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Abstract
Photoautotrophic microalgae offer a great potential as novel hosts for efficient recombinant protein production. Nannochloropsis
oceanica produces an extraordinarily high content of polyunsaturated fatty acids, and its robust growth characteristics, published
genome sequence and efficient nuclear transformation make N. oceanica a promising candidate for biotechnological applica-
tions. To establish a robust and flexible system for recombinant protein production, we cloned six endogenous, potentially
constitutive or inducible promoters from N. oceanica strain CCMP1779 and investigated their strength using monomeric
Venus as reporter gene. Microscopic pre-screening of individual transformants revealed that the promoters of elongation factor
(EF), tubulin (TUB) and nitrate reductase (NR) enabled high reporter gene expression. Comparative quantitative analyses of
transformant populations by flow cytometry and qRT-PCR demonstrated the highest Venus expression from the EF promoter and
the NR promoter if extended by an N-terminal 14-amino acid leader sequence. The kinetics of reporter gene expression were
analysed during photobioreactor cultivation, achieving Venus yields of 0.3% (for EF) and 4.9% (for NR::LS) of total soluble
protein. Since inducible expression systems enable the production of toxic proteins, we developed an auto-induction medium for
the NR promoter transformants. By switching the N source from ammonium to nitrate in the presence of low ammonium
concentrations, the starting point of Venus induction could be fine-tuned and shifted towards exponential growth phase while
maintaining high recombinant protein yields. Taken together, we demonstrate that a model recombinant protein can be produced
robustly and at very high levels in N. oceanica not only under constitutive but also under auto-inducible cultivation conditions.

Key points
• Nannochloropsis oceanica might serve as host for recombinant protein production.
• Comparative promoter strength analyses were conducted for twelve different constructs.
• Robust high-yield recombinant protein production was achieved under constitutive conditions.
• The nitrate reductase promoter enabled protein production under auto-induction conditions.

Keywords Nannochloropsis oceanica . Recombinant protein production . Constitutive and inducible promoters . Flow
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Introduction

Microalgae are photosynthetic unicellular organisms that are
highly diverse in size, shape and internal cell structures
(Andersen 2013). As primary producers in the aquatic envi-
ronment, their immense CO2 assimilation capacity has a major
impact not only on the global climate and the carbon cycle but
also accounts for immense biomass production (Stephenson
et al. 2011). Furthermore, microalgae are natural producers of
interesting biomolecules for commercial applications. Due to
their high lipid content, they are promising sources for
biofuels to replace fossil fuels. However, the commercial pro-
duction of microalgal biofuels is currently not feasible due to
the high costs for algae cultivation, harvesting and biomass
processing (Odjadjare et al. 2017). For this reason, the gener-
ation of alternative valuable compounds by microalgae, such
as food and feed additives, pigments, cosmetics and pharma-
ceuticals is gaining increased attention (Borowitzka 2013).

In order to further enhance natural productivities, metabol-
ic engineering has been successfully applied to some
microalgae. For example, in Chlamydomonas reinhardtii,
the content of two carotenoids (violaxanthin and lutein) was
doubled by heterologous expression of an additional phytoene
synthase gene from strong endogenous promoters (Cordero
et al. 2011). Similarly, in Dunaliella salina, a 3-fold higher
accumulation of violaxanthin and zeaxanthin was achieved by
heterologous expression of a β-carotene hydroxylase from
C. reinhardtii (Simon et al. 2016). However, molecular genet-
ic tools were restricted to the model alga C. reinhardtii for a
long time, and only recently has sequencing of numerous algal
genomes facilitated the genetic engineering of non-model al-
gae, such as Nannochloropsis species (for an overview, see
Poliner et al. 2018a).

Nannochloropsis belong to the class of Eustigmatophyceae
within the diverse group of stramenopiles that evolved by
secondary endosymbiosis of a red alga with a heterotro-
phic eukaryote (Qiu et al. 2013). The unicellular and coc-
coid Nannochloropsis species produce large amounts of
lipids accumulating up to 60% of their biomass dry
weight under stress conditions (Rodolfi et al. 2009).
Additionally, they contain an extra-ordinarily high content
of the health-beneficial polyunsaturated fatty acid (PUFA)
eicosapentaenoic acid (up to 4.3% of biomass dry weight;
Camacho-Rodríguez et al. 2014). Recently, several novel
promoters for genetic engineering of N. gaditana have
been identified (Ramarajan et al. 2019) and a number of
plasmids for nuclear transformation of N. oceanica have
become available that even enable multigene expression
(Poliner et al. 2017; Zienkiewicz et al. 2017). Elevated
levels of total fatty acids and PUFAs were achieved by
over-expressing an endogenous diacylglycerol acyltrans-
ferase and several fatty acid desaturases (Poliner et al.
2017; Zienkiewicz et al. 2017).

In addition to metabolic engineering, microalgae can
serve as hosts for recombinant protein production (Akbari
et al. 2014; Rasala and Mayfield 2015). In comparison with
prokaryotic expression systems, eukaryotic microalgae of-
fer several advantages for eukaryotic proteins, such as cor-
rect folding and diverse posttranslational modifications in-
cluding glycosylation. Compared with other eukaryotic ex-
pression systems like plants or insects, growth rates of
microalgae are generally higher and upscaling procedures
are typically easier and cheaper (Yan et al. 2016). Different
an t ibodies and vacc ines have been produced in
C. reinhardtii upon nuclear or chloroplast transformation,
with yields ranging from 0.1 to 21% of total soluble protein
(TSP) (for an overview see Rasala and Mayfield 2015).
D. salina was successfully engineered by nuclear transfor-
mation to produce a viral envelope protein for shrimp vac-
cination (Feng et al. 2014). A human monoclonal antibody
could be produced at 8.7% of TSP by nuclear expression in
the diatom Phaeodactylum tricornutum (Hempel et al.
2011). Moreover, microalgae elegantly allow the simulta-
neous production of recombinant proteins next to other
h igh-value products l ike PUFAs and pigments ,
predestining the organisms for biorefinery approaches
(Hariskos and Posten 2014). Indeed, high PUFA accumu-
lation was recently achieved next to recombinant phytase
production in P. tricornutum to improve phosphorus bio-
availability of the algal biomass in animal feed (Pudney
et al. 2019).

Several technical advances laid the foundation for possibly
establishing N. oceanica CCMP1779 as a novel host for re-
combinant protein production in the future, including (i) stable
transformation by random integration of expression cassettes
into the nuclear genome (Vieler et al. 2012), (ii) its well-
annotated genome sequence (Vieler et al. 2012; Wang et al.
2014) and (iii) multiple expression vectors (Poliner et al.
2017; Zienkiewicz et al. 2017), in combination with its high
growth rate and robust and easy cultivability. Important pre-
requisites for successful and economically viable recombinant
protein production are high expression rates and low rates of
protein turnover without negatively affecting growth and pho-
tosynthesis. For gene expression, the promoter generally is the
most decisive element next to introns and the terminator.
Additionally, the translation efficiency may be enhanced
by an N-terminal extension of the recombinant protein by
a short peptide stemming from a highly abundant endoge-
nous protein, as shown for tobacco chloroplasts (e.g. 14 aa
of the ribulose bisphosphate carboxylase large chain
protein, Kuroda and Maliga 2001). Improved protein yields
by the addition of comparable leader sequences (LS) have
also been observed in prokaryotes (e.g. E. coli and
cyanobacteria, Betterle and Melis 2018; Sprengart et al.
1996) and upon chloroplast expression in C. reinhardtii
(Richter et al. 2018).
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In this study, we compared the strength of six N. oceanica
promoters and their corresponding LS in Venus expression at
three major levels (transcription, fluorescence and protein
yield) by complementary methodology, combining the analy-
sis of transformant populations with that of individuals. The
strongest promoters allowed stable recombinant protein pro-
duction up to 5% of TSP. We demonstrate that N. oceanica is
most suitable for stable and high-yield recombinant protein
production under both constitutive and auto-inducible cultiva-
tion conditions.

Materials and methods

Microalgal strains and cultivation

Nannochloropsis oceanica strain CCMP1779 was received
from the National Centre for Marine Algae and Microbiota
(NCMA, East Boothbay, USA) and cultivated in f/2 medium
prepared with 3.3% (w/v) artificial sea water (ASW, Tropic
Marin, Wertenberg, Germany) according to Guillard and
Ryther (1962). Compared with standard growth medium used
for 48- and 96-well plates and 100-ml batch cultures (1.8 mM
NaNO3 and 72 μM NaH2PO4), 5-fold elevated nitrate and
phosphate concentrations were provided in photobioreactors
(PBR, 400-ml batch cultures, 9 mM NaNO3 and 0.36 mM
NaH2PO4). Solidified f/2 medium contained 1.5% (w/v) agar
and only half ASW concentration (1.65% w/v). The light re-
gime was 16/8-h light/dark at 22 °C ± 1. The light intensity
was 75 μmol m−2 s−1 for small-scale liquid cultivation (48-
and 96-well plates, 100-ml batch cultures) and agar plates and
110 μmol m−2 s−1 for PBRs. PBR cultures were constantly
stirred in 500-ml bottles and supplied with a CO2/air mixture
(1% (v/v) CO2, flow rate 1 l/min) during the light period (Gris
et al. 2013). To compensate for medium acidification by CO2

bubbling, the pH of the f/2 was initially adjusted to pH 9.2 and
dropped to pH 7.8 after 2 h of bubbling. The first main culture
was inoculated with a 100-ml batch pre-culture grown to log-
arithmic phase (OD540 = 0.8–1.0; OD540 = 1.0 is equivalent to
2.1*107 cells/ml) to a starting OD of 0.02. After 6 days, typ-
ically an OD= 1.5 was reached and used for inoculation of the
second main culture (starting OD = 0.5). For the development
of the auto-induction medium for NR promoter transformants,
the cells were pre-grown in 2 mM NH4Cl (first main PBR
culture) and shifted to 10 mM nitrate with 0, 0.4 or 0.8 mM
NH4Cl (second main PBR culture).

Construction of transformation vectors

As subcloning basis to generate stable N. oceanica
CCMP1779 transformants, the expression vector pNoc ox
Venus was used (Zienkiewicz et al. 2017). This vector pos-
sesses one expression cassette consisting of the promoter of

the lipid droplet surface protein (LDSP), the HygR gene for
resistance to hygromycin B and the nopaline synthase termi-
nator and a second cassette for the expression of the reporter
gene controlled by the elongation factor (EF) promoter and
terminated by the LDSP terminator. As a reporter gene, we
chose mVenus, a monomeric GFP derivative. Subcloning was
performed according to standard protocols (Sambrook and
Russell 2001) using enzymes from ThermoScientific™
(Waltham, USA). For C-terminal His6-tag addition, the
Venus gene was amplified from of the original plasmid with
a forward primer containing a MunI restriction site and a re-
verse primer adding the His6-tag and aMluI site (Table S1) to
replace the untagged Venus gene. To generate the two differ-
ent construct types for each promoter with and without leader
sequence (LS, (Pro(x)::Venus and Pro(x)::LS(x)-Venus,
Fig. 1a), the original EF promoter was removed by NotI and
MunI and replaced by different endogenous promoters
(Table S2), either alone or extended by the corresponding
42-bp LS, as predicted by the N. oceanica genome (Vieler
et al. 2012; https://mycocosm.jgi.doe.gov/Nanoce1779_2/
Nanoce1779_2.home.html), and was amplified from
genomic DNA (Table S1). Genomic DNA of N. oceanica
was isolated using Cetyltrimethylammonium bromide
(Varela-Alvarez et al. 2006). To ensure comparability of the
EF promoter construct without and with LS, a 24-bp non-
coding region located between the 3′-end of the promoter
sequence and the start codon of Venus in the original pNoc
ox Venus vector was removed (Table S1).

Transformation of N. oceanica by electroporation

N. oceanica was grown under standard conditions to mid-
exponential growth phase and transformed by electropo-
ration with 3 μg vector DNA (linearized by AhdI or PsiI)
and 30 μg salmon sperm DNA (Vieler et al. 2012). Single
colonies were grown on selective plates containing
50 μg/ml hygromycin, were transferred to 96-well plates
containing 200 μl f/2 medium with hygromycin and were
incubated for 7–10 days under standard growth
conditions.

Confocal microscopy

For imaging, a Leica DMi8 inverted microscope coupled to
the confocal spinning disc unit CSU X1 (Yokogawa Electric
Corporation, Musashino, Japan) was used. The system was
equipped with a 515-nm laser for excitation of Venus.
Images were acquired by VisiView software (Visitron
Systems, Puchheim, Germany). Confocal images were cap-
tured as single planes with a sCMOS camera system
(QImaging OptiMOS).

8749Appl Microbiol Biotechnol (2020) 104:8747–8760

https://mycocosm.jgi.doe.gov/Nanoce1779_2/Nanoce1779_2.home.html
https://mycocosm.jgi.doe.gov/Nanoce1779_2/Nanoce1779_2.home.html


Flow cytometric analysis

Venus fluorescence was analysed in transformant populations
by growing at least 40 different N. oceanica transformants of
each promoter construct individually in 1 ml in 48-well plates
for 5 days under standard growth conditions until mid-
exponential growth phase. Cells were pooled in equal propor-
tions based on cell number and subjected to flow cytometric
analysis using the S3e cell sorter (Bio-Rad, Hercules, USA)
equipped with a 488-nm excitation laser. To allow compara-
bility between experiments, the flow cytometer was calibrated
using proline universal and rainbow calibration beads (Bio-
Rad, Hercules, USA) according to the manufacturer’s instruc-
tions. N. oceanica cells were diluted to approx. 106 cells/ml
and analysed at a rate of 500 events/s (105 cells in total for
each sample). The data was collected using the instrument
specific acquisition software. To determine the median
Venus fluorescence, the data was analysed by the FlowJo
software package (v10.6.1; BD Life Science, Ashlan, USA)
with the following gating strategy:N. oceanica cells were first
identified based on their morphological features in a two-
dimensional density plot of side scatter area (SSC-Area) ver-
sus forward scatter area (FSC-Area). Chlorophyll-positive
cells were identified in a density plot of FL2-Area (560-nm
long pass filter) versus FSC-Area and displayed in a density
plot diagram of FL2-Area versus FL1-Area (525/30-nm
bandpass filter) or in an FL1-Area histogram to visualize the
Venus fluorescence of the transformant population in compar-
ison with the background fluorescence of wild-type cells
(Figs. 2, S1 and S2). The median Venus fluorescence was
calculated after gating for the Venus-positive population.

Venus expression analysis by qPCR

At least 40 individual N. oceanica transformants were sepa-
rately grown in 48-well plates for 5 days, as described above,
pooled, harvested by centrifugation (15 min, 4000g) and fro-
zen in liquid nitrogen. RNA was isolated from these cells, as
described by Vieler et al. (2012), using Trizol™
(Invitrogen™, USA) and the RNeasy® Mini Kit with
DNaseI digest (Qiagen, Hilden, Germany). After a second
DNaseI digest (Thermo Scientfic™, USA), total cDNA was
generated from 200 ng RNA using the RevertAid First Strand
cDNA Synthesis kit (Thermo Scientific™, USA) and an
oligo(dT)18 primer. Relative Venus expression analyses of
the pooled transformants were carried out with the primer
pairs given in Table S1 and with actin2 (ACT2) as a reference
gene (transcript ID: 6413). The qPCR was performed with the
Green Master Mix (Roche, Mannheim, Germany) and 1.5 μl
of cDNA as template using the LightCycler® 96 System
(Roche, Germany). The primer efficiencies were determined
at least for five 10-fold cDNA dilutions (10−1 to 10−6 ng/μl)
for Venus (99%) and ACT2 (92%). Normalized Venus

expression (as fold change) was calculated by the ΔΔCt
method (Pfaffl 2001), using Venus expression from the TUB
promoter population as calibrator.

Quantification of Venus fluorescence by plate reader
measurement

Venus fluorescence of alive N. oceanica transformants was
quantified in triplicates using a Synergy HT microplate
reader (Biotek Instruments, Vermont, USA) in flat clear
bottom black 96-well microplates (BRANDplates®,
Wertheim, Germany). Venus fluorescence was measured
in 100 μl adjusted to 7.5*106 cells/ml against f/2 medium
using a 485/20-nm excitation and a 528/15-nm emission
filter. For calculation of the so-called cellular Venus fluo-
rescence, the absolute fluorescence values were normalized
to OD750.

Protein isolation and immunoblotting

For protein isolation, approx. 108 cells ofN. oceanica cultured
in PBRs were sedimented (3500 g for 15 min) and resuspend-
ed in lysis buffer (50 mM Tris/HCl, pH 8.0, 1 mM EDTA and
2x Roche cOmplete, EDTA-free protease inhibitor) according
to Chu et al. (2016). The cells were lysed using glass beads
(0.5 g, diameter 0.5 mm) by four to five cycles of shaking
(6500 rpm for 30 s) in a Precellys homogenizer (Bertin instru-
ments, Montigny-le-Bretonneux, France) with sample cooling
on ice to avoid sample overheating and protein degradation.
Cell debris was removed by centrifugation and the supernatant
frozen in liquid nitrogen. The concentration of total soluble
protein (TSP) was quantified in the supernatant (Bradford
1976). For immunoblotting, proteins were separated by
SDS-PAGE and transferred electrophoretically onto nitrocel-
lulose membrane (BioTrace NT; Pall Life Sciences,
Portsmouth, USA) using a Criterion™ Blotter (Bio-Rad).
Venus was detected with a primary rabbit anti-GFP antibody
(dilution 1:5.000, ab290; abcam, Berlin, Germany) and a sec-
ondary horseradish peroxidase-coupled antibody. For abso-
lute quantification of Venus-His6 in TSP, a standard curve
was generated using a purified His6-tagged calibration protein
(approx. 14 kDa; dynamic range between 0.05 and 0.8 μg;
Fig. S5). The latter and Venus-His6 were detected by a prima-
ry mouse anti-His6 antibody (1:10,000 dilution, ab18184;
abcam) and the corresponding peroxidase-coupled secondary
antibody. Peroxidase was detected by enhanced chemilumi-
nescence (Amersham ECL Prime Western Blotting Detection
Reagent; GE Healthcare, Chicago, USA) and a Fujifilm im-
ager with a CCD camera (LAS-3000; Fujifilm, Tokyo, Japan).
Images were analysed by the ImageJ 1.521 software package
(Schneider et al. 2012).
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Results

Analysis of endogenous N. oceanica promoters by
fluorescence microscopy

To establish N. oceanica as a host for recombinant protein pro-
duction, we selected six endogenous promoters (Table S2). As
constitutive promoters, the genes coding for elongation factor
(EF),α-tubulin (TUB), lipid droplet surface protein (LDSP) and
two violaxanthin chlorophyll a binding proteins (VCP-1/-L)
were chosen. As predicted inducible promoter, that of nitrate
reductase (NR) was selected. Each promoter sequence was test-
ed with and without the addition of a leader sequence (LS)
composed of the first 42 bp (i.e. 14 aa) of its own ORF fused
N-terminally to the reporter protein (Fig. 1a).

For the generation of stable N. oceanica CCMP1779
transformants, we selected a suitable backbone vector of the
pNoc ox series containing two separate expression cassettes;
one for the expression of the hygromycin resistance gene and
the other for the reporter gene of interest (Zienkiewicz et al.
2017). The constitutive EF promoter was already available for
reporter gene expression and was extended by its LS. The five
additional promoter sequences (±LS) were amplified from
genomic DNA of N. oceanica with appropriate restriction
sites to replace the original EF promoter. As a reporter gene,
we chose a cytosolic version of monomeric Venus, which is a
yellow fluorescent GFP derivative with advantageous proper-
ties in terms of increased brightness and maturation speed,
abolished dimerization tendency, and reduced detection inter-
ference with chlorophyll autofluorescence (Nagai et al. 2002).

N. oceanica CCMP1779 was transformed with the newly
created expression vectors by electroporation with a typical
transformation rate of approx. 70 hygromycin-resistant colo-
nies per microgram of plasmid DNA. The transformants were
selected first on agar plates and subsequently propagated in
96-well plates (Vieler et al. 2012). First, the signal strength,
stability and homogeneity of Venus fluorescence were exam-
ined in clonal transformant populations by confocal spinning
disk microscopy (Table S2). Strong and evenly distributed
cytosolic Venus fluorescence was observed in specific
transformants of three promoters (EF, NR and TUB, each
±LS), as shown representatively for the EF promoter (Fig.
1b). However, different transformants of the same promoter
constructs showed remarkable variations in Venus fluores-
cence (data not shown). In contrast, uniformly low fluores-
cence was detected in all transformants of the two LDSP and
all four VCP promoter constructs (Fig. 1b, data not shown).
Hence, subsequent analyses focused on the EF, NR and TUB
promoter transformants (±LS) with high promoter activity.

Pro(x)::LS(x)-Venus-His6

Venus His6

ATG

Pro(x)::Venus-His6a

Pro(x) Term

TAA

Venus His6

ATG

Pro(x)

TAA

LS(x) Term

b

Brightfield

Pro(EF)::Venus-His6

Pro(LDSP)::Venus-His6

Venus

Venus Enlarged

Brightfield

42 bp 

Enlarged
1

2
222

11

Fig. 1 Schematic diagram of two types of expression cassettes used for
promoter strength analyses and microscopic images of stableN. oceanica
transformants. a Different endogenous N. oceanica promoters were
cloned either with or without the first 42 bp of their CDS to drive
expression of the reporter gene Venus, which was extended by a C-
terminal hexahistidine tag for Venus quantification by immunoblotting.
Five different promoters were tested (Pro(x), x = elongation factor, lipid
droplet surface protein, nitrate reductase, α-tubulin and violaxanthin/
chlorophyll a binding protein). All expression cassettes contained the
terminator of lipid droplet surface protein. b Exemplary and representa-
tive microscopic images of the progeny of two stable N. oceanica
transformants, showing either strong and relatively homogenous Venus
expression (EF promoter) or weak and heterogeneous yellow fluores-
cence (LDSP promoter). The two magnified image sections show one
non-fluorescent cell with minimal auto-fluorescence (1) and one cell with
moderate Venus fluorescence (2). EF, elongation factor; LDSP, lipid
droplet surface protein; LS, leader sequence; Pro, promoter; Term, termi-
nator. Scale bar: 5 μm
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Promoter strength analysis by flow cytometry in
transformant populations

Due to the variations in Venus fluorescence among indi-
vidual transformants of the same promoter constructs (see
above), we next applied flow cytometry to quantify the
distribution of the Venus fluorescence in transformant pop-
ulations using the Bio-Rad S3e cell sorter. Forty individual
transformants of the same construct type were mixed in
equal proportions by cell number to one transformant pop-
ulation, which allowed averaging of reporter gene expres-
sion independent of the transformants’ growth rates. As an
indicator for cell viability, chlorophyll-positive cells were
detected with the FL2 channel and Venus fluorescence was
detected with the FL1 channel (Fig. 2a). Chlorophyll auto-
fluorescence of wild-type N. oceanica was only weakly detect-
ed by the FL1 channel (Figs. S1 and S2). For each promoter
construct, a Venus positive sub-population was clearly distin-
guishable from the autofluorescence of the wild-type popula-
tion (Figs. 2b and S1). After gating for Venus-positive cells,
three transformant populations (EF and TUB±LS) formed one
large Venus-specific unimodal population that spanned up to
two orders of magnitude (i.e. 100-fold difference in fluores-
cence). These three populations and that of the NR promoter
had the lowest median fluorescence values among the six
Venus positive population, ranging from 48 to 56, while higher
median values were obtained for the EF and NR::LS popula-
tions (76 and 73, respectively). Interestingly, the latter two
transformant populations showed a multimodal distribution
with sub-populations of very high Venus fluorescence, demon-
strating a high heterogeneity.

Fluorescence-activated cell sorters not only allow high-
sensitivity analyses of microalgae but also sorting of single
cells with superior properties. We next calculated the me-
dian Venus fluorescence for those 10% of transformants
with the highest Venus fluorescence. As hypothesized,
the differences among the promoter constructs became
more pronounced (Fig. 2c). The median Venus fluores-
cence values of both the EF promoter (260) and the
NR::LS promoter population (410) exceeded that of the
TUB promoter population 2.8- and 4.5-fold, respectively
(Fig. 2c). Moreover, for all three promoters, the Venus
fluorescence was affected by the LS. Atypically, the medi-
an Venus fluorescence from the EF promoter population
lacking the LS was > 1.8-fold higher compared with that of
the EF::LS construct. In contrast, for the TUB and NR
promoter population, the LS addition had a positive en-
hancing effect, resulting in a 1.5-fold increase in Venus
fluorescence for the TUB promoter and even in a nearly
3-fold increase in case of the NR promoter (Fig. 2c).
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Quantitative promoter strength analysis in
transformant populations by qRT-PCR

In order to compare the strength of different promoters at the
RNA level and independent of any fluorophore (e.g. for un-
tagged recombinant proteins), we established gene expression
analysis by qPCR for transformant populations. In this ap-
proach, the same populations analysed by flow cytometry
(see above) were subjected to expression analysis
(Table S2). Venus expression was normalized to expression
of the housekeeping reference gene ACT2 (Cao et al. 2012)
and Venus expression from the TUB promoter was used as
calibrator applying the ΔΔCt method (Pfaffl 2001). Venus
expression of the transformant populations of EF::LS and
TUB::LS was rather similar to that of the TUB population,
while Venus expression from the NR promoter was 1.6-fold
higher. The highest Venus transcript expression was deter-
mined for the EF and NR::LS promoter transformants, namely
5- and 7.5-fold higher, respectively, relative to the TUB pro-
moter transformants (Fig. 3). Overall, the results of the expres-
sion analysis were largely consistent with the flow cytometry
data. Notably, the differences in Venus expression between
the pooled EF and NR promoter transformants compared with
their LS containing variants were more pronounced, as com-
pared with the flow cytometry results (Fig. 2c).

Growth phase-dependent Venus productivity
analyses

For recombinant protein production, individual transformants
with high promoter activity are required that allow high and
stable protein production over the entire growth period and
which are not compromised in growth rate. For this reason,
we quantified the Venus fluorescence (normalized to OD750;
referred to as cellular Venus fluorescence) over the entire
growth period in batch cultures using a plate reader equipped
with suitable filters. The filters detected only low levels of chlo-
rophyll autofluorescence for wild-typeN. oceanica (Fig. 4). For
each promoter construct, at least three individually grown
transformants were analysed. In the EF promoter transformants
(±LS), the cellular Venus fluorescence was stable in the expo-
nential growth phase (OD540 0.5 to 2.0, Fig. S3), while it started
declining slightly earlier in the NR promoter transformants
(OD540 = 1.5, data not shown). The TUB promoter
transformants showed low and instable cellular fluorescence
(data not shown). For each transformant analysed, those cellular
Venus fluorescence values that were rather constant during the
growth period were averaged (Fig. S3). This so-called mean
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cellular Venus fluorescence value was the highest for several
individual transformants of both EF promoter constructs (±LS)
and the LS containing NR promoter. Interestingly, two NR::LS
promoter transformants showed amore than 5-fold highermean
cellular Venus fluorescence compared with the transformants
lacking this N-terminal 14-aa peptide (Fig. 4).

Determination of Venus protein yields in small-scale
photobioreactors

For high yields, stable recombinant protein accumulation up
to high cell densities is an important prerequisite. Based on the
previous results (Fig. 4), two EF promoter transformants (re-
ferred to as EF 1 and EF 2) and two NR::LS promoter
transformants (NR::LS 1 and NR::LS 2) were chosen for

Venus productivity analyses in small-scale photobioreactors
(PBR). The transformants were cultivated under constant sup-
ply with CO2/air (1%/99% v/v) during the light period in 400-
ml PBRs. Cellular Venus fluorescence was analysed over the
growth period until stationary phase (Fig. 5a and b). In gener-
al, the growth rate of different transformants was similar (0.20
to 0.25 day−1), but they differed in maximumOD in stationary
phase (9 to 14). Typically, cellular Venus fluorescence in-
creased shortly after inoculation of the main culture, indicat-
ing that Venus biosynthesis was higher than the “dilution ef-
fect” by cell division in the lag phase (Fig. 5a and b). In
exponential growth phase, cellular fluorescence decreased
slightly and remained relatively constant, before the values
declined in the stationary growth phase. Interestingly, one
NR::LS promoter transformant, NR::LS 2, showed an extra-
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and the cross-reactivity of both antibodies correlated well (see also Fig.
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8754 Appl Microbiol Biotechnol (2020) 104:8747–8760



ordinarily high cellular Venus fluorescence oscillating around
11,000 in exponential growth phase (Fig. 5b), which was ap-
proximately 8- to 10-fold higher than the best EF promoter
transformant (EF 2; Fig. 5a).

PBR cultivation allowed sufficient production of biomass
and protein (typically up to 150 μg of total soluble protein
(TSP) from 8*108 cells) to analyse the accumulation of
Venus-His6 protein by immunoblotting with a primary anti-
GFP-specific antibody at several time points over the whole
growth period. Accordingly, Venus accumulation was stable
without protein degradation until late exponential growth
phase (Fig. 5c). Additionally, we established relative determi-
nation of recombinant protein yield using a primary anti-His6-
specific antibody as a fluorophore independent quantification
method for future applications. For this, an unrelated purified
His6-tagged protein was selected as a calibration standard
(Fig. S5). The GFP- and His6-specific immunoblotting data
correlated very well and showed roughly the same trend as the
semi-quantitative data of the cellular Venus fluorescence
(Figs. 5c; S4b). Venus yields per TSP were quantified in cells
harvested in the late exponential growth phase (typically day
9) when the cellular fluorescence was still stable. Two best EF
promoter transformants, EF 1 and EF 2, produced moderate
Venus yields of 0.2%–0.3% of TSP. By contrast, remarkably
high Venus yields of 1.5% (NR::LS 1) and 4.9% of TSP
(NR::LS 2) were achieved for the best NR::LS promoter
transformants. Hence, approx. 0.42 mg recombinant Venus
protein could be produced by a 400-ml PBR within 9 days.

Development of an auto-induction system based on
ammonium repression and nitrate inducibility of the
NR promoter

Up to this point, the NR promoter transformants were exclu-
sively grown under constitutive growth conditions using solely
nitrate as the N source. Though nitrate is the common N source
in f/2 medium, N. oceanica prefers the fully reduced ammoni-
um,which can be directly incorporated intoα-ketoglutarate and
glutamate for amino acid biosynthesis. In plants and several
algae, the nitrate reductase promoter is repressed by ammonium
and induced by nitrate (Berges 1997; Solomonson and Barber
1990). To investigate whether the NR promoter of N. oceanica
had the same properties, we grew the corresponding
transformants first in ammonium and then switched the growth
medium to nitrate. Indeed, cellular Venus fluorescence
remained undetectable in the presence of ammonium by fluo-
rescence microscopy but became clearly visible upon switching
to nitrate (Fig. 6a). Hence, the NR promoter of N. oceanica is
fully repressed by ammonium and induced by nitrate.

To develop an auto-induction medium for recombinant
protein production from the NR promoter in N. oceanica,
we investigated whether low ammonium concentrations in

the presence of high nitrate concentrations could (i) repress
Venus expression in the lag and very early exponential growth
phase to generate moderate cell concentrations; (ii) slowly
induce Venus expression and (iii) enable the same high levels
of Venus fluorescence and protein yields at the harvest time
point in the early stationary phase. Indeed, a low ammonium
concentration of 400 μM (next to 10 mM nitrate) delayed
Venus induction by approximately 24 h and high cellular fluo-
rescence (> 9000) was detected at OD 1.5 (Figs. 6b and S7a).
By doubling the ammonium concentration to 800 μM, cellular
Venus fluorescence became detectable after > 50 h and reached
the same high cellular fluorescence at moderate cell densities
(> 9000 at OD 3.0; Figs. 6b; S7). The cellular fluorescence
correlated well with immunoblotting results, since a strong
Venus-specific cross-reaction could only be detected after
1 day (for 400 μM NH4

+) and 3 days (for 800 μM NH4
+;

Fig. 6c). Notably, independent of the initial repressive effect
of ammonium, similarly high levels of cellular Venus fluores-
cence were reached for all three culture conditions, oscillating
around 12,000 to 13,000 (Fig. 6b). Quantification by immuno-
blotting revealed that the maximum Venus yields of 5.1% of
TSP (0μMNH4

+) were only slightly reduced in the presence of
ammonium (400 μM: 4.4% of TSP; 800 μM: 4.1% of TSP;
Fig. 6d). In summary, these ammonium and nitrate concentra-
tions can serve as auto-inducing conditions for recombinant
protein production to shift the induction time point from lag
phase to exponential growth phase when cultures reach moder-
ate cell densities without compromising in final protein yields.
Such an auto-induction medium is particularly important for
future applications in producing toxic recombinant proteins.

Discussion

Nannochloropsis species are evolutionarily highly divergent
from each other and from related families. Consequently, het-
erologous gene expression generally requires the use of en-
dogenous promoters (Akbari et al. 2014; Schroda et al. 2000).
To develop an expression system for economically viable,
high-yield recombinant protein production in N. oceanica,
we investigated the expression strength of six different endog-
enous promoters with and without the corresponding LS by
analysing and quantifying Venus expression, fluorescence and
protein yields by a set of complementary methodologies. The
original EF promoter of the basal pNoc ox vector had previ-
ously been primarily used for metabolic engineering of fatty
acid metabolism by (over-)expressing a diacylglycerol acyl-
transferase and several fatty acid desaturases (Poliner et al.
2017; Zienkiewicz et al. 2017). Our newly cloned promoter
sequences stemmed from five different genes involved in di-
verse physiological functions of the cell. TUB proteins are the
major constituent of microtubuli building the cytoskeleton and
the respective TUB promoter was able to drive constitutive
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gene expression in N. oceanica IMET1 (Li et al. 2014; Wang
et al. 2016). The two VCP promoters had, for example, been
used in the first published CRISPR/Cas9 system for
N. oceanica (Wang et al. 2016). The LDSP promoter success-
fully expressed the hygromycin resistance gene in the pNoc
ox vectors (Zienkiewicz et al. 2017). The promoter of the NR
gene is nitrate-inducible in higher plants and had so far been
studied in C. reinhardtii (Loppes et al. 1999), Chlorella
vulgaris (Niu et al. 2012), P. tricornutum (Chu et al. 2016)
and N. gaditana (Jackson et al. 2018).

In this study, the choice of a fluorescent reporter gene
proved extremely useful since it enabled (semi-) quantitative
protein analyses by fluorescence microscopy, plate reader and
flow cytometry. Transformant analysis by fluorescence mi-
croscopy allowed efficient pre-screening of transformants.
High levels of cytosolic Venus fluorescence were detected

for three promoters (EF, TUB and NR) under constitutive
growth conditions. In contrast, the six other promoter variants
(LDSP and VCP-1/-L, ±LS) generated only low Venus fluo-
rescence close to the detection limit and were considered un-
suitable for substantial recombinant protein production.
Additionally, we detected significant differences in Venus ex-
pression, not only between promoter constructs but also
among individual transformants of the same construct. Such
heterogeneity in gene expression strength in transformant
populations is typical for nuclear transformation, random ge-
nome integration and single or multiple cassette insertion,
contrary to single site-specific integration by homologous re-
combination (Ramarajan et al. 2019; Schroda 2019).

Large differences in gene expression between individual
transformants make it challenging to determine the expression
strength of different promoters in a comparable and
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reproducible manner. Quantitative RT-PCR and flow cytom-
etry of transformant populations, as established here, proved
ideal in analysing and averaging Venus expression at the
mRNA and protein level, respectively. The EF and NR::LS
populations showed the highest Venus expression with 5- and
7.5-fold higher Venus expression, respectively, by qPCR com-
pared with the LS lacking TUB population. Expression analy-
sis and fluorescence data determined by flow cytometry
showed the same trend for the different promoter constructs,
in particular when the median fluorescence value was calculat-
ed for the best 10% of the cells with the highest fluorescence.
This value was 3-fold (EF population) and 4.5-fold (NR::LS)
higher than the fluorescence of the respective TUB population
(Figs. 2c and 3). Collectively, flow cytometry is a valuable tool
for quantitative promoter strength comparison in reporter gene
expression and to determine enhancing effects of genetic ele-
ments. While flow cytometry relies on fluorophore tags, qPCR
is more flexible and fluorophore independent.

We further investigated if the extension of the promoters by
the first 42 bp of the corresponding CDS enhanced Venus
expression, as reported for E. coli (Sprengart et al. 1996),
Synechocystis (Betterle and Melis 2018), C. reinhardtii
(Richter et al. 2018) and tobacco chloroplasts (Kuroda and
Maliga 2001; Ye et al. 2001). For example, the addition of
an N-terminal 14-amino acid LS boosted protein yield in to-
bacco chloroplasts by a factor of 30 (Ye et al. 2001). In our
experimental system, we consider it unlikely that the small 42-
bp addition of the LS influenced the site or the number of
expression cassette insertions into the nuclear genome. We
concluded that some but not all LS indeed enhanced gene
expression. This enhancer effect was most pronounced for
the NR promotor (4.5-fold higher Venus expression and near-
ly 3-fold increased fluorescence of the 10% best
transformants). However, two other LS (of EF and TUB gene)
did not or only marginally enhanced Venus expression.
Hence, the LS effect was construct-specific in this study, as
reported previously (Richter et al. 2018), and remains largely
unpredictable. In general, the translation-enhancing effect of
specific LS, also called downstream boxes, is not yet under-
stood mechanistically in detail. To the best of our knowledge,
translation-enhancing effects of LS have only been described
for prokaryotic or plastid-based expression systems. Our en-
hancer effect of the LS of NR on Venus gene expression is
thus the first documented result for a nuclear-encoded eukary-
otic gene. Future studies need to address to what extent the LS
of NR also enhances translation of recombinant genes other
than Venus. It will be interesting to combine the strong con-
stitutive EF promoter with the LS of NR to possibly further
increase the strength of that expression cassette.

In exponential and early stationary growth phase, recombi-
nant protein biosynthesis per cell is generally constant. Thus,
maximum microalgal productivity per day is reached at high

cell densities. As a drawback, the rate of recombinant protein
production and protein quality usually decreases towards the
late exponential phase due to insufficient light penetration, a
lack of nutrients (N and P) and microelements and due to ele-
vated endogenous proteolytic activity. We therefore performed
in-depth analyses of Venus fluorescence over the entire growth
period with focus on the late exponential to early stationary
phase (Fig. 5). Venus accumulation was stable over the entire
growth period without any detectable protein degradation ac-
cording to anti-GFP and anti-His6 immunoblot analyses (Figs.
5C). Similar to qRT-PCR, immunoblotting based on the His6
epitope tag as the antigen is applicable to any non-fluorescent
recombinant protein of interest in future studies.

Our Venus yields achieved under constitutive cultivation
conditions in PBRs ranged from 0.2 to 0.3% of TSP for the EF
promoter strains, which is in the range of < 1% typically re-
ported in algae for both nuclear and plastidic expression. For
instance, the V28 protein as subunit vaccine against the white
spot syndrome virus was produced by nuclear expression in
Dunaliella salina with a yield of 0.3% of TSP (Feng et al.
2014), and a recombinantly produced Hepatitis B surface an-
tigen reached a yield of 0.7% of TSP in P. tricornutum
(Hempel et al. 2011). Most importantly, our Venus yields
achieved with the NR::LS promoter protein under both con-
stitutive and inducible growth conditions were extraordinarily
high (i.e. 1.5 to 4.9% of TSP). Previously, such high yields
had been hardly reported for Nannochloropsis. Only based on
a theoretical protein content per cell, a similarly high GFP
yield of 1.5 ± 1.1% of TSP had been calculated for the NR
promoter in N. gaditana (Jackson et al. 2018). Interestingly, a
recombinantly produced small antimicrobial peptide fused to
red fluorescent protein accumulated to up to 4.3% of TSP in
the cytosol of N. salina, when using a combined promoter of
the heat shock protein 70A and RubisCO SSU from
C. reinhardtii (Li and Tsai 2009). Similar high recombinant
protein levels had been typically achieved only by chloroplast
transformation ofC. reinhardtii. For example, a yield of 3% of
TSP was achieved for a fusion vaccine composed of a subunit
of the foot-and-mouth disease virus and cholera B toxin (Sun
et al. 2003). Heterologous expression of a bioactive mamma-
lian protein even reached 5% of TSP (Manuell et al. 2007).
Only in very few cases even higher yields have been reported
like for the V28 protein produced in the C. reinhardtii plastid
with a yield of > 20% of TSP (Surzycki et al. 2009).

Although protein production in chloroplasts is generally
advantageous in terms of protein yields and stability, we here
show that high yields of intact protein can also be produced
upon nuclear transformation. In contrast to plastid expression,
nuclear transformation does not require the time-consuming
generation of homoplasmic lines. Hence, newly generated nu-
clear transformants are directly available for upscaling proce-
dures and analytics. Notably, our N. oceanica transformants
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remained stable even without selection pressure (unpubl. da-
ta), as reported for N. gaditana (Jackson et al. 2018), which
reduces the costs for industrial-scale cultivation.

The production of toxic proteins negatively impacts cell
viability and proliferation. For this reason, auto-induction me-
dia are applied to induce gene expression at moderate cell
densities. The high strength of the NR promoter combined
with its nitrate inducibility and repression by ammonium
(Fig. 6a) opened the possibility to develop an inducible ex-
pression system for N. oceanica. The rapid nitrate-dependent
induction of the NR promoter and its repression by ammoni-
um (Fig. 6a and b) had previously been described for
P. tricornutum (Chu et al. 2016) and in parallel studies for
N. gaditana (Jackson et al. 2018) and N. oceanica (Poliner
et al. 2020). Notably and contrary to our results, the NR pro-
moter of N. gaditana retained residual and non-negligible ac-
tivity in the presence of both ammonium and nitrate (Jackson
et al. 2018), preventing its application in an auto-induction
system. Moderate concentrations of ammonium (up to
800 μM) fully repressed Venus expression for approx. 2 days
(Fig. 6b and c). After consumption of ammonium as the pre-
ferred N source, Venus expression was quickly induced by
10 mM nitrate at elevated OD540 (3.0), while maintaining
the final high Venus yield at culture harvest. Depending on
the degree of recombinant protein toxicity in future projects,
the auto-induction conditions may be fine-tuned. Hence, we
here describe a novel ammonium/nitrate-based auto-induction
system for recombinant protein production from the NR pro-
moter. This is the first auto-induction system for
Nannochloropsis developed for diverse time- and cost-
efficient biotechnological applications in the near future.

The strength of the identified strong EF and NR promoters
needs to be verified in combination with different genes of
interest since it is commonly known that promoter strength
may vary dependent on the coding sequence (Schroda
2019). Additionally, the effect of terminator sequences on
gene expression levels and protein yields is often neglected
and offers further optimization potential. For example, in
C. reinhardtii, the same promoter combined with different
terminators showed up to 40-fold differences in gene expres-
sion (Kumar et al. 2013). Quantitative analyses by flow cy-
tometry established in this study can be applied straightfor-
ward to further optimize promoter/terminator variations.

In the past few years, many research groups made major
technological contributions to genetic engineering of
Nannochloropsis (and particularly N. oceanica), including
gene stacking methods using novel bidirectional promoters
and viral P2A and marker-free gene editing tools (Poliner
et al. 2017, 2018b, 2020). An elegant combination of the
technological advancements with our results will ultimately
enable the establishment of N. oceanica as a host for recom-
binant protein production. Potential economic applications are
diverse and unlimited. For instance, N. oceanicamay be used

to produce animal vaccines to orally immunize fish against
widespread diseases in aquaculture (Charoonnart et al. 2018).
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