hg in forest topsoil

The Hg concentration in forest topsoil at different depths from
three sites spatially scattered across the Yunnan province sug-
gests that, both, geogenic sources corresponding to specific
topsoil profiles of Hg in Dulong and Changning, and an an-
thropogenic influence in Changning and Zhenyuan, seem pos-
sible (Fig. 2). A substantial enrichment of Hg in the top 0-–
6.0-cm layer and especially in the organic 0-–4.0-cm layer
(Hg contents from 0.060 to 0.11 mg kg−1 dry weight (dw) in
segments) of forest topsoil near the Zhenyuan village in Mt.
Ailao region is clear.

Mercury contents in segments of the mineral horizon in the
Zhenyuan site were in the range 0.027 to 0.050 mg kg−1 dw in
5.0- to 12-cm layer, which is around a half of the results for
Changning (0.10 to 0.12 mg kg−1 dw in section of 1.0 to
25 cm) and Dulong (0.10 mg kg−1 dw in section of 1.0 to
10 cm). A geogenic source of Hg at the Changning and
Dulong sites seems clear (Figs. 1 and 2), and isotopic finger-
prints could further aid the identification of sites with Hg
geological anomalies where wild mushrooms are traditionally
harvested in Yunnan. A weak organic layer of topsoil from the
forested area near the Changning site was relatively thin (0–
1.0 cm) and was almost absent in the profile from the Dulong
site.

Hg in fungi

In this study, species of wood-decaying macromycetes grow-
ing on the trunks of living or dead trees included species such
as Amauroderma bataanense, Amauroderma guangxiense,
Amauroderma niger, F. rufolaccatus , F. pinicola ,
F. ulmaria, G. applanatum, G. capense, G. japonicum,
G . k u n m i n g e n s e , G . l i n g z h i , G . l u c i d u m ,
G. luteomarginatum, G. philippii, G. ramosissimum,
G. sinense, G. tsugae, I. resinosum, and L. edodes. The stipes
contained Hg in the range from 0.015 ± 0.001 in L. edodes to
0.095 ± 0.003 mg kg−1 dw in G. luteomarginatum, while cap
concentrations ranged from 0.015 ± 0.001 in L. edodes to
0.18 ± 0.00 mg kg−1 dw in G. luteomarginatum, and the
whole fruiting bodies, from 0.015 in L. edodes to 0.19 ±
0.01 mg kg−1 dw in G. capense (Table 1). The maximum
concentration of Hg between the polypore species in this
study was 0.24 mg kg−1 dw in a sample of A. niger. Data for
these wood-decaying fungi usually showed higher content of
Hg in caps than stipes. The cap to stipe concentration quotient
(QC/S) was in the range 0.98 to 2.1 (median 1.4) forG. lingzhi,
from 1.1 to 1.9 for other Ganodermamushrooms, from 1.0 to
1.3 for L. edodes, and 1.6 for A. bataanense (Table 1).

In addition to wood-decaying wild mushrooms, the other
types investigated in this study were the ectomycorrhizal

species such as B. bicolor, B. bainiugan, B. speciosus,
B. regius, B. subsplendidus, C. calopus, C. ventricosum,
L. extremiorientale, N. brunneissimus , R. griseus,
R. ornatipes, R. sinicus, S. luridus, S. magnificus,
T. chromapes, T. felleus, and Xerocomus sp., which all
showed Hg concentrations from one to three orders of magni-
tude higher (Table 1) than the wood-decaying species studied.
The only non-wood-decaying saprobic species studied was
A. blazei, which showedHg in a concentration similar to those
determined in the wood-decaying species.

Some of the highest Hg concentrations found were in spe-
cies such as B. bicolor (up to 8.6 ± 0.4 mg kg−1 dw),
B. bainiugan (up to 14 ± 0 mg kg−1 dw), B. speciosus (up to
6.4 ± 0.1 mg kg−1 dw), B. regius (up to 4.6 ± 0.1 mg kg−1 dw),
B. subsplendidus (up to 12 ± 1 mg kg−1 dw),C. calopus (up to
9.8 ± 0.3 mg kg−1 dw), S. magnificus (up to 4.3 ± 0.3 mg kg−1

dw), C. ventricosum (up to 5.5 ± 0.0 mg kg−1 dw),
L. extremiorientale (up to 6.1 ± 0.5 mg kg−1 dw), T. felleus
(up to 7.2 ± 0.4 mg kg−1 dw), or Xerocomus sp. (up to 6.8 ±
0.3 mg kg−1 dw), while usually stipes showed from 1.2- to
5.7-fold (Table 1) lower than the caps.

The quality of the medicinal mushrooms in this study in
view of contamination with Hg presents a complex picture
both due to the kind of species collected and the difference
in the pattern of contamination between them. The medicinal
species including all the “hard” type polypore fungi, L. edodes
and T. ganbajun, presented a lower risk as far as the possible
toxic effects of total Hg could be considered (Table 1). As
mentioned, Hg concentrations in these mushrooms were up
to 0.24 mg kg−1 dw, as seen in A. niger. Hence, consumer
exposure to Hg contained in the hypothetical medicinal deriv-
atives of these mushrooms was investigated alone for the
“hard” species including L. edodes and T. ganbajun using a
maximum value of 0.24 mg kg−1dw and separately for other
soft flesh mushrooms—largely from the Boletaceae family,
using a maximum value of up to 10 mg kg−1 dw for a whole
fruiting body of B. bainiugan from the Donggua site in the
Chuxiong region of Yunnan (Table 1).

Estimated intake of Hg

The exposure estimations in this study assumed an intake
biomass of 3 × 0.5 g of capsulated dried product—both of
“hard” and “soft” flesh type mushrooms per capita daily over
a week, and from 100 to 300 g (maximal 500 g) in a meal
(Boletaceae family species). The intakes also assumed the
maximal Hg concentrations for “hard” and “soft” flesh type
mushrooms, respectively, for an adult Asian individual (60 kg
body mass, bm). The “worst case” estimates showed intake of
Hg from 0.006 μg kg−1 bm (“hard” type polypore) and
0.25 μg kg−1 bm (“soft” flesh Boletaceae) on a daily basis
for capsulated products, and 17, 50, and 83 μg kg−1 bm in the
case of meals made of Boletaceae mushrooms, respectively.
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Hence, on a weekly basis, intake could reach 0.042, 1.7, 120,
350, and 580 μg kg−1 bm.

Discussion

Topsoil

In this study, the site of Zhenyuan represents a sparsely
inhabited rural area with small farms scattered around and
the region is remote from the urbanized and industrialized
sites/centers of China. A recent study of Hg concentration
and isotopic signatures in the forest topsoil (2016) and litter
fall (2017) samples collected from the windward (1250–
2400 m a.s.l.) and leeward slopes of Mt. Ailao (850–2400 m
a.s.l) suggested that contamination of topsoil (0–10 cm layer)
is largely from litter fall input, which relates well with the
observation in this study (Fig. 2) (Fu et al. 2019).

In China soil, with Hg concentration ≤ 0.150 mg kg−1 dw
could be qualified as grade I (uncontaminated) according to
the Chinese Environmental Quality Standard for Soils (Shi
et al. 2013). Nevertheless, a regional and local enrichment in
Hg of forest topsoils in Yunnan suggests a strong contribution
from the Hg background in bedrock (Nie et al. 2018).

Previous studies that analyzed soils collected underneath
mushrooms sampled from the forests of Yunnan have found
that the concentration of Hg in the top layer (0–10 cm) is
elevated when compared with forest topsoils from the regions
of southern and northern Europe. This type of soil from
Croatia and northern parts of Poland typically shows Hg at
concentration well below 0.05 mg kg−1 dw (Falandysz et al.
2015b; Širić and Falandysz 2020). For example, in China, the
topsoils from 44 sites sampled in parallel with the Boletaceae
family mushrooms from rural and anthropogenically unpol-
luted regions showed Hg in the range 0.034 to 3.4 mg kg−1

dw, and from 12 sites where Leccinum mushrooms were col-
lected, in the range from 0.065 to 0.58 mg kg−1 dw (Falandysz
et al. 2015a, b). In topsoil underneath Xerocomus spp. in
Yunnan, the Hg concentration was in the range 0.21 to
0.49 mg kg−1 dw (n = 4) and topsoil underneath Macrocybe
gigantea (Pu’er prefecture in Yunnan) was in the range 0.075
to 0.24 mg kg−1 dw (n = 7) (Kojta et al. 2015; Wiejak et al.
2014).

Fungi

Wood-decaying polypore mushrooms and L. edodes have a
special position in traditional herbal medicine in China, and
species examined in this study showed low contamination
with Hg. As far as possible toxic effects were concerned, the
Hg concentrations observed in the studied Ganoderma and
other wood-decaying mushrooms would imply a relatively
low level of health concern.

Nowadays, formulations made for medicinal and gourmet
mushrooms or cultivated medicinal and edible species can be
bio-fortified with certain elements, e.g., selenized or
lithiumized (often a composite of several species) and sold
in capsules as a food supplement as a mix of dried and pow-
dered products. It would be useful to know whether the man-
ner of preparation (processing) of the medicinal mushrooms
during formulation can have an effect on the Hg (and other
elements) content of the final products but no data could be
found in the available literature.

Preparation processes involve water or alcohol (ethanol)
extracts or a composite of alcohol and water extracts of
sliced, dried, or fresh, polypore mushrooms (reishi mush-
rooms, e.g., G. lucidum) from cold maceration or making a
decoction by simmering with water at different time inter-
vals (up to several weeks) and following a specific recipe.
Therefore, a liquid formula obtained can be a simple mac-
erate, tincture, decoct, or a composite elixir. A product can
also be in a form of a powder prepared from a decoct after
evaporation of the water.

Traditional culinary practices of preparing mushrooms
such as stir frying in oil or braising do not decrease, while
can increase contents, e.g., Hg, radiocaesium (137Cs) and nat-
ural 40K (hence also K) in mushroom meals, when related to
the contents in the fresh mushrooms based on the whole (wet)
weight (Falandysz et al. 2019a, b, 2020b, c). Hot water alone
or with a chelating agent will extract a proportion of the min-
eral consti tuents including Hg from fungal flesh
(Drewnowska et al. 2017a, b; Stijve 1994; Svoboda et al.
2002). For example, traditional blanching using only water
and boiling removes some Hg together with water soluble
compounds and colloids from fresh fruiting bodies, e.g.,
Cantharellus cibarius and Amanita fulva mushrooms
(Falandysz and Drewnowska 2017), which implies that not
only water extracts but also organic solvent extracts (MeHg
is also lipophilic compound) can transfer Hg compounds from
a mushroom substrate to formulations.

It must be pointed out that these reported values of Hg are
within the ranges noticed in several other species of edible
mushrooms from the regions of Yunnan. The maximum con-
centration recorded was in a composite sample of fruiting
bodies of the B. bainiugan (called B. edulis in Yunnan before
a molecular phylogenetic recognition as a new genus in the
family of Boletaceae; B. edulis is absent in Yunnan) with
22 mg kg−1 dw in the caps, 8.4 mg kg−1 dw in the stipes
(Falandysz et al. 2015b).

There is no data available on the extraction efficiency of Hg
(all chemical forms of Hg) during the production of dried pure
(medicinal grade) extracts from any polypore mushroom. A
15-min blanching of fresh mushrooms in tap water has limited
effect on the release (loss) of Hg from fruiting bodies on a dry
weight basis (Falandysz and Drewnowska 2015, 2017). Stir
frying in deep oil can cause the increase in Hg concentration in
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fried mushrooms (Falandysz et al. 2019a, b) and braising the
effect of braising was to increase the average total Hg (THg)
and MeHg contents in fresh mushroom meals by around 50%
respectively, but a reduction of around 40% respectively was
seen on a dry weight basis (submitted). The increase in Hg
concentration in fried or braised mushrooms can be explained
by the partial decline in moisture content during processing
and the resulting shrinkage of the fungal matrix accompanied
by the preferential retention of a portion of Hg.

However, the polypore species used for medicines are
first dried and pulverized and depending on the recipe can
then be, e.g., macerated for a long period of time with
ethanol (vodka) and water and finally, extracted, dried,
and capsuled. Such a process of prolonged maceration
and extraction could be more effective at removing Hg
than blanching for a short period with hot or boiling tap
water. Hence, due to the lack of data on Hg in dried pure
extracts from polypore fungi that can be purchased in retail
outlets, assessments of Hg intake could make the assump-
tion that Hg concentration in a formulation is the same as
that in the original substrate based on dry biomass. As
mentioned, some fungal supplements are composed only
of dried and powdered mushrooms bio-fortified with Se or
Li, where the content of the bio-element is around 10-fold
higher than in the fresh substrate. A gelatine capsule is
filled with 500 mg of fungal formulation regardless of the
size of the capsule. On the other hand, the quantity of
cooked edible mushrooms in a single meal is estimated at
100 to 300 g and occasionally above 500 g. The frequency
of eating wild mushrooms and hence also the annual rate of
consumption varies between people, countries, and regions
and availability during a particular year, and the maximum
quantity reported was 20 kg fresh biomass in Yunnan of
China and up to 26 kg in the UK (Barnett et al. 2001;
Zhang et al. 2010). Because of their particular diet, vegans
and vegetarians can be characterized by a higher rate of
mushrooms as also can Asian people, where wild mush-
rooms form a popular meal although there are some indi-
viduals who cannot eat them. Mushrooms are a vitamin D–
rich source in the diet of vegetarians and vegans (Kim et al.
2018), and are several dozen recipes for mushroom dishes
intended for vegetarians and vegans.

Wood-decaying fungi, both of hard (polypore) and soft
(L. edodes) types, were poorer accumulators of Hg compared
with the ectomycorrhizal and saprobic species in this (Table 1)
and other studies (Dryżałowska and Falandysz 2014; Melgar
et al. 2009; Saba et al. 2016a, b). Comparatively, hard
(polypore) species of wood-decaying macromycetes show
lower K, Rb, and Na contents than soft species (Tyler 1982).
They are also relatively low in other metallic elements and
metalloids including Cd (Siwulski et al. 2017), but they seem
to be useful as indicators of atmospheric pollution by Pb
(Gabriel et al. 1997; Tyler 1982).

Hg exposure assessment

The estimated maximal doses derived from data for the
Boletaceae mushrooms exceed the published daily reference
dose (RfD) for Hg at 0.3 μg kg−1 bm or the provisionally
tolerable weekly intake (PTWI) that is 3.4 μg kg−1 bm for a
60 kg bm individual (derived from the original value of
4.0 μg kg−1 bm for a 70 kg bm individual) (WHO 2011).

The natural antagonists of Hg are selenium (Se) and sulfur
(S), with Se being a specific antagonist for MeHg (Ralston and
Raymond 2018). Neither Se and S were determined in this
study, although they can play a role in the protection of a con-
sumer from the excess Hg (andMeHg) contained in wild mush-
rooms, e.g., in mushrooms of some genera from the family
Boletaceae rich in Se (Falandysz 2013; Kavčič et al. 2019;
Nasr et al. 2012). There is no doubt that mushrooms from
certain regions of the world are foods that can be elevated in
Hg because of species physiology and in parallel with Hg geo-
logical anomalies in background regions (without substantial
local pollution), and in a part due to global fallout (Falandysz
et al. 2015b; Melgar et al. 2009; Ostos et al. 2015). Mushrooms
can also efficiently pick up Hg from grounds contaminated with
this element because of cinnabar mining or from other industrial
sources (Árvay et al. 2014; Falandysz 2016; Kavčič et al. 2019).

A recent study showed high concentrations of Se in mush-
rooms from Yunnan such as B. bicolor, B. bainiugan,
B. roseoflavus, R. griseus, R. extremiorientalis, and
S. magnificus . Concentrations ranged from 5.2 to
56 mg kg−1 dw, with stir-fried mushroom meals in the range
from 4.6 mg kg−1 dw for R. extremiorientalis to 33 mg kg−1

dw for B. roseoflavus (Falandysz et al. 2020b). In the evolu-
tionary process of minerals bio-geo-cycling, Hg and Se can
interact, and ingested MeHg, which is highly neurotoxic, can
interact with Se via selenoenzyme in neuronal cells in the
central nervous system causing irreversible inhibition of sele-
nium (Se)-dependent enzymes which are protective of oxida-
tive damage in brain cells. The occurrence of Se in molar
excess of MeHg counters this interruption of selenoenzyme
activities (Ralston and Raymond 2018). The contents of Se
both in some mushrooms from the Boletaceae family and in
stir-fried meals made from them largely exceed (on a molar
basis) the co-occurring Hg concentrations (Falandysz et al.
2020b). Thus, an excess of bioaccessible Se co-occurrence
may not create susceptibility to the neurotoxic effect from
the different forms of Hg in these mushrooms for exposed
humans. Curiously, the sclerotia of medicinal fungus
Wolfiporia cocos (Schwein.) Ryvarden & Gilb., from
Yunnan, contained Hg concentrations (molar basis) that
exceeded Se (Falandysz et al. 2020a). The incidence of
polymetallic belts, Hg geochemical anomalies, substantially
elevated concentrations of Hg in mushroom meals combined
with relatively high intake rates in Yunnan, calls for further
studies on this topic.
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“Hard” type medicinal polypore fungi in Yunnan province
in China showed relatively low contamination with Hg while
“soft” types which are used both as edible and medicinal fungi
(e.g., from the family Boletaceae) showed from one to three
orders of magnitude higher concentrations which implies sub-
stantial contamination. The Hg concentrations in forest topsoil
layers showed localized influences both from geogenic back-
ground and airborne deposition (probably largely from litter
fall). The estimated intake of Hg from medicinal fungi of
Yunnan based on data for a raw substrate can be considered
low in the case of polypore species, but could be substantial in
the case of “soft” type fungi from the family Boletaceae.
There is a huge gap in knowledge on possible effect of the
technologies used in processing of fungi on the Hg content in
medicinal formulations.
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